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A B S T R A C T

Wall-bounded flows play an important role in numerous common applications, and have been intensively
studied for over a century. However, the dynamics and structure of the logarithmic and outer regions remain
controversial to this date, and understanding their dynamics is essential for the development of effective
prediction and control strategies, and for the construction of a complete theory of wall-bounded flows.
Recently, the use of time-resolved direct numerical simulations of turbulent flows at high Reynolds numbers
has proved useful to study the physics of wall-bounded turbulence, but a proper analysis of the logarithmic and
outer layers requires simulations at high Reynolds numbers in large domains, making the storage of complete
time series challenging. In this paper a novel low-storage method for time-resolved databases is presented.
This approach reduces the storage cost of time-resolved databases by storing filtered flow fields that target
the large and intermediate scales, while retaining all the information needed to fully reconstruct the flow at
the level of filtered flow fields and complete second-order statistics. This is done by storing also the filtered
turbulent stresses, allowing to recover the exact effect of the small scales on the large and intermediate scales.
A significant speed-up of the computations is achieved, first, by relaxing the numerical resolution, which is
shown to affect only the dynamics close to the wall, but not the large scales stored in the database, and,
second, by exploiting the computing power and efficiency of GPU co-processors using a new high-resolution
hybrid CUDA-MPI code. This speed-up allows running for physically meaningful times to capture the dynamics
of the large scales. The resulting temporally resolved large-scale database of a turbulent channel flow up to
𝑅𝑒𝜏 = 5300, in large boxes for long times, is briefly introduced, showing significant indicators of large-scale
dynamics with characteristic times of the order of up to eight eddy turnover times.
1. Introduction

Wall-bounded flows are fundamental building blocks of many in-
dustrial applications as well as natural phenomena, and developing
accurate models for their prediction and control is a crucial challenge
for the next decades. One fourth of the energy in advanced economies
is used in transportation, and about 20% of that amount is dissipated in
wall-bounded turbulent flows. Therefore, 5% of the total energy, and
a disproportionate amount of the resulting CO2 emissions, are spent
that way [1]. Wall turbulence is the main contributor to aerodynamic
friction, and is responsible for most of the pressure drop in inter-
nal flows such as pipelines. Its importance cannot be overemphasised
for the demanding energetic challenge of this century. Among wall
bounded flows, channels are the simplest to simulate numerically,
i.e. they achieve the largest Re for the same numerical complexity, and
represent a valuable tool for the accurate study of these phenomena.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
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Their direct numerical simulation (DNS) has been a basic component
of their study [2–6].

While the behaviour of turbulence in the viscous layer near the
wall has been reasonably well understood for some time [7,8], the
dynamics of the flow farther from the wall is less clear. One of the
most vexing remaining problems is the logarithmic layer that separates
the near-wall and outer regions. It is in this layer that most of the
velocity drop of a boundary layer takes place at high Reynolds numbers,
and where the transition between the very different length-scales of
turbulence in the two regions occur. The logarithmic layer has been
studied experimentally for a long time, but numerical data have only
been available in the last decade because it only exists at relatively
high Reynolds numbers. Although different limits have been proposed
[6,9,10], it is safe to assume that the logarithmic layer extends from
above 𝑥2𝑢𝜏∕𝜈 ≈ 150 to 𝑥2∕ℎ = 0.15, where 𝑥2 is the distance from the
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wall, 𝑢𝜏 is the friction velocity, 𝜈 is the kinematic viscosity, and ℎ is
the boundary-layer thickness or the channel half-width. Therefore, a
logarithmic layer does not exist if the friction Reynolds number is 𝑅𝑒𝜏 =
𝑢𝜏ℎ∕𝜈 ≲ 1000, and it is only appreciably wide if 𝑅𝑒𝜏 is substantially
higher. The first DNSs of channel flows at 𝑅𝑒𝜏 = 180–950 had no
logarithmic layer in the sense just mentioned [2–4]. Since then, 𝑅𝑒𝜏 has
increased steadily, and simulations with a short logarithmic layer have
become available. The current state of the art is 𝑅𝑒𝜏 ∼ 4000–8000 [6,11–
13], where the logarithmic layer extends over a scale ratio of 5 to 8 in
the wall-normal direction.

Another open question in wall-bounded turbulence is the origin and
dynamics of the large scales in the outer region, which extends above
𝑥2 ∼ 0.1ℎ. These scales play a relevant role in wall-bounded flows as
they contain most of the total kinetic energy and Reynolds stresses of
the flow, especially at high Reynolds numbers [14–18], but their study
has been hindered by the difficulty to obtain quality data. In the case
of channels, the flow between two infinite parallel walls is modelled
by imposing periodic boundary conditions in the two wall-parallel di-
mensions, where the period represents the size of the numerical box. It
was soon realised that the size of the box is an important parameter that
conditions the size of the largest ‘well-resolved’ structures [7,12,18,19].
The computational box has to be large enough for the structures in
the outer region to be unconstrained, in the same way that the grid
has to be fine enough to capture the smallest eddies and to reproduce
the correct dissipation. A de facto standard for large-box simulations is
(length × span)= (8𝜋 × 3𝜋)ℎ, which is designed to resolve the length of
the longest channel features 𝑂(20ℎ) [10]. Experiments and simulations
n boxes up to (60𝜋 × 6𝜋)ℎ [12], have shown that this is a reasonable

size to properly reproduce the dynamics of the largest structures that
arise in channels.

The increasing availability of computational resources has provided
DNSs of turbulent channel flow whose small and large scales are well
resolved, but which focus mainly on producing high-quality snapshots
and average statistical properties. In general, these simulations do not
offer a posteriori access to the dynamics of the flow and their practical
utility is limited in this sense. A much more valuable insight into the
dynamics of these flows is possible by also storing temporally resolved
data. While all DNSs are by definition temporally resolved while they
are being computed, the possibility of storing and post-processing tem-
porally resolved time series, instead of a few independent snapshots,
has become possible only recently. Since the early efforts in the 1990s
[20], the use of temporal series at higher Reynolds numbers has be-
come a relevant tool of turbulent research, especially in wall-bounded
flows [12,19]. These temporal series, which are freely available to the
community [21,22], mark an inflection point in turbulence research,
because they allow several groups to test hypotheses on the same data,
and to refine them interactively. The limiting resources to produce
useful databases are storage space and post-processing time. The bot-
tleneck of these simulations lies on storing and analysing temporally
and spatially resolved time series of high-Reynolds numbers channels
in large boxes, specially when the dynamics of the large scales are
targeted. Part of the reason for the high cost of generating and storing
useful temporal series of the large scales is that the simulation time has
to be long enough to capture their relatively slow temporal dynamics.
In the logarithmic layer, the lifetime of structures centred at a distance
𝑥2 from the wall is 𝑢𝜏𝑇 ≈ 6𝑥2, or about an eddy-turnover time (𝑇ett =
ℎ∕𝑢𝜏 ) for structures at 𝑥2∕ℎ = 0.15 [19]. Reasonable statistics require
that the simulation time is 𝑢𝜏 𝑡∕ℎ ≫ 1.

In the previous paragraphs, we have stressed the requirements of a
turbulent database directed towards the study of the large scales of a
turbulent channel flow: high Reynolds numbers, an adequate box size,
and storing temporally resolved and sufficiently long series. Reviewing
the characteristics of the currently available databases, it becomes
apparent that none of them meets all these desirable properties, al-
though some combinations of two of them can be found. For example,
2

recent non-time-resolved simulations at high Reynolds numbers in large
boxes can be found in [6]. Time-resolved series at moderate Reynolds
numbers, 𝑅𝑒𝜏 = 1000–2000, have been available for some time [12,19],
but in small box sizes. A recent addition to the available databases
is [23], which includes an 𝑅𝑒𝜏 = 1000 time-resolved channel in a large
box, although only for a relatively short temporal period (𝑢𝜏 𝑡∕ℎ ≈ 1.4).
While large boxes require larger computational resources than smaller
ones at the same Reynolds number, both share the limiting factor of
storing, sharing, and post-processing the computed data. For example,
assuming a maximum data storage of 200 TB, and a target 𝑅𝑒𝜏 = 4000,
the choice is between saving 500 snapshots of a large (8𝜋 × 3𝜋)ℎ box,
or 6500 snapshots of a simulation in a smaller (2𝜋×𝜋)ℎ box. The latter
database would provide six 𝑇ett with a reasonable time interval between
snapshots [24], while the former would only contain 0.5𝑇ett.

In this paper we present a novel method to produce affordable,
high quality, time-resolved databases of turbulent channel flow aimed
at the study of the intermediate and large scales. This method, which
can be easily extended to other flows, relies on two aspects. First,
a dynamically meaningful reduction of the amount of information
stored, which covers only large scales while retaining the effect of
the small scales, and, second, the speed up of the computations by
means of a controlled reduction of the numerical resolution, which
only affects the small scales, but not the scales of interest stored in the
database. Further speed-up is achieved by implementing a new parallel
GPU solver, which exploits the advantages of powerful heterogeneous
architectures. This paper covers the computation and generation of
a database for a state-of-the-art Reynolds number, 𝑅𝑒𝜏 ∼ 5000, in a
(8𝜋 × 3𝜋)ℎ box, providing time-resolved data for the unprecedentedly
long time of 36𝑇ett.

The storage limitations can be alleviated if one mostly wishes to
study the dynamics of the large and intermediate motions, which, as
mentioned above, are the ones that require large boxes. Although DNS
simulations have to be properly resolved to reproduce the physics of
turbulence, large and small scales are relatively independent, and do
not need to be post-processed together. Recent simulations have shown
that damping [25], or even removing [26,27] the small scales near
the wall, has negligible effects on the logarithmic-layer structures, and
it has been known for some time that large-eddy simulations, which
have no small scales, reproduce the large structures correctly [28].
Supported on these evidences, we store only accurate data obtained by
a posteriori filtering of the DNS at a prescribed scale. We store snapshots
with enough temporal resolution (in the ‘Nyquist’ sense) to capture
the dynamics of at the scale of the filter. This allows to reproduce
the temporal dynamics of any scale above the filter scale, while al-
leviating the storage requirements by reducing both the spatial and
temporal resolution of the database. The dynamics of the small scales
are only preserved in the form of on-the-fly post-processed statistics.
The novelty of our approach lies in retaining also their dynamical effect
on the filtered data by storing also the filtered Reynolds stresses. This
approach allows a complete reconstruction of the dynamics of the three
velocity components above the database filter. Channel simulations in
a large box become feasible, and open new possibilities for studying
the temporal evolution of accurately computed large-scale motions
in wall-bounded flows. Discarding the dynamics of the small scales
is justified on the availability of time-resolved simulations in boxes
which, although smaller, are large enough to allow the study of these
scales [12,19,23].

Since our aim is to capture the dynamics of the intermediate and
large scales only, we require that the effect of the dissipative scales
on these scales is well reproduced, but not that their dynamics are
faithfully resolved to the level of high-quality DNSs. Considering that
a relevant fraction of the total computational resources in DNSs is
used to resolve the dissipative scales, we obtain a substantial speed-
up in our simulations by adequately relaxing the standard resolution
requirements, while ensuring that the dynamics of the large scales
are not affected. This approach has been widely used in homogeneous

isotropic turbulence, for which simulations at high Reynolds numbers
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are produced by reducing the resolution of the small scales [29].
In this simulations, the average locality of scale interactions ensures
that the effect of the insufficient resolution is confined to the small
scales, but does not affect the inertial scales. This approach not only
reduces the number of grid points, but also relaxes the stability con-
ditions of the temporal integrator, providing a significant speed-up
in terms of computational time per 𝑇ett. We reduce the numerical
resolution in the wall-parallel directions to reduce the computational
requirements, and modify the distribution of points close to the wall
to alleviate the stability requirements of the temporal integrator. We
compensate this reduction of the numerical resolution by implementing
spectral methods in the wall-parallel directions, and high-order, high-
resolution compact finite differences in the wall normal direction.
These modifications of the standard DNS requirements allow us to
run for unprecedented long times, and do not affect the truncated
data stored in the database. We present results that indicate that a
reduction of the numerical resolution with respect to standard high-
quality DNSs is acceptable for simulations that target the large scales
of wall-bounded flows.

In this work we have also validated the suitability of GPUs for
large-scale direct numerical simulations of turbulent flows using high
resolution and spectral methods. Although GPUs have been part of
many supercomputers for some time, their use for solving fluid me-
chanics problems is not general. Some previous codes have made use of
many GPUs to gain a considerable speed-up [30–32], but they generally
use low-resolution spatial discretisation schemes that make them less
attractive for high-Reynolds number turbulence. Our results prove that
the use of GPUs can also be advantageous for the computation of
communication-intensive simulations such as those needed to com-
pute turbulence with spectral and high-order compact schemes. For
implementations that spend about 40% of the time transferring data,
asynchronous overlapping between communications and computation
can speed up simulations by a factor of two with respect to a standard
CPU code running on the same platform. For large simulations spanning
months, this advantage is crucial. As network bandwidth and clusters
architecture improve, and the fraction of time spent communicating
decreases, the advantage of using GPUs should be even clearer. When
the next step in supercomputation is taken, and new exascale machines
become available, efficient devices will be required to keep energy
consumption down to a reasonable level. GPUs have proved to be an
efficient and fast solution, and are present in ever more supercomputing
centres, as they deliver good performance while keeping energy con-
sumption low. The code used in this investigation takes advantage of
the use of GPUs on a large scale, and represents a step into using future
heterogeneous CPU/GPU exascale architectures for DNS simulations.
The code is publicly available [33].

This paper is organised as follows. The algorithm and code em-
ployed are briefly described in Section 2. Section 3 describes the
storage approach, the simulations performed for the database, the main
statistics of those simulations, and their validation. Finally, conclusions
are offered in Section 4

2. Methods

2.1. Simulation algorithm

We consider the incompressible turbulent flow between two parallel
planes separated by a distance of 2ℎ. Both the streamwise, 𝑥1, and the
spanwise, 𝑥3, directions are periodic, with period 𝐿1 and 𝐿3, respec-
tively. A constant mass flux is imposed in the streamwise direction by
a time-variable mean pressure gradient. Due to incompressibility and
impermeability at the wall, the averaged velocity in the wall-normal
direction at a given height, 𝑥2, is zero at all distances from the wall.
The mean value of the spanwise velocity component is allowed to move
freely, since no pressure gradient is applied along that direction, but is
non-drifting in the long-term average. A sketch of the flow is shown
3

in Fig. 2.1. Magnitudes expressed in ‘wall’ units, which are constructed
from the friction velocity 𝑢𝜏 and the kinematic viscosity 𝜈, are denoted
by a ‘+’ superindex, so that 𝑅𝑒𝜏 = ℎ+. Upper case symbols are used
for ensemble-average quantities, such as the mean velocity profile 𝑈1,
while primes are reserved for root-mean-square intensities.

The evolution equations for the fluid velocity vector, 𝒖 = [𝑢𝑖], are
the Navier–Stokes equations for an incompressible fluid,

𝜕𝑡𝑢𝑖 = −𝑢𝑗𝜕𝑗𝑢𝑖 − 𝜕𝑖𝑝 + 𝜈𝜕𝑘𝑘𝑢𝑖 + 𝛿1𝑖𝑓, (2.1)

𝜕𝑖𝑢𝑖 = 0, (2.2)

where 𝑢1, 𝑢2, and 𝑢3 are the streamwise, wall-normal and spanwise
velocities, 𝑝 is the kinematic pressure, 𝛿𝑖𝑗 is the Kronecker delta, and 𝑓
the time-variable mean pressure gradient imposed to keep a fixed mass
flux. Repeated indices imply summation. For convenience, Eqs. (2.1)
and (2.2) are transformed into an equation for the vorticity in the wall-
normal direction, 𝜔2 = 𝜕3𝑢1 − 𝜕1𝑢3, an equation for the Laplacian of the
wall-normal velocity, 𝜕𝑘𝑘𝑢2, and two equations for the mean velocity
profiles, 𝑈1 and 𝑈3, thus removing the computation of the pressure [2].
The reader is referred to Appendix A for a brief review of this method.

The equations are projected on a Fourier basis with 𝑁1∕2 and 𝑁3∕2
modes in each periodic direction. In real space, the mesh is uniformly
spaced, with 𝑁1 and 𝑁3 collocation nodes chosen to provide the desired
numerical resolution. Non-linear terms are computed using a pseudo-
spectral method and are fully dealiased by zero padding the Fourier
fields to 3𝑁1∕4 and 3𝑁3∕4 modes [34]. In the wall-normal direction,
the equations are discretised on a non-uniform mesh of 𝑁2 points,
adjusted to keep, at all wall distances, an approximately constant
resolution in terms of the local Kolmogorov scale [35]. Derivatives in
this direction are computed directly on the mesh using seven-point
compact finite differences with spectra-like resolution [36,37]. These
numerical approximations have very high resolution properties and
high order, but we find that they may become numerically unstable
close to the wall, especially at high Reynolds numbers, if the mesh is not
correctly devised. We find numerical instabilities in the implicit viscous
step of the Laplacian of the wall-normal velocity, which we resolve
by optimally modifying the physical mesh close to the wall. Details of
the method are provided in Appendix B. A semi-implicit third-order
low-storage Runge–Kutta is used for temporal integration [38].

2.2. Code

We implement a novel hybrid CUDA–MPI code to run the sim-
ulations on many distributed graphic processing units (GPUs). All
numerical algorithms use exclusively the GPU, and the CPU is used
only for node-to-node communications. The code relies on the highly
optimised CUFFT library [39] to perform Fourier transforms. Custom
CUDA kernels have been devised for the rest of algorithms, including
the compact-finite differences.

A plane–plane decomposition is used to partition the computational
domain among GPUs. A configuration in 𝑥2𝑥3-planes is used to provide
local access to full wall-normal pencils, which simplifies the inver-
sion of banded matrices required by the compact finite differences.
For the computation of the non-linear terms, the domain is reorgan-
ised in 𝑥1𝑥3-planes to perform inverse and direct Fourier transforms
in wall-parallel planes. This decomposition allows to implement the
zero-padding dealiasing locally in each GPU, reducing the amount of
communications required to compute the non-linear terms. All the
local transpose operations required for the global transposes are per-
formed in the GPU to leverage their high memory bandwidth. Several
strategies are used for the MPI communication part, from all-to-all
to send/receive. GPU execution and communications are performed
asynchronously, and particular care is taken to overlap as much as
possible communications and computations. A detailed description of
the optimisation procedure is presented in Appendix C.
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Fig. 2.1. Top: Sketch of channel flow between two parallel walls. Bottom: snapshot of 𝑢+1 in the F5300 simulation (see Table 3.1).
The code shows good scaling in up to 1024 GPUs, proving the
suitability of GPUs for the computation of DNSs at high Reynolds
number using high-resolution spectral methods. We also report a strong
dependence of the scaling and performance on the balance between
computation power, and network bandwidth. Details of the scaling and
performance of the code are compiled in Appendix D.

3. A second-order consistent, low-storage time-resolved database

3.1. Methodology

A time-resolved turbulent channel flow simulation at 𝑅𝑒𝜏 ∼ 5000
spanning 36𝑇ett in a standard large box (𝐿1 = 8𝜋ℎ and 𝐿3 = 3𝜋ℎ)
would produce 55 PB of data if the evolution of all the flow scales
were to be retained [23,24]. Most of the information contained in that
disproportionately large amount of data is used to represent the dy-
namics of viscous scales, which can be studied in much more affordable
simulations in smaller boxes.

To alleviate the storage requirements of the time-resolved database,
we only store the inertial and large scales above the dissipative range,
reducing by orders of magnitude the size of the database. This reduction
comes from the lower spatial and temporal resolution necessary to
accurately capture the dynamics of the large scales. The inertial range
starts at approximately 50𝜂, where 𝜂 is the Kolmogorov length-scale
[40]), which translates roughly into 100𝜈∕𝑢𝜏 [10]. If we aim to time-
track an eddy of size 𝑙𝑒 advected at velocity 𝑢𝑒 with respect to the mean
velocity profile, the characteristic time between snapshots, 𝛥𝑡𝑒, needed
to accurately represent its motion is of the order of 𝑙𝑒∕𝑢𝑒. We target
eddies of size larger than 𝑙+𝑒 ∼ 100, and assume that they are advected
with respect to the mean profile at approximately the root mean square
of the velocity perturbations. The most restrictive condition arises from
the stream-wise velocity perturbations in the logarithmic layer, where
𝑢′+1 ∼ 2. Thus, a reasonable estimate is 𝛥𝑡+𝑒 ≈ 50, which implies storing
around 𝑅𝑒𝜏∕𝛥𝑡+𝑒 ∼ 100 snapshots per 𝑇ett.

To remove the small scales from the database, we truncate the
velocity fields in Fourier space before storing them. This operation is
4

similar to applying a sharp cut-off Fourier filter in the wall parallel
directions,

𝐺(𝑘1, 𝑘2, 𝑥2) = 1 if 𝑘1 < 𝑘𝑐1 and 𝑘3 < 𝑘𝑐3,

𝐺(𝑘1, 𝑘2, 𝑥2) = 0 otherwise,
(3.1)

where the cut-off wavenumbers, 𝑘𝑐1 and 𝑘𝑐3, determine the smallest
scales retained in the database, 𝑙𝑐1 = 𝜋∕𝑘𝑐1 and 𝑙𝑐3 = 𝜋∕𝑘𝑐3. Filtered
quantities are marked with (⋅). We do not perform any mode trun-
cation or filtering in the wall-normal direction. In Fig. 3.1, we show
a schematic representation of the methodology employed to produce
the database. We retain scales above 𝑙𝑐1

+ = 120 in 𝑥1, and 𝑙𝑐3
+ = 60

in 𝑥3, and store the fields with a temporal resolution of 𝛥𝑡+𝑒 = 50. In
Fig. 3.2, we show two streamwise velocity fields at 𝑥+2 for 𝑅𝑒𝜏 ≈ 2000,
with and without Fourier truncation. The details of the large scales
are indistinguishable to the naked eye. The difference between the
characteristic lengths in 𝑥1 and 𝑥3 accounts for the elongated nature
of the velocity perturbations in channel flows [5]. For 𝑅𝑒𝜏 ≈ 5300,
this truncation reduces the number of collocation points in 𝑥1 and
𝑥3 from 𝑁1 = 6144 to 𝑀1 = 𝐿1𝑅𝑒𝜏∕𝑙+1 ≈ 1000 and from 𝑁3 =
4196 to 𝑀3 = 𝐿3𝑅𝑒𝜏∕𝑙+3 ≈ 800, reducing the size of each field by a
factor of approximately 30. In addition to the time-resolved low-storage
database, we also store complete velocity fields roughly every 0.5𝑇𝑒𝑡𝑡.

The effect of the removed small scales into the large scales is not
negligible, and impossible to recover from the filtered velocity field.
To partially overcome these limitations, we also store the truncated
Reynolds-stress tensor 𝑢𝑖𝑢𝑗 , which are the only second-order non-linear
quantities that directly appear in the equations of motion of the trun-
cated velocity fields. From the six truncated components of this tensor,
it is possible to fully reconstruct the effect of small-scale dynamics
on the filtered velocities, preserving all the dynamical information of
the evolution of the large scales. Finally, we also stored the filtered
enstrophy, which is a relevant quantity in turbulence dynamics, and
cannot be recovered from the filtered stress tensor. The ten variables
of the database are 𝑢𝑖, 𝑢𝑖𝑢𝑗 , and 𝜔𝑖𝜔𝑖. The filter operation commutes
with any homogeneous linear operator, allowing to perform exact
a posteriori computations of quantities of interest not stored in the
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Fig. 3.1. Schematic representation of the generation process of the low-storage second-order consistent database. The grey blocks represent the full field used to run the simulation,
and which are stored every 0.5𝑇𝑒𝑡𝑡, and the blue blocks the Fourier-truncated fields that are stored in the time-resolved database.
Fig. 3.2. Sections of the streamwise velocity at 𝑅𝑒𝜏 = 2000 and distance from the wall 𝑥+2 = 150. (a) DNS resolution (𝛥𝑥+ ≈ 12, 𝛥𝑧+ ≈ 9). (b) New database resolution
(𝛥𝑥+ ≈ 100, 𝛥𝑧+ ≈ 37)(a). The inset magnifies a region four times. Data from [5].
database. Some of the quantities that can be trivially computed from
the database are the filtered vorticities, 𝜔𝑖 = 𝜀𝑖𝑗𝑘𝜕𝑗𝑢𝑘, where 𝜀𝑖𝑗𝑘 is the
fully antisymmetric Levi-Civita symbol, or the filtered kinetic energy,
𝐸 = 1

2 𝑢𝑖𝑢𝑖. The computation of the filtered pressure is less evident
but equally possible. Taking the divergence of the momentum equation
yields,

𝜕𝑗𝑢𝑖𝜕𝑖𝑢𝑗 = −𝜕𝑘𝑘𝑝, (3.2)

where continuity, 𝜕𝑖𝑢𝑖 = 0, makes every other term vanish. This is the
well-known Poisson equation for the pressure [41],

𝜕 𝑝 = −𝜕 (𝑢 𝑢 ), (3.3)
5

𝑘𝑘 𝑖𝑗 𝑖 𝑗
which involves only the cross-derivatives of the filtered Reynolds stress
tensor, included in the database. An identity worth noting is,

𝜕𝑖𝑗 (𝑢𝑖𝑢𝑗 ) = 𝑆𝑖𝑗𝑆𝑖𝑗 −
1
4
𝜔𝑖𝜔𝑖, (3.4)

where 𝑆𝑖𝑗 =
1
2 (𝜕𝑖𝑢𝑗 +𝜕𝑗𝑢𝑖) is the rate-of-strain tensor. This identity gives

a recipe to compute the filtered magnitude of the rate-of-strain tensor
from the filtered enstrophy and the filtered Reynolds stresses.

Finally, we stress the relevance of a closed second-order database for
a priori testing of LES models at high Reynolds numbers. The subgrid-
scale (SGS) stress tensor can be exactly computed from the filtered
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velocities as,

𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗 − 𝑢𝑗𝑢𝑗 , (3.5)

providing an full reconstruction in space and time of the effect of the
sub-grid dynamics on the database. These data allows the exact testing
of LES models directly against DNS data.

3.2. Simulations

Table 3.1 summarises the characteristics of the simulations per-
formed, as well as of those used for validation. The new simulations
ran in PizDaint, a GPU-based supercomputer part of the PRACE Tier-
0 network, for a total of 65,000 node hours on 128 GPUs for F2000
and 1, 400, 000 node hours on 512 GPUs for F5300. The total size of
he filtered databases is 5.6 TB and 100 TB respectively. To ensure
quilibrium before collecting the data, the first 5 eddy turnovers run
mmediately after interpolating the initial condition were discarded.
he initial conditions were interpolated from similar Reynolds number
imulations in equilibrium.

Since the database targets the large scales of the flow, the numerical
esolution of the simulations is not so critical as long as the dynamics
f the stored scales are unaffected. We will show that it is possible
o slightly degrade the standard DNS resolution in the wall-normal
irections from 𝛥𝑥+1 ≈ 12 and 𝛥𝑥+3 ≈ 9 to 𝛥𝑥+1 ≈ 24 and 𝛥𝑥+3 ≈ 15, while

producing a relative error of less than 2% in the retained scales. This
allows in turn to run for approximately four times more eddy turnovers
with the same computational time.

3.3. One-point statistics and energy spectra

Fig. 3.3(a–d) shows the main one-point statistics of the simulations
described in Table 3.1. The mean profiles agree well with the ones of
the full resolution simulations across all the channel, collapsing under
the defect velocity form. When plotted in terms of the absolute velocity,
they agree initially but depart later as a consequence of a constant shift
in the value of the intercept constant, 𝐶+ in the logarithmic law of the
wall,

𝑈+
1 = 1

𝜅
log(𝑥+2 ) + 𝐶+, (3.6)

where 𝜅 is the Kármán constant. The values of 𝜅 and 𝐶+ in the different
imulations are computed by fitting (3.6) in the region 150𝜈∕𝑢𝜏 < 𝑥2 <
0.16ℎ for 𝑅𝑒𝜏 ≈ 2000 simulations and 350𝜈∕𝑢𝜏 < 𝑥2 < 0.16ℎ for 𝑅𝑒𝜏 ≈
5000 simulations. The difference in the value of the intercept constant
is similar to the effect of transitional roughness, where a roughness
function accounts for the departure of the mean profile due to the wall
roughness [42]. The profile of F2000 is shifted respect to L2000 by
𝛥𝐶+ ≈ −0.12, and F5000 is shifted respect L5000 by 𝛥𝐶+ ≈ −0.45. In
oth cases the intercept constants are very close to the hydrodynami-
ally smooth regime. The root mean square (rms) of the perturbation
elocities are plotted against their references in Figs. 3.3(c, d), and
heir relative errors, (𝑢′𝑖 − (𝑢′𝑖)ref)∕(𝑢′𝑖)ref are represented in Fig. 3.3(e,
). They agree well except near the wall. Whereas the value of 𝑢′1 is
lose to the reference simulations near the wall, 𝑢′2 and 𝑢′3 have more
nergy than the references, and their relative error is maximum at this
eight. Moving away from the wall, the cross components converge to
he reference value, and 𝑢′1 lowers in intensity until the production peak
f the buffer layer at 𝑥+2 ≈ 14, where the relative error of the streamwise
omponent is maximum. Farther away from the wall, at 𝑥+2 > 100, the
eviation of either component is less than 2% (or within the statistical
rror for the F2000 case). From the large error in the cross-velocity
ntensities near the wall, it is possible to trace the lower resolution of
he grid as responsible for the difference in the intercept constant of the
ean profile. Close to the wall, very small quasi-streamwise vortices
opulate the flow field, whose size is close to the resolution of the
esh in the reference simulations. These vortices are not well resolved
6

n the new simulations, which have lower resolution, as reflected by
he error in the rms of the cross-velocity components. This lack of
esolution affects the friction at the wall, and the intercept constant
hanges slightly as if it were under the effect of very fine roughness.
owever, this phenomenon does not affect the flow above the buffer

ayer, where the mean velocity profiles collapse under the velocity-
efect form with the reference simulations. So do the intensity of the
luctuation velocities above 𝑥+2 ≈ 100.

The same level of agreement is found in the two-dimensional spectra
f the velocity components, defined as

𝑖𝑖(𝑘1, 𝑥2, 𝑘3) =
⟨

�̂�𝑖(𝑘1, 𝑥2, 𝑘3)�̂�∗𝑖 (𝑘1, 𝑥2, 𝑘3)
⟩

, (3.7)

here the caret denotes the Fourier transform on the wall-parallel
irections, 𝑘𝑖 are the spatial wavenumbers and 𝜆𝑖 their corresponding
avelengths, the asterisk denotes complex conjugation and ⟨⋅⟩ is the

ensemble average. Figs. 3.4(a–f) gathers the two-dimensional spectra
of the three velocity components at 𝑥+2 ≈ 150, which is the wall-normal
location closest to the wall within the logarithmic region, where the
reduced numerical resolution of the simulation should be most critical
for the database. The spectra of the new simulations agree remarkably
well with the references over all the scales retained by the cutoff
filter. As expected, the wall-normal velocity component is the worst
resolved, with ≈ 13% of its energy below the filter cutoff for F5300.

he streamwise and spanwise velocities retain more than 98% and 93%
f their energy respectively. As with the one point statistics, we have
o indication that the reduced resolution of the simulation affects the
urbulence scales stored in the database above the buffer layer.

Finally, Fig. 3.5 shows the spectrum of the streamwise velocity as a
unction of the distance from the wall and the spanwise wavelength,
here the ensemble average in (3.7) is extended to the streamwise
avenumber 𝑘1. Compared with the full resolution spectrum of L5200,

he spectrum of the retained scales of F5300, is limited at 𝜆+3 ≳ 65.
n Fig. 3.5(a) we present the premultiplied 𝑘3𝐸11 spectrum to show
hat half of the near-wall peak of the spectrum is not captured in the
atabase. If we consider that the low resolution affects the scales below
+
2 ≲ 150, indicated by a horizontal red line, then the near-wall peak,
nd seemingly an important fraction of the energy of 𝑢1 is outside the
cope of the database. However, when we consider the energy spectrum
f 𝑢1 premultiplied by 𝑦 and 𝑘3, as shown in 3.5(b), conclusions are very
ifferent. Usually the spectrum is only premultiplied in 𝑘3 to observe
oth the near-wall and the outer peaks, but this representation is mis-
eading in terms of the total energy contained in each peak. While the
ear-wall peak is very intense, it spans a short fraction of the channel
nd thus, the energy it contains is limited. The twofold premultiplied
pectrum, in which integrating across visually equivalent areas reflects
he correct amount of energy contained in the wavenumbers beneath
hem, clearly shows that the database contains all the information of
he very large, and most energetic scales of 𝑢1.

.4. Temporal statistics

Fig. 3.6(a) shows the temporal evolution of the instantaneous fric-
ion velocity 𝑢𝜏 in the bottom wall, across approximately 25 𝑇ett. We
bserve large variations of 𝑢𝜏 with a slow characteristic time, and small

variations with a much faster time scale. The largest differences in
the value of 𝑢𝜏 within time windows of one 𝑇ett are approximately
5 times smaller than those within 10 𝑇ett. To characterise the tem-
poral structure of the friction velocity, we calculate its premultiplied
temporal spectrum, 𝛺𝐸𝑢𝜏𝑢𝜏 , where 𝛺 is the frequency, and show it
against the period in Fig. 3.6(b). The spectrum is obtained by smoothly
windowing the temporal signal to prevent its lack of periodicity from
contaminating the data [43]. An important fraction of the total friction
velocity fluctuations are related to time-scales above one 𝑇ett, indicating
that structures with longer lifetimes are present in the flow, and that
they contribute to the shear stress at the wall. Approximately, 34% of
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Table 3.1
New simulations (F2000 and F5300) and simulations used to validate them (L2000, from [5] and L5200, from [6]).
𝑀1 × 𝑀2 × 𝑀3 is the size of the truncated fields in the database, 𝑁𝑑 is the simulation resolution while 𝑀𝑑 is the storing
resolution, 𝑇ett is the simulation time in eddy turnovers, and 𝑁snap is the number of snapshots available in the database.

Name 𝑅𝑒𝜏 𝐿1∕ℎ 𝐿3∕ℎ 𝑁1 × 𝑁2 × 𝑁3 𝑀1 × 𝑀2 × 𝑀3 𝑇ett 𝑁snap

F2000 2000 8𝜋 3𝜋 2048 × 512 × 2048 512 × 512 × 512 14 1300
F5300 5303 8𝜋 3𝜋 6144 × 1024 × 4096 1024 × 1024 × 1024 36 3900
L2000 2003 8𝜋 3𝜋 4096 × 633 × 3072 – 10 232
L5200 5200 8𝜋 3𝜋 10240 × 1536 × 7680 – 7.8 –
Fig. 3.3. Mean profiles and root mean square of the perturbation velocities for the simulations in Table 3.1. (a–d) Symbols are triangles for the reference simulations and circles
for the new ones, filled symbols are 𝑅𝑒𝜏 ≈ 2000 and open ones 𝑅𝑒𝜏 ≈ 5000. (c–f) Colours are blue, 𝑢1; orange, 𝑢2; green, 𝑢3. (a) Mean velocity profile in velocity defect form for
all the simulations. (b) Mean velocity profile for all the simulations. (b) Perturbation velocities rms for simulations at 𝑅𝑒𝜏 ≈ 2000. (c) Perturbation velocities rms for simulations
at 𝑅𝑒𝜏 ≈ 5000. (d) Mean velocity profile plotted against inner units for all the simulations. (e) Relative error in the rms of the velocity perturbations for simulations at 𝑅𝑒𝜏 ≈ 2000
(f) Relative error in the rms of the velocity perturbations for simulations at 𝑅𝑒𝜏 ≈ 5000. The vertical line in (e,f) is 𝑥+2 = 150. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
the spectral mass, and thus of the skin friction fluctuations, is contained
in periods longer than one 𝑇ett.

Fig. 3.6(c) shows the (𝑥3, 𝑡) spectra of several streamwise Fourier
modes at 𝑥2∕ℎ = 0.4. At this height the streamwise velocity struc-
tures the are longest [10]. The two longest streamwise modes have
characteristic times longer than one eddy turnover, independently of
7

their spanwise wavelength. Most of the energy of the infinitely long
streamwise streaks, represented by the 𝑘1 = 0 wavenumber, is con-
tained in lifetimes longer than 6 𝑇ett. These structures have a typical
width of 𝜆3∕ℎ ≈ 2–3, wider than the typical size of the outer-layer
streaks [44]. The structures represented by the modes with 𝜆1∕ℎ =
8𝜋 can be envisioned as streamwise velocity streaks with a length of
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Fig. 3.4. Spectra of the velocity components at 𝑥+2 = 150 for the simulations in Table 3.1. (a–c) Spectra of (a) 𝑢1, (b) 𝑢2 and (c) 𝑢3 for L2000 (red shaded patches) and F2000
(black line). (d–f) Spectra of (d) 𝑢1, (e) 𝑢2 and (f) 𝑢3 for L5200 (red shaded patches) and F5300 (black line). The blue square marks the database resolution in all cases. Contours
ontain 90, 50 and 10% of the spectral mass of the reference simulations, and the same contour level is used for the new ones. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)
pproximately 12ℎ and a width of 1.5ℎ. Their temporal spectra peak
at 𝑇 𝑢𝜏∕ℎ = 1–2, indicating that they have shorter lifetimes than the
infinitely long streamwise streaks. In any case, the temporal span of
the database is a few times longer than the characteristic lifetimes of
the largest structures in the channel, proving that the database properly
covers the dynamics of the large scales of the flow.
8

4. Conclusions

We have presented a new database of turbulent channel flow con-
taining time-resolved simulations at 𝑅𝑒𝜏 = 2000 and 𝑅𝑒𝜏 = 5300, for
times up to 𝑇ett ∼ 30, in large boxes of size (8𝜋×3𝜋)ℎ. With an adequate
spatio-temporal resolution to cover all the scales of the flow, the size
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Fig. 3.5. (a) Premultiplied spectrum 𝑘3𝐸11 of the streamwise velocity, for L5200 (shaded contours), and F5300 (line contours). (b) As a but for the twofold premultiplied spectrum
𝑦𝑘3𝐸11. The red lines are 𝜆+3 ≈ 65 and 𝑥+2 ≈ 150. The contours contain 10, 50 and 90% of the spectral mass of L5200, and the same absolute levels are used for F5300. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3.6. (a) Time evolution of the friction velocity at the bottom wall. (b) Premultiplied temporal spectrum of the signal in (a). (c) Premultiplied (𝑥3 , 𝑡) spectra of the first
streamwise Fourier modes of 𝑢1 at 𝑥2∕ℎ = 0.4. From right to left, 𝜆1 = ∞ (blue), 𝜆1∕ℎ = 8𝜋 (red), 𝜆1∕ℎ = 4𝜋 (yellow), 𝜆1∕ℎ = 2𝜋 (purple), 𝜆1∕ℎ = 𝜋 (green). The contour is 40% of
the maximum for each streamwise wavelength. F5000. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
of the database becomes the critical factor, making the it impossible
to store. In the present case, it would require approximately 60 PB. To
alleviate these requirements, and since the database is mainly intended
to study the relatively large scales of the logarithmic layer and outer
region, we only store structures filtered above the dissipative range,
even if the simulation runs at full resolution. To capture the influence
of the discarded scales on the stored ones, the database also includes
the time-resolved SGS stress tensor, and the filtered enstrophy. This is
9

still more economical than storing the full flow fields (∼150 TB), and
allows the reconstruction of other quantities of interest, such as the
time derivatives of the filtered velocities, the filtered pressure, and the
filtered norm of the rate-of-strain tensor. In this sense, the database
is ‘second-order consistent’, because any observable that depends on
quadratic velocity products can be computed a posteriori. In particular,
this property, together with a relatively high Reynolds numbers, makes
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the database potentially useful for a priori testing and development of
new LES models.

In order to achieve long running times, we slightly degrade the
resolution of the computational grid without affecting the statistics of
the retained scales. The first- and second-order, one- and two-point
statistics of the database corresponds to those of ‘healthy’ logarithmic
and outer regions. We show that this approach has potential appli-
cations in other DNSs that target the large scales. To further reduce
the cost of the simulations, we employ a novel code which runs on
many distributed GPUs, and takes advantage of their highly efficient
and powerful architectures.

From a preliminary analysis of the data, we show that time scales
longer than one eddy turnover time are present in the channel flow,
especially for the streamwise velocity component, and that dynamics
associated with these time scales are responsible for about one third
of the variation in the total turbulent skin friction. We relate these
fluctuations with very long streamwise structures, whose lifetimes is at
most 𝑡𝑢𝜏∕ℎ ≈ 6. The database has a long enough time history to cover
a few of these lifetimes, proving its suitability to study the large-scale
dynamics of the channel flow. More detailed studies of the temporal
statistics will be conducted in future works.
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Appendix A. Algorithm and numerical set-up

The formulation used to simulate the turbulent flow between two
parallel planes with periodic boundary conditions is described in detail
in [2], and is to date a standard procedure. The Navier–Stokes equa-
tions are reduced to two equations for the mean profiles, 𝑈1 and 𝑈3,
an equation for the Laplacian of the wall-normal velocity, 𝜒 = 𝜕𝑘𝑘𝑢2,
and an equation for the wall-normal vorticity, 𝜔2 = 𝜕3𝑢1 − 𝜕1𝑢3. These
last two equations read

𝜕𝑡𝜒 = 𝜒 + 𝜈𝜕𝑘𝑘𝜒, (A.1)

𝜕𝑡𝜔2 = 𝜔2
+ 𝜈𝜕𝑘𝑘𝜔2, (A.2)

where 𝜈 is the molecular viscosity, and

𝜒 = −𝜕2(𝜕11 + 𝜕33) + (𝜕11 + 𝜕33)2, (A.3)

𝜔2
= 𝜕31 − 𝜕13, (A.4)
10
are the contributions of the non-linear terms to 𝜒 and 𝜔2. Here  = 𝒖×
𝝎, and 𝝎 is the vorticity vector. These equations present the advantage
of hiding the problematic pressure term, but require the solution of
a fourth-order equation on 𝑢2, with prescribed boundary conditions
𝑢2 = 0 and 𝜕2𝑢2 = 0 at 𝑥2 = (0, 2ℎ).

In both periodic directions, (A.1) and (A.2) are projected on a
Fourier basis with 𝑁1∕2 and 𝑁3∕2 modes and wavenumbers 𝑘1 and 𝑘3,
which results in a uniformly spaced mesh of 𝑁1 and 𝑁3 collocation
nodes in real space. The number of points, 𝑁1 and 𝑁3, are chosen to
keep the desired resolution. The non-linear terms are computed with
a fully dealiased pseudo-spectral method [see34]. In the wall-normal
direction equations are discretised on a non-uniform mesh of 𝑁2 points,
specifically adjusted to keep an adequate resolution at every wall dis-
tance. Derivatives in that direction are computed directly on the mesh
using compact finite differences with spectral-like resolution [36,37].
The compact finite differences are approximated with stencils of seven
points in the centre of the domain, and adapted close to the wall. In all
cases, they are designed to achieve maximum order. A semi-implicit
third order Runge–Kutta (RK3) is used for temporal integration [38].
Time-integration of the viscous terms is split in an explicit and an
implicit part. The 𝑛th step of the RK3 integrator for 𝜒 reads

(1 − 𝛥𝑡𝛽𝜈𝜕𝑘𝑘)𝜒𝑛+1 = 𝜒𝑛 + 𝛥𝑡(𝛼𝜈𝜕𝑘𝑘𝜒𝑛 + 𝛾 𝑛
𝜒 + 𝜁 𝑛−1

𝜒 ), (A.5)

𝜕𝑘𝑘𝑢
𝑛+1 = 𝜒𝑛+1, (A.6)

ith boundary conditions 𝑢𝑛+12 = 0, 𝜕2𝑢𝑛+12 = 0 at 𝑥2 = (0, 2ℎ). Similarly,
for 𝜔2 we have

(1 − 𝛥𝑡𝛽𝜈𝜕𝑘𝑘)𝜔2
𝑛+1 = 𝜔2

𝑛 + 𝛥𝑡(𝛼𝜈𝜕𝑘𝑘𝜔2
𝑛 + 𝛾 𝑛

𝜔2
+ 𝜁 𝑛−1

𝜔2
), (A.7)

ith boundary conditions 𝜔2
𝑛+1 = 0 at 𝑥2 = (0, 2ℎ). Here 𝛥𝑡 is the

time step, and 𝛼, 𝛽, 𝛾 and 𝜁 are the RK3 coefficients [38]. Eqs. (A.5)
and (A.6) conform a fourth order differential equation on 𝑢2, which is
solved by obtaining particular and homogeneous solutions of (A.5), and
then combining them to satisfy the boundary conditions of 𝜕2𝑢2 [2].

Appendix B. Enforcing boundary conditions at high Reynolds
numbers

High-order, high-resolution compact finite difference approxima-
tions for the derivatives in the wall-normal direction are frequently
used in DNSs of turbulent channel flows, mainly because they offer
very good resolution properties at an affordable cost. However, these
methods are prone to numerical errors if they are not developed
together with the mesh. The most numerically sensitive operation in
the vorticity–Laplacian formulation of the Navier–Stokes equations is
the solution of the biharmonic operator in (A.5)–(A.6), which requires
the solution of multiple homogeneous Helmholtz equations to impose
the boundary conditions. For high Reynolds numbers and small wave-
lengths, these solutions include very thin boundary layers near the wall
which are difficult to reproduce numerically. These boundary layers
need not be faithfully resolved at all wavenumbers, since they only
affect the very viscous layer close to the wall, but, numerical errors
in these solutions can compromise the full stability of the numerical
simulations.

We report critical numerical errors in the homogeneous solutions
of the biharmonic operator when discretised using compact finite dif-
ferences of up to twelfth order of consistency. Fig. B.1 compares the
worst case solutions of the biharmonic operator used in the simulation
(A.5)–(A.6). The grid spacing of the original mesh, represented in the
figure by circles, are optimised considering only physical arguments, as
in [5].

These solutions are obtained as follows. First, the approximation to
the second derivative is obtained as the solution to the linear problem,
𝗔𝜕22𝜁 = 𝗕𝜁, (B.1)



Journal of Computational Science 56 (2021) 101476A. Vela-Martín et al.
Fig. B.1. (a) Solution of the Helmholtz equation for the most critical wavenumber. ——– Analytic solution. ∙, original mesh; ■, optimised mesh. (b) First 10-by-10 elements of
𝐴std. (c) First 10-by-10 elements of 𝐴opt. (d) First 10-by-10 elements of 𝐵std. (e) First 10-by-10 elements of 𝐵opt. (b–d) The yellow coefficients are positive, and the blue coefficients
are negatives. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
where 𝜁 is a generic function of 𝑥2 evaluated in the mesh points, and 𝗔
and 𝗕 are 𝑁2-by-𝑁2 matrices. Computational efficiency requires that 𝗔
and 𝗕 are 𝑁-banded matrices, where 𝑁 = 7 in our case. For derivatives
computed directly on a non-uniform grid [37], 𝗔 and 𝗕 are obtained
by solving 𝑁2 linear systems of fourteen equations, one system for each
grid point (𝑥2)𝑖,
𝑗=3
∑

𝑗=−3
𝐵𝑖(𝑖+𝑗)𝛿ℎ

𝑘
𝑖𝑗 − H(𝑘 − 2) 𝑘!

(𝑘 − 2)!

𝑗=3
∑

𝑗=−3
𝐴𝑖(𝑖+𝑗)𝛿ℎ

𝑘−2
𝑖𝑗

= H(𝑘 − 2)H(2 − 𝑘), 𝑘 = 0, 2… , 13; (B.2)

𝛿ℎ𝑖𝑗 = (𝑥2)𝑖+𝑗 − (𝑥2)𝑖, (B.3)

H(𝑛) =

{

0 𝑛 < 0,
1 otherwise.

(B.4)

In order to reduce the condition number of the system, (B.2) are
premultiplied by 𝛿ℎ2−𝑘𝑖2 before obtaining its solution. Let us note that
(B.2) is not valid for the corner points, where the stencils are reduced
progressively. The compact finite differences approximation, together
with a projection of the flow field on a Fourier basis in the wall-normal
directions, transforms the homogeneous part of (A.5) into a discrete
Helmholtz equation,

(𝗕 − 𝑘⋆𝗔)𝑔 = 0, (B.5)

where 𝑘⋆ = 𝑘21 +𝑘23 +𝛽∕(𝜈𝛥𝑡) is a modified wavenumber which includes
the effect of the RK3 integrator, and 𝑔 is a numerical approximation
to the homogeneous solution of (A.5). This equation requires Dirichlet
boundary conditions (𝑔)0 = 1, and (𝑔)𝑁2

= 0. A mesh obtained with
physical criteria [5] worked well for 𝑁2 = 512 at 𝑅𝑒𝑡𝑎𝑢 = 2000, but,
as shown in Fig. B.1, led to large errors in the first few grid points for
𝑁2 = 1024 and 𝑅𝑒𝜏 = 5300. In some cases, these errors were enough
to make the simulation unstable. We obtained an optimal grid that
eliminates the numerical instability by slightly displacing the first 20
grid points, without affecting too much the individual grid spacing,
thus preserving the physical properties of the mesh. The optimal grid
is obtained by minimising a prescribed functional,

𝐿𝑔(𝜇opt;) =
‖

‖

‖

𝑔opt − 𝑔ana
‖

‖

‖

+  ‖

‖

‖

𝜇opt − 𝜇ref
‖

‖

‖

, (B.6)

with a steepest descent method. Here 𝑔ana is the analytic solution of
(B.5), obtained as a combination of hyperbolic functions, 𝜇 contains
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the position of the 21 grid points in 𝑥2, and  is a penalisation
coefficient that prevents large drifts of the grid respect to the physically
meaningful values of the original grid. The resulting optimal mesh
produces twelve times less error in the homogeneous solutions than
the original mesh. The value of  was set to  ≈ 10−3, but its exact
value has minimal influence on the optimal mesh. Figs. B.1(b–d) offer
some insight on the origin of the errors generated by the original
grid. The original mesh has a sudden change in the symmetry of
the coefficients close to the domain edge, which is removed by the
optimisation procedure. We arbitrarily modify the grid to cause the
position of the symmetry reversal to move up and down the mesh,
and observe that the largest errors are always measured in its vicinity,
indicating that this is the cause of the numerical instability.

Appendix C. Domain decomposition and optimisation strategy

The computational domain is decomposed in 𝑥2𝑥3-planes across
GPUs. For the computation of the non-linear terms, , the three
components of the velocity and two of the vorticity, 𝜔1 and 𝜔3, are
transposed to 𝑥3𝑥1-planes. This plane-to-plane decomposition is chosen
to reduce communication operations among nodes. First, it saves one
global transpose per evaluation of the non-linear term, because 𝜔2 can
be calculated directly from 𝑢1 and 𝑢3 in Fourier space when 𝑥3𝑥1-
planes are available. Second, it reduces the size of the MPI messages
in the GPU-to-GPU communications as the fields can be zero-padded
for dealiasing after transposed. A plane-pencil decomposition requires
transposing 50% larger buffers. On the other hand, this decomposition
implies that GPUs must be able to accommodate at least full 𝑥3𝑥1-
planes and that the maximum number of GPUs is limited to 𝑁2.
This limitations are not critical if we consider the increasing memory
and compute capabilities of GPUs, and that future high performance
computing systems tend towards less but more powerful nodes with
more available memory [45].

In standard DNS spectral codes, the most time-consuming part of the
computations is the non-linear convolution, whose evaluation requires
several Fourier transforms and global MPI transposes. The performance
of the code is specially sensitive to the latter, which take between 30%
to 60% of the total runtime, depending on the code and the network
architecture [46,47]. Since MPI transposes are performed from the
CPU memory, we also have to consider an additional overhead due to



Journal of Computational Science 56 (2021) 101476A. Vela-Martín et al.
Table C.1
Conceptual representation of the arrangements of operations in the compute, copy, D2H, H2D and host
streams for the computation of a sub-step of the RK3 temporal integrator. FT denotes Fourier transform.
Colour indicates dependencies.
Compute stream D2H stream H2D stream Host stream

calculate 𝑢1 copy 𝑢2 to host
calculate 𝑢3 copy 𝑢1 to host MPI transp. 𝑢2
calculate 𝜕2𝑢1 copy 𝑢3 to host copy 𝑢2 to device MPI transp. 𝑢1
calculate 𝜕2𝑢3 copy 𝜕2𝑢1 to host copy 𝑢1 to device MPI transp. 𝑢3
calculate 𝜕22𝜒 copy 𝜕2𝑢3 to host copy 𝑢3 to device MPI transp. 𝜕2𝑢1
calculate 𝜕22𝜔2 copy 𝜕2𝑢1 to device MPI transp. 𝜕2𝑢3
FT to real 𝑢2 copy 𝜕2𝑢3 to device
FT to real 𝑢1
FT to real 𝑢3
calculate 𝜔2 and FT to real
calculate 𝜔1 and FT to real
calculate 𝜔3 and FT to real calculate statistics
calculate 1 and FT to complex
calculate 3 and FT to complex copy 1 to host
calculate 2 and FT to complex copy 3 to host MPI transp. 1
update RHS of 𝜒 copy 𝐻2 to host copy 1 to device MPI transp. 3
update RHS of 𝜔2 copy 3 to device MPI transp. 2
calculate 𝜔2

copy 2 to device
implicit step for 𝜔2
calculate 𝜒
implicit step for 𝜒
memory transfers between the GPU and the CPU. We focus most of the
optimisation efforts on this part of the code, and exploit the capabilities
of GPUs to achieve an efficient execution. An important advantage
of using GPUs is the possibility of asynchronously executing code
while performing the MPI transposes. Here we present a well-planned
strategy to achieve almost complete overlapping of computations and
communications, yielding a significant speed-up. This strategy can be
easily adapted to other spectral DNS codes.

Concurrent GPU execution and memory transfer is achieved by set-
ting three different streams on the device side: a computation stream,
a device-to-host-copy stream (D2H) and a host-to-device-copy stream
(H2D). We control the correct execution of the different tasks using
the synchronisation tools and event management functions available in
the CUDA runtime API.

We optimise the evaluation of the non-linear terms, and build the
rest of the RK3 sub-step around this optimisation. In the implemented
formulation, 𝑢2 is available at the beginning of each sub-step, and 𝑢1
and 𝑢3 are calculated from 𝜔2 and 𝜕2𝑢2, which are also available. Thus
we start the computation of the RK3 sub-step by scheduling the global
transpose of 𝑢2, which is first pre-transposed on the GPU, and then
copied to the host. At the same time, both 𝑢1 and 𝑢3 are calculated
from 𝜕2𝑢2 and 𝜔2, and scheduled for global transpose. While 𝑢1, 𝑢2
and 𝑢3 are being copied to the host and transposed to 𝑥1𝑥3-planes
using MPI all-to-all functions, the GPU is available to compute 𝜕2𝑢1
and 𝜕2𝑢3, which are required to calculate 𝜔1 and 𝜔3. When 𝜕2𝑢1 and
𝜕2𝑤3 are ready in the GPU, they are copied to the host and transposed
into 𝑥3𝑥1-planes. When 𝑢1, 𝑢2, 𝑢3, 𝜕2𝑢1 and 𝜕2𝑢3 are copied back to
the GPU, 𝜔2, 𝜔1 and 𝜔3 are calculated, and the three components of
the velocity and the vorticity are transformed to real space. All the
compute, copy and transpose operations are performed concurrently.
Let us note that 𝜔2 can be calculated in place after the transpose due to
the plane–plane decomposition adopted. We are now ready to evaluate
the non-linear terms in real space. Only 1 and 3 are needed for 𝜔2

,
where 1 = 𝑢2𝜔3−𝑢3𝜔2 and 3 = 𝑢1𝜔2−𝑢2𝜔1. First we calculate 1 and
3, transform them to Fourier space and schedule their transpose back
to 𝑥2𝑥3-planes. Then we calculate 𝜔2

. A similar procedure is followed
for 3 to calculate 𝜔2

.
These operations constitute the core of the code, and represent most

of the total computation time in a full RK3 substep. A few operations
remain to complete a RK3 sub-step: computing second derivatives
for the explicit part of the viscous terms (explicit linear operator),
adding them together with the non-linear terms of the previous sub-step
(adding  𝑛−1), and taking the implicit steps of the viscosity (implicit
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linear operator). Except for the implicit steps, which must be completed
at the end of the sub-step, the rest of the operations can be distributed
to fill the gaps when the GPU is idle waiting for copies and transposes
to finish. The idle CPU time is also exploited to compute on the fly
statistics, and the evolution of the mean velocity profiles. In Table C.1
an schematic overview of a complete RK3 sub-step is conceptually
represented. Dependencies, which are marked with colours, show how
each block is arranged to obtain maximum concurrency.

In Fig. C.1 we show a real compute profile of the RK3 sub-step
obtained using the CUDA visual profiler in Minotauro, a GPU HPC
Cluster at the Barcelona Supercomputing Centre. A total overlapping of
GPU computations, device-host memory transfer and MPI/CPU execu-
tion is achieved. From the point of view of the computations, the code
performs as if running on a large GPU with a unique shared memory. In
this case, the time spent in MPI transposes is 24% of the total run-time,
while GPU/CPU memory transfer accounts for 49%. This is a specially
convenient situation, in which the network bandwidth and the GPU–
CPU bandwidth is comparable. This optimisation strategy is able to
achieve a considerable speed-up with respect to a synchronous code,
even if the GPU/CPU transfer is not considered, but its performance
depends strongly on the balance between the bandwidth of the net-
work, and the bandwidth and compute capabilities of the GPUs (see
Table C.1).

Appendix D. Scaling of the code

The scaling of the code has been tested for a variety of cases. In all
cases the grid has an aspect ratio similar to the largest production run.
The maximum and minimum number of GPUs used to run each case is
limited by code design and by GPU memory. The plane–plane domain
decomposition is intended to exploit maximum GPU occupancy and to
minimise global communications, but constrains the maximum number
of GPUs on which the code can run to 𝑁2. When both numbers coincide,
a single 𝑥3𝑥1-plane per buffer is stored in each GPU. The minimum
number of GPUs is constrained by the available device memory. A
summary of the test cases is presented in Table D.1.

Scaling tests have been conducted in PizDaint at CSCS, a GPU-based
supercomputer part of the PRACE Tier-0 network [48]. Results of the
strong scaling are shown in Fig. D.1(a). The efficiency is defined as
𝑡∕𝑡ideal, where 𝑡 is the measured execution time per RK3 step in 𝑁gpus,
and 𝑡ideal = 𝑡0𝑁0∕𝑁gpus is the ideal execution time. Here 𝑁0 is the
minimum number of GPUs that can be used for each grid size, and
𝑡 is the measured execution time for that case. The efficiency of the
0
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Fig. C.1. Execution profile of a RK3 sub-step of a 1024 × 256 × 1024 case run on 32 GPUs in Minotauro at BSC. In blue MPI transposes, in brown D2H and H2D copies, and in
green GPU execution. In this case, we have obtained a complete overlapping of GPU execution and communications. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. D.1. (a) Execution time of one RK3 step (seconds) as a function of the number of GPUs for different test cases. Percentages represent efficiency, 𝑡∕𝑡ideal. (b) Execution time
of one RK3 step per degree of freedom. (c)Time of a RK3 step per degree of freedom compensated with the number of GPUs.
Table D.1
Parameters of the test cases run for the scalability analysis, where 𝜏 is the time per step
and degree of freedom (see text for definition). 𝑁min

gpus and 𝑁max
gpus are the minimum and

maximum number of GPUs in which each case has been run. 𝑁gpus is always chosen
a power of two.

𝑁1 ×𝑁2 ×𝑁3 𝑁min
gpus −𝑁max

gpus 𝜏min (ns)

⋆ 1024 × 256 × 1024 16 − 256 60
+ 2048 × 512 × 2048 64 − 512 63
◦ 4096 × 1024 × 4096 512 − 1024 65
□ 6144 × 1024 × 4096 512 − 1024 63

medium and large cases is very close to 100%, with super-linear scaling
in some cases. In Figs. D.1(b, c), we show results of the weak scaling.
The RK3 step run-time per GPU and degree of freedom is very similar
in all cases.
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