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The interactions between the near-wall streaks and the large-scale motions (LSMs) of
the outer region of wall-bounded turbulent flows are investigated. The co-supporting
hypothesis of Toh & Itano (J. Fluid Mech., vol. 524, 2005, pp. 249–262) is checked
in full-scale channels at low to moderate Reynolds numbers, from two points of view.
To study the top-down influence of the outer structures on the spanwise motion of the
near-wall streaks, a method inspired by particle-image velocimetry is used to track the
spanwise position of the streaks. Their spanwise advection velocity is found to be affected
by the hierarchy of large-scale circulations in the logarithmic layer, but their spanwise
streak density is only weakly related to the LSMs. The evidence suggests that a top-down
influence exists and drives the drift of the streaks in the spanwise direction, as suggested by
Toh & Itano (J. Fluid Mech., vol. 524, 2005, pp. 249–262), but that the hypothesised streak
accumulation rarely occurs. Numerical experiments at Reτ ≈ 535 are then performed to
clarify the role of the near-wall streaks in the generation and preservation of the outer
LSMs. The results show that the merger of the near-wall streaks is only weakly correlated
with the generation of the LSMs, and that removing the near-wall roots of the LSMs does
not affect the evolution of their outer region. It is concluded that the bottom-up influence
from the near-wall streaks is not essential for the LSM generation and preservation, also
weakening the evidence for the co-supporting hypothesis.

Key words: turbulent boundary layers, turbulence simulation

1. Introduction

Coherent structures in wall-bounded turbulent flows play vital roles in turbulence
production and maintenance. Velocity streaks and quasi-streamwise vortices are the
two dominant structures in the near-wall region. Their cyclic generation consists of a
self-sustaining process (Jiménez & Moin 1991; Hamilton, Kim & Waleffe 1995), which
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can survive in the absence of turbulence in the outer region (Jiménez & Pinelli 1999). In
recent years, large-scale motions (LSMs), as well as very-large-scale motions (VLSMs) in
the logarithmic and outer regions, have been evidenced and received extensive attention
(Jiménez 1998; Kim & Adrian 1999; del Álamo & Jiménez 2003; del Álamo et al. 2004;
Guala, Hommema & Adrian 2006; Balakumar & Adrian 2007; Hutchins & Marusic
2007a; Monty et al. 2009). They are characterised by streamwise elongated large-scale
low- and high-speed regions and counter-rotating roll cells. The LSMs have a streamwise
length of approximately h ∼ 3h (Adrian 2007), whereas the VLSMs can be as long as
O(10h) and as wide as O(h), where h denotes the outer length scale, such as the boundary
layer thickness, half-channel height or pipe radius. They not only carry more than half of
the turbulent kinetic energy, but also a large fraction of the Reynolds shear stress (Guala
et al. 2006). They are active and participate deeply in the dynamics of wall turbulence.
However, the origin of the LSMs and VLSMs, and their relation to near-wall structures are
far from being settled, and further investigation is needed.

A hypothesis proposed by Kim & Adrian (1999) attributes the generation of LSMs
to the alignment of hairpin vortices in the near-wall region. Vortex packets that carry
a low-momentum zone inside are assumed to induce much longer low-speed streaks as
they propagate downstream and lift the mean shear. Near-wall structures are suggested
to provide conditions for the LSM generation (Adrian 2007). This bottom-up hypothesis
has been evidenced by the subsequent researches in boundary layer flows (Lee & Sung
2011) and pipe flows (Baltzer, Adrian & Wu 2013). Doohan, Willis & Hwang (2021)
also proposed a possible larger-scale eruption mechanism in the near-wall region, in
terms of subharmonic streak instability. This mechanism may lead to the formation of
the wall-reaching part of high-speed large-scale streaks, although the result is limited to
the buffer layer and the nearby scales.

Another hypothesis holds that the genesis of LSMs is the result of linear energy
amplification independent of the flow in the near-wall region. Butler & Farrell (1993) and
del Álamo & Jiménez (2006) revealed that the LSMs can be described well by the linear
modes with the largest transient growth. Pairs of large-scale counter-rotating roll cells,
similar to the widely documented statistical organisation of turbulent flow, were observed
in their research, and similar findings by Pujals et al. (2009) and McKeon & Sharma (2010)
provide further support. Based on this hypothesis, a possible self-sustaining mechanism
of LSMs in the absence of near-wall structures was put forward, for example, by Flores
& Jiménez (2006), who showed that the structures in the outer region remain virtually
unchanged after adding wall disturbances, regardless of the near-wall condition. This
agrees with the earlier conjecture by Townsend (1976) that the effect of wall roughness
on the structure of turbulence does not extend beyond a thin roughness layer. Hwang &
Cossu (2010) and Cossu & Hwang (2017) found that LSMs can self-sustain when the
small-scale motions are artificially quenched, agreeing with older conclusions from the
observation of large scales in large-eddy simulations of channel flow (Scovazzi, Jiménez
& Moin 2001). Considering the similar self-sustaining process of near-wall structures,
these results suggest that dynamics of the structures at each relevant scale are mostly
controlled by the local mean shear through a linear amplification mechanism, rather than
by the interaction with larger or smaller scales. In fact, Mizuno & Jiménez (2013), Dong
et al. (2017) and Kwon & Jiménez (2021) have shown that LSMs very similar to those in
wall turbulence exist even in the absence of a wall, and Tuerke & Jiménez (2013) showed
that small artificial changes in the off-wall shear in channels have strong structural effects
consistent with a local origins of the LSMs.

Beyond the different opinions on their origin, the influence of LSMs and VLSMs
on the near-wall region is widely documented. The footprint of large-scale structures

940 A23-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

23
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.236


Interaction between near-wall streaks and large-scale motions

reach deeply into the near-wall region (Hoyas & Jiménez 2006; Hutchins & Marusic
2007b), and this top-down influence was categorised into superposition and amplitude
modulation by Mathis, Hutchins & Marusic (2009). Superposition is a linear process
that refers to the contribution of the footprint of LSMs to turbulent kinetic energy in the
near-wall region (Hoyas & Jiménez 2006; Marusic, Mathis & Hutchins 2010a). Amplitude
modulation is a nonlinear process that describes how small-scale turbulent fluctuations are
enhanced in large-scale high-speed regions and suppressed in low-speed ones. A predictive
model for the streamwise velocity fluctuations in the near-wall region has been proposed
based on large-scale signals from the logarithmic layer (Marusic, Mathis & Hutchins
2010b; Mathis, Hutchins & Marusic 2011). Turbulent statistics are well predicted by this
model. Abe, Kawamura & Choi (2004) also proposed a possible top-down influence
on the wall-shear stress fluctuations. The positive and negative dominant regions of the
streamwise wall-shear stress fluctuations were found to be corresponding with the high-
and low-speed regions of the VLSMs, respectively, whereas the active regions of the
spanwise wall-shear stress tend to concentrate under high-speed regions of the VLSMs,
suggesting the possible top-down influence on the spanwise velocity fluctuations.

According to the hypothesis of hairpin packets, the near-wall region provides the
environment for the generation of LSMs. Combining the bottom-up hypothesis with
the top-down mechanism, it is conceivable that a co-supporting mechanism exists that
involves the near-wall structures and the LSMs of the outer flow. Such a hypothesis was
proposed by Toh & Itano (2005), who studied the correlation between spanwise motions of
near-wall streaks and outer large-scale structures in a streamwise-minimal channel. In it,
the large-scale circulations carry near-wall low-speed streaks toward up-washing regions,
and low-speed LSMs are generated by the merger and eruption of the near-wall streaks
in the areas where they concentrate. In down-washing regions, the outer-layer circulation
continually carries fluid towards the wall, enhancing the wall shear, and near-wall streaks
are created due to instabilities. The co-supporting cycle is completed when these two
processes are connected by the large-scale counter-rotating roll cells, and provides an
intuitive framework for the inner–outer interaction, in which the distribution of near-wall
streaks matches the LSMs in the spanwise direction.

However, the simulations of Toh & Itano (2005) suffer from a low Reynolds number
and a short computational domain. There lacks solid mathematical description of the
hypothesised co-supporting cycle, and whether the hypothesis holds is still an open
question. This motivates the present study, in which conditional statistics and numerical
experiments are designed to further elucidate this issue. Its main purpose is to examine
and verify whether the co-supporting hypothesis survives in full-sized turbulent channel
flows at higher Reynolds numbers by checking its hypothesised bottom-up and top-down
branches, as well as to quantify the effect of those branches on the flow.

The paper is organised as follows. The direct numerical simulation (DNS) data used
in the present study is described in § 2. The trajectories of the spanwise locations of
the near-wall streaks in full-sized turbulent channels are analysed in § 3. The top-down
influence of the outer flow on the motion and density of the streaks is examined and
quantified in §§ 3.1 and 3.2. Numerical experiments are performed in § 4 to investigate
the possible bottom-up influence of the near-wall structures on the generation and
maintenance of the outer LSMs, and conclusions are offered in § 5.

2. DNS database of the turbulent channel flows

We use the DNS database of turbulent channel flow from del Álamo & Jiménez (2003)
and Lozano-Durán & Jiménez (2014a). The flow is established between two parallel plates
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Case Reτ Lx Lz Δ+
x Δ+

z (Δy)
+
max TUm/h Reference

L550 547 8πh 4πh 13.4 6.8 6.7 172.4 del Álamo & Jiménez (2003)
M950 932 2πh πh 11.5 5.7 7.7 276.8 Lozano-Durán & Jiménez (2014a)
M2000 2009 2πh πh 12.3 6.2 8.9 113.9 Lozano-Durán & Jiménez (2014a)
M4200 4179 2πh πh 12.8 6.4 10.7 90.9 Lozano-Durán & Jiménez (2014a)
W535 535 2πh 4πh 11.8 5.9 8.8 200.0 Deng & Xu (2012)

Table 1. Computational parameters, as detailed in the text. Here Δx and Δz are the resolution in the wall
parallel directions, expressed in terms of Fourier modes, and Δy is the collocation resolution in the wall-normal
direction. We use TUm/h to denote the sampling time period used in the statistics of § 3. The sampling time
periods T of the two numerical experiments in § 4 are 150h/Um and 45h/Um, respectively.

separated by 2h, at Reynolds number, Reτ = uτ h/ν, ranging from 547 to 4179. The friction
velocity uτ and the kinematic viscosity ν define wall units, denoted by a ‘+’ superscript.
Quantities without explicit units are assumed to be normalised with the average bulk
velocity, Um, and with h. The streamwise, wall-normal and spanwise coordinates are x, y
and z, respectively, and the flow is assumed to be periodic in the streamwise and spanwise
directions, with periods Lx and Lz, respectively. The corresponding velocities are u, v

and w. The numerical code is Fourier-spectral in these wall-parallel directions, and either
uses Tchebychev polynomials or high-order compact finite differences in the wall-normal
direction. The main numerical parameters are listed in table 1, and the reader is directed
to the original publications for further details.

The simulation in the last line in table 1 is used as a reference in the series of numerical
experiments in § 4, and is discussed in more detail in that section.

3. Spanwise location and drift of the near-wall streaks

As explained in § 1, the Toh & Itano (2005) co-supporting cycle consists of bottom-up
and top-down branches. See the sketch in figure 1. The current section is concerned with
the top-down process, according to which the spanwise drift of the near-wall streaks is
driven by the large-scale streamwise rollers of the outer flow. Streaks are driven away
from regions of downwash, migrate sideways and concentrate in regions of upwash. Our
first attempt at locating and defining streaks was to use the method in Toh & Itano (2005).
The spanwise location z = ζ(t, xr, y) of a meaningful low-speed streak is determined by

u(2D)(t, x, y, z)|x=xr,z=ζ < U( y), (3.1)

∂u(2D)

∂z
(t, x, y, z)|x=xr,z=ζ = 0,

∂2u(2D)

∂z2 (t, x, y, z)|x=xr,z=ζ > 0, (3.2a,b)

where the locally averaged instantaneous streamwise velocity,

u(2D)(t, xr, y, z) = 1
�x

∫ xr+�x/2

xr−�x/2
u(t, x, y, z) dx, (3.3)

is used instead of u itself. Here xr is the midpoint of the streamwise averaging interval
and its determination will be discussed in detail in the following. A similar definition is
used elsewhere for other velocity components, v(2D) and w(2D). Condition (3.1) guarantees
that u(2D) is slower than the mean velocity U( y), and (3.2a,b) ensures that ζ is a spanwise
minimum of u(2D).
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v (induced by LSMs) v (induced by LSMs)

Gathering Moving Scattering

v (induced by LSMs)

y2

y1

z z z

z

y

Figure 1. Sketch of the outer–inner interaction between large-scale streamwise rollers (blue circles) and the
near-wall low-speed streaks (dashed curves), according to the co-supporting hypothesis in Toh & Itano (2005).
The red and green lines denote the two wall-parallel observation windows, y = y1 and y2, respectively, used in
§§ 3.1 and 3.2.

The choice of the averaging interval (xr − �x/2, xr + �x/2) is important. Toh &
Itano (2005), who analysed a streamwise-minimal channel with L+

x = 384, used the full
streamwise period �x = Lx as their averaging length. This length is shorter than most
streaks, which were thus treated as being infinitely long. Their evolution takes place in
time rather than in space, and the same group later showed that the length of the near-wall
streaks in a full channel can be substituted by their lifetime in a streamwise-minimal one
(Abe, Antonia & Toh 2018).

We analyse in this section full-sized channels at substantially higher Reynolds numbers
than in either of the two papers above, and some modifications are needed to (3.1)–(3.3).
The typical streamwise length of the near-wall streaks, �xu, is a few thousand wall units
(Hoyas & Jiménez 2006), and averaging over longer segments risks mixing streaks and
hiding their spanwise meandering. We use in this paper �x+ ≈ 380–450, which is short
enough to retain structural information, but long enough to differentiate the near-wall
streaks from velocity fluctuations of smaller scale. A posteriori tests show that the results
below are robust in the range �x+ ≈ 300–500.

When �x = Lx, the streamwise origin, xr, of the observation box becomes irrelevant,
and the near-wall streaks in the streamwise-minimal flow in Toh & Itano (2005) form
branching structures that tend to merge beneath large-scale low-speed regions, supporting
their assumed relation between LSMs and the spanwise drift of the streaks. In larger
channels, the position of the observation window is crucial. Kim & Hussain (1993) and
del Álamo & Jiménez (2009) showed that the streamwise advection velocity of most
quantities in the buffer layer is u+

ad ≈ 10, and Lozano-Durán & Jiménez (2014b) later
showed that u+

ad ≈ 8 for the ejections associated with the low-speed streaks. Farther from
the wall, the small scales move approximately with the mean flow velocity, with ejections
also moving slightly more slowly than the flow (Lozano-Durán & Jiménez 2014b). For
example, ejections at y+ = 200 move at u+

ad = 16.7 while U( y)+ = 18.2. Centring on the
buffer layer, we show that the spanwise drift velocity of the streaks is of the order of uτ ,
so that, if the observation window were fixed to the wall, streaks would only be observed
over times of the order of �t+ ≈ �+

xu/8 ≈ 100, during which they would drift at most by
δz+ ≈ 100. This is too little to characterise the interactions in which we are interested,
which involve VLSMs whose width is �z ≈ h. Therefore, we track individual streaks by
moving the window with their average advection velocity, xr = xr0 + uadt, where xr0 is
the initial window position.
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Figure 2. Time history of the spanwise locations of low-speed streaks in a full-sized channel (M950).
Locations of the low-speed streaks are determined by the condition (3.1)–(3.3): (a) y+ = 5 and (b) y+ = 200.
The red dashed line denotes the averaged location of a large-scale streak.

A typical time history of the spanwise location of low-speed streaks at y+ = 5 is
displayed in figure 2(a), using u+

ad = 8 as representative of the near-wall region. Each line
in the figure represents the trajectory of a single low-speed streak, and it is clear from the
figure that they substantially drift spanwise. Their mean spanwise spacing, approximately
100 wall units, agrees well with the known streak spacing near the wall (Smith & Metzler
1983). Toh & Itano (2005) classify the trajectories that they observe in streamwise-minimal
channels into dominant branches with long lifetimes (of the order of 1000–3000 wall
units), and subordinate ones with shorter lifetimes that tend to merge into the dominant
ones. The lifetime of such a fragile object as a near-wall streak is hard to define, but
Lagrangian scales of 300–1000 temporal wall units were obtained in the buffer layer by
Jiménez et al. (2005), Flores & Jiménez (2010) and Abe et al. (2018). The lifetime of the
branches in figure 2(a) is of the same order, 200–800 wall units, and few of them last
beyond 1000 viscous time units. They thus correspond to the subordinate branches in Toh
& Itano (2005).

Figure 2(b) is drawn at y+ = 200, using u+
ad = 16.7, and represents the logarithmic

region. The trajectories cluster in a wide band around z/h = 1.7, marked by a red
dashed line, which appears to be one of perhaps two large streaks that dominate the
flow at that level. The interpretation of this figure needs some comment. Although it is
known that outer-layer low-speed regions in channels contain more small-scale vortices
than high-speed ones (Tanahashi et al. 2004), which could be interpreted as supporting
the gathering action hypothesised by Toh & Itano (2005), the clustering in figure 2(b)
is probably an artefact of the detection criterion (3.1). Low-velocity streaks are only
recognised as such when they ride on a deeper large streak that lowers their velocity below
the mean profile, and what we see in the figure is probably the root of an attached streak
centred farther from the wall.

The influence of criterion (3.1) should thus be further discussed. Figure 3 repeats
figure 2 without using (3.1). At y+ = 5, condition (3.1) discards part of the scattered dots,
which reappear in figure 3, but there are also more coherent streaks in the new figure
than in the old one. The spanwise drift of the streaks is present in both figures, but it
is evident from comparing them that the streak density measured by (3.1)–(3.2a,b) may
be influenced by (3.1). For the result at y+ = 200 in figures 2(b) and 3(b), the condition
(3.1) takes a dominant role, and rejects approximately half the local minima. When it is
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Figure 3. Time history of the spanwise locations of low-speed streaks in a full-sized channel (M950) without
the criterion (3.1): (a) y+ = 5 and (b) y+ = 200.

removed, the gathering action suggested by the co-supporting is still observed, although
less clearly than before, but it is not reflected in the streak density. Figure 3 shows an
almost uniform distribution of small streaks, instead of only the part riding on the larger
outer streak. Only condition (3.2a,b) will be used to define the near-wall streaks in the
quantitative analysis in the next two sections.

3.1. Spanwise drift of the near-wall streaks versus the outer eddies
Although figures 2 and 3 clearly indicate that the streaks move spanwise, relating their
drift to the outer large-scale circulations requires quantitative analysis. The premise of the
top-down branch of the co-supporting cycle in Toh & Itano (2005) is that the near-wall
streaks are scattered away from the down-washing regions of the large-scale circulations,
and gather in the up-washing ones, as sketched in figure 1. This implies a positive
correlation between the spanwise derivative, ∂v/∂z, of the wall-normal velocity of the
outer flow and the spanwise drift of the near-wall streaks. A positive spanwise streak
velocity near the wall would correspond to a counter-clockwise large-scale circulation,
in which ∂v/∂z > 0 near the z-positions of the roller centres, as depicted by the first and
third rolls in figure 1. A negative streak drift velocity would be associated with ∂v/∂z < 0.

To quantify how streaks move as a function of their location, (t, xr, y1, zs), we track the
evolution of patterns of u(2D), using a method similar to particle-image velocimetry (PIV).
Consider a one-dimensional interrogation window, zs − �ζ/2 < z < zs + �ζ/2, which
is advected streamwise with the velocity discussed in the previous section. The streak
displacement after �t is defined as the position, δzmax, of the maximum of the correlation

Ru(2D) (δz, �t) = 1
(I0I1)1/2

∫ zs+�ζ/2

zs−�ζ/2
u(2D)(t, xr, y1, z)u(2D)(t + �t, xr

+ uad�t, y1, z + δz) dz, (3.4)

where I0 and I1 are, respectively, the mean squares of u(2D)(t, xr, y1, z) and u(2D)(t +
�t, xr + uad �t, y1, z + δz), averaged over the same window as in (3.4). In addition, we
only accept maxima for which Ru(2D) (δzmax) > 0.8. The spanwise advection velocity is
defined as ws = δzmax/�t, and is assigned to the window centre (xr, zs). The following
discussion focuses on the near-wall streaks at y+

1 = 13. It uses �ζ+ ≈ 50, and an
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Figure 4. (a) Probability density function (p.d.f.) of w+
s at different Reτ with �t+ ≈ 20, and u+

ad = 8: blue
solid line, Case W535; black solid line, M950; red solid line, M2000. (b) Joint p.d.f. of the streak spanwise
advection velocity, w+

s , and the spanwise velocity fluctuations, w+ at y+
1 = 13. Case M950, and �t+ = 20.

The white diagonal is w+ = w+
s .

–1 –0.5 0 0.5 1.0

–0.010

–0.005

0

0.005

0.010

∂v+

∂z+

w+
s

Figure 5. Joint p.d.f. of the spanwise drift velocity w+
s at y+

1 = 13 and ∂ṽ+/∂z+ at y+
2 = 200: shaded, w+

s by
PIV; white dashed lines, w+

s at the streak centres. Contour levels are 0.1(0.2)0.9 of the maximum probability
density. Case M950, �t+ ≈ 20 and �z+ = 214.

advection velocity of the interrogation window u+
ad = 8, as in figure 2(a). The results

are robust in the range �ζ+ ∈ [30, 70], and the effect of �t+ and u+
ad is discussed

in Appendix A.
The probability density function (p.d.f.) of the drift velocity at different Reτ shown

in figure 4(a) is concentrated approximately in the range w+
s = [−2, 2], independently

of the Reynolds number. This is the same order of magnitude as the spanwise velocity
fluctuations of the flow, and the two quantities are closely related. The joint p.d.f. of w+

s
and w+ at y+

1 = 13 is displayed in figure 4(b) for case M950. It shows a clear correlation
between the two variables, providing direct evidence that the drift of the streaks is not due
to their internal dynamics, but to the ambient flow.

We next turn our attention to the correlation of the drift velocity with the structures of
the outer flow, represented by the wall-normal velocity at y2 > y1, smoothed with a top-hat
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Interaction between near-wall streaks and large-scale motions

filter to isolate the large-scale component,

ṽ(x0, y2, z0) = 1
�z

z0+�z/2∫
z0−�z/2

v(2D)(x0, y2, z) dz, (3.5)

where v(2D) is defined as in (3.3). A typical joint p.d.f. is shown in figure 5. The abscissae
are ws at y+

1 = 13, and the ordinates are the spanwise derivative of ṽ at y+
2 = 200. It is

evident that the p.d.f. is preferentially aligned to the first and third quadrants, i.e. that
a positive spanwise drift of the streaks tends to occur beneath positive ∂ṽ/∂z, and vice
versa, in agreement with the top-down model. To verify that the continuous velocity field
obtained by the PIV method truly represent the drift of the streaks, the joint p.d.f., using
w+

s collected at the points identified by (3.2a,b) as the streak centres, are also shown by
the white contours in figure 5 for comparison. The differences with the PIV results are
negligible.

The mutual dependence of the two quantities can be quantified by the correlation
coefficient

R
(

ws,
∂ṽ

∂z

)
=

∑
ws

∂ṽ

∂z[∑
w2

s
∑(

∂ṽ

∂z

)2
]1/2 . (3.6)

Appendix A shows that R(ws, ∂ṽ/∂z) depends on the PIV parameters, and on the
wall-normal positions y2 of the outer-flow. For the case in figure 5, the correlation of
the two quantities is Rws,∂ṽ/∂z ≈ 0.2, but it can be raised to the order of 0.4 as y2 changes.
See Appendix A for the details.

In fact, one of the functions of the window used to define ws and ṽ is to highlight how
the correlation depends on the spanwise wavelength and on the distance from the wall.
The top-down correlations considered by Toh & Itano (2005) and Abe et al. (2018) were
restricted to outer scales with λz ∼ h, but it makes sense to also consider interactions with
intermediate scales presenting in the logarithmic layer, for which 100 � λ+z and λz � h.
Consider the inertia tensor of the joint p.d.f. of ws and the unfiltered ∂v/∂z, defined as

I
(

ws,
∂v
∂z

)
=
(

Iwsws Iws(∂v/∂z)
I(∂v/∂z)ws I(∂v/∂z)(∂v/∂z)

)
, (3.7)

where

Iab = 1
LxLz

∫∫
a(x, z)b(x, z) dz dx. (3.8)

To isolate the spanwise scale, express each variable as its Fourier transform along
z, using ϕ̂(t, x, y, kz) to represent the Fourier coefficient of ϕ(t, x, y, z) at the spanwise
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wavenumber kz. The different moments can be expressed as integrals over kz,

Iwsws =
∫

ŵsŵs
∗ dkz, (3.9)

I(∂v/∂z)(∂v/∂z) =
∫

ikzv̂(ikzv̂)∗ dkz =
∫

k2
z (v̂v̂∗) dkz, (3.10)

Iws(∂v/∂z) = I(∂v/∂z)ws =
∫

Re(ikzv̂ŵs
∗) dkz =

∫
Re(ŵs(ikzv̂)∗) dkz

=
∫

−kzIm(v̂ŵs
∗) dkz, (3.11)

where the ‘∗’ superscript denotes complex conjugation, and averaging over x is implied
everywhere. A spectral inertia tensor can then be defined for each kz as

I
(

ws,
∂v

∂z
; kz

)
=
(

ŵsŵs
∗ −kzIm(v̂ŵs

∗)
−kzIm(v̂ŵs

∗) k2
z (v̂v̂∗)

)
. (3.12)

We are interested in the relation of kz with the height at which v̂(kz) has the strongest
influence on ws. The strength of this influence can be quantified by the inclination angle
θ of the principal axes of the joint p.d.f. inertia ellipse, and θ = arctan |a2/a1| can be
calculated from the leading eigenvector (a1, a2) of the inertia tensor. Here we can define
a rescaled tensor that avoids derivatives by removing the kz factors from I , for kz in (3.12)
not only bring dimensional complications, but also has a scale-dependent influence on the
principal axes:

I (ws, v; kz) =
(

ŵsŵs
∗ −Im(v̂ŵs

∗)
−Im(v̂ŵs

∗) v̂v̂∗

)
. (3.13)

This tensor directly relates the velocities at the two wall distances at scale kz, and has the
advantage of balancing their magnitudes and dimensions. Note that the imaginary part
in the off-diagonal elements of (3.13) has the effect of translating spanwise one of the
variables by a quarter wavelength with respect to the other, so that I(ws, v; kz) describes
the correlation of the streak drift velocity with the shifted wall-normal velocity in the outer
flow.

The inclination angle θ determined by the second and first components of the leading
eigenvector of (3.13), with 0 < θ < π/2, quantifies the magnitude of the v fluctuations
at y2, relative to the drift velocity of the near-wall streaks with which they correlate. The
location, y2 of the maximum for each wavelength, λz = 2π/kz, can be taken to represent
the distance from the wall of the centre of the rollers with that spanwise dimension. It
is displayed in figure 6, which clearly shows that rollers are most effective at advecting
streaks over distances similar to their own height (of the order of λz ≈ 4y2). For example,
the maximum correlation in figure 17 in Appendix A is obtained when the wall-normal
velocity is smoothed with a filter for which �z+ ≈ 200 at y+

2 = 100. As the effect of
the eddies responsible for this correlation reaches, by definition, the near-wall region,
the self-similar dependence of their size is one more demonstration of the attached-eddy
model of Townsend (1961), and proves that the buffer-layer streaks are not controlled by
eddies of a single size, but by the whole hierarchy of attached structures of the logarithmic
layer.
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Figure 6. Inclination angle, θ/θmax, of the leading eigenvector of the correlation tensor (3.13), as function
of y2 and of the spanwise wavelength λz, where θmax is the maximum of θ at the corresponding wavelength:
(a) W535; (b) M950; (c) M2000.

3.2. Near-wall streak density and the outer region
Having established the influence of the outer structures on the spanwise drift of the streaks
of the buffer layer, it remains to be shown whether this drift results in the modulation of
the density of streaks. This assumption underlies the second, bottom-up, branch of the
co-supporting hypothesis of Toh & Itano (2005), which proposes that the accumulation of
low-speed streaks below an existing outer-flow ejection leads to some kind of collective
instability that reinforces the ejection. At first sight, this conclusion is reasonable, because
the streaks converge where ṽ( y2) > 0 and diverge where ṽ( y2) < 0. However, the density
of streaks not only depends on their motion, but also on the rate at which they are born
and disappear, and it should be clear from the discussion in § 3 that the longest reasonable
lifetime of a streak is of the same order as the time required for it to drift across distances
of order h. In fact, a cursory inspection of figure 3 shows that most streaks do not live
long enough to cross spanwise distances of the order of the width of the largest VLSMs,
but, because we saw at the end of § 3.1 that streaks also interact with narrower structures
closer to the wall, we need to determine whether the same conclusion applies to these
structures. In this section we examine directly the correlation of the outer ṽ with the density
of buffer-layer streaks.

To quantify this correlation, we again define two spanwise windows, one at y+
1 = 13

in the buffer layer, and another at y2 in the outer region. Both windows have the same
width, �z, and are centred at the same wall-parallel location (x0, z0), but they serve
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L550 M950 M2000 M4200
nx 30 15 30 61
nz 1470 710 1470 3010
nt 110 575 430 40
N 4.85 × 106 6.12 × 106 1.90 × 107 7.22 × 106

Table 2. Number of samples used for the streak statistics: nx, nz and nt denote sample numbers in the x, z and
t directions, and N = nxnznt is the total number of samples.

different purposes. The inner window is used to compute the streak density by counting
minima of u(2D), as in (3.2a,b). The outer window is used to compute the smoothed ṽ, as
in (3.5). The streamwise interval used to compute u(2D) and v(2D) is the same as in § 3,
�x+ = 400, but several �z are used to test their effect on the results. A minimum value for
�z can be estimated from physical arguments. As the spacing of the buffer-layer streaks is
known to be approximately 100 wall units (Kline et al. 1967; Smith & Metzler 1983), and
the hypothesis in Toh & Itano (2005) is that at least two streaks need to merge to generate
a larger-scale ‘eruption’, it is reasonable to choose �z+ � 200. Statistics are compiled
by scanning x0, z0 and time. The number of samples in each direction is summarised
in table 2. The total number of samples used for each Reynolds number always exceeds
4 × 106.

The spanwise density of streaks ρs is the inverse of their average spacing, and is simply
determined from the number, ns, of minima in the observation window, ρs = ns/�z. It
follows from the classical estimates of streak spacing that we can expect ρ+

s ≈ 0.01.
Distributions of the streak spacing are given in figure 7, compared with the results of

Smith & Metzler (1983) in a turbulent boundary layer at Reτ ≈ 724. Figure 7(a) shows
the effect on the spacing of the size of the detection window. As expected, the distribution
becomes more concentrated for wider windows, but the mode of the distribution, �+

zu ≈ 70,
remains constant and is only slightly narrower than the result of Smith & Metzler (1983),
�+

zu ≈ 85. Considering that these authors detect streaks from the accumulation of hydrogen
bubbles at y+ = 5, and determine visually the distance among neighbouring streaks, the
discrepancy can probably be attributed to the different definitions of what constitutes a
streak. Even so, the p.d.f. obtained with our narrowest window, �z+ ≈ 200, is fairly close
to that in Smith & Metzler (1983), and this window is used in the following. Figure 7(b)
shows that the density distribution is essentially independent of the Reynolds number, also
in agreement with Smith & Metzler (1983).

The correlation coefficient between ρs and ṽ is defined as

R(ρs, ṽ) =
∑

(ρs − ρs)ṽ[∑
(ρs − ρs)2

∑
ṽ2
]1/2 , (3.14)

where ρ+
s ≈ 0.01 denotes the averaged streak density. The averaged wall-normal velocity

vanishes from continuity, and the summation extends over all the samples in table 2. The
streak density ρs is a local quantity depending on the spanwise locations, whereas the
correlations between the local ρs and ṽ could capture the possible streak accumulation.
If the streaks really accumulated in the up-washing regions of ṽ and drained away from
the down-washing regions, the correlation R(ρs, ṽ) would be strongly positive. However,
figure 8(a,b) show that the correlation is always smaller than 0.2, and even turns negative
at large y2, contradicting the assumption of the top-down model of Toh & Itano (2005).
This failure can be traced to our rejection of condition (3.1), which was used by Toh &
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Figure 7. (a) Probability density function of the streak density at different �z in case M2000: black, �z+ =
214; red, �z+ = 308; blue, �z+ = 411; green, �z+ = 510; dashed, Smith & Metzler (1983). (b) Probability
density function of the streak density distributions at different Reτ and �z+ ≈ 200: blue circles, L550; red
circles, M950; black crosses, M2000; green circles, M4200; dashed line, Smith & Metzler (1983); full line, the
best-fitting curve.

Itano (2005) when identifying streaks. This criterion has very little influence on the drift
statistics in § 3.1, but figure 8(c), as well as figure 3, shows that it strongly affects the
results for the streak density. The density is clearly correlated with the outer large-scale
circulations when using (3.1), because that condition tends to reject streaks underneath
large-scale high-speed regions, and to retain the roots of the low-speed ones. However,
when only the local minimum condition (3.2a,b) is used, the accumulation becomes
weaker or negative.

Another effect that may influence the correlation R(ρs, ṽ) is the modulation of the
local wall shear by the outer LSMs. A negative ṽ brings high-speed fluid from the
outer flow towards the wall, increasing the local shear and, in effect, decreasing the
local viscous length. If the streak generation process is in equilibrium with this shear,
the local streak spacing should decrease and the streak density should increase. This
would tend to counteract the hypothesised local decrease in density due to divergence,
and decrease the inner–outer correlation. If the modulation is strong enough, it may
overcome the correlation completely, and even become negative. The effect is similar to
the LSM-induced local wall-shear fluctuations in Abe et al. (2004) and the large-scale
modulations in Mathis et al. (2009), which were also shown in Jiménez (2012) and Zhang
& Chernyshenko (2016) to be mostly reducible to scaling by the local friction velocity,
(uτ )local = (ν ∂ ũ/∂y)1/2.

Figure 9 shows that the effect is not trivial, and confirms that it is a consequence of
the interaction with the outer flow. Figure 9(a) presents the p.d.f. of (uτ )local for three
Reynolds numbers, computed over a spanwise averaging window whose size scales in
wall units. The variation is of the order of ±20 %, and widens as the Reynolds number
increases, in agreement with the increase in energy from the wider range of scales of the
velocity fluctuations. If the effect were local to the near-wall layer, it would be difficult
to explain this Reynolds number dependence. In fact, figure 9(b) shows that, when the
averaging window is scaled in outer units, the variation of (uτ )local depends on the size of
the window, but not on the Reynolds number.
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Figure 8. (a) Correlation R(ρs, ṽ) at different �z in case M2000: black, �z+ = 214; red, �z+ = 308; blue,
�z+ = 411; green, �z+ = 510. (b) As in (a) for different Reτ and �z+ ≈ 200: blue, L550; red, M950; black,
M2000; green, M4200. (c) Correlation for �z+ = 214 in case M2000: circles, with condition (3.1); crosses,
without condition (3.1).

0.6 0.8 1.0 

(uτ)local/uτ (uτ)local/uτ

1.2 1.4
0

2

4

p.
d.

f.

6

(a) (b)

0.6 0.8 1.0 1.2 1.4
0

2

4

6

Figure 9. Probability density function of (uτ )local/uτ at different Reτ , where (uτ )local is the local friction
velocity computed over each window, and uτ is its global average: (a) �z+ ≈ 200; blue solid line, L550; red
solid line, M950; black solid line, M2000; (b) �z/h ≈ 0.4; blue solid line, L550; red dashed line, M950;
�z/h ≈ 0.2, red solid line, M950; black dashed line, M2000.

Finally, figure 10 shows that, when both ρ+
s and ṽ+ are scaled in the local wall units, the

effect of the averaging window on R(ρ+
s , ṽ+) largely disappears, but the correlation still

decays with y2. It becomes negligible above y+
2 ≈ 150 but, in contrast to figures 8(a) and

8(b), it does not become negative at higher y2. It is interesting that the limit for this decay
scales in wall units, suggesting that the reason has more to do with the dynamics of the
buffer layer than with the outer flow.

What needs to be explained is why streaks drift spanwise but do not accumulate, and
the simplest explanation is their short lifetime, which is t+ = O(500) instead of the t+ =
1000–3000 in Toh & Itano (2005). As w+

s = O(1), their maximum drift is thus only δz+ =
300–500 (see figure 3a), and the outer structures can only couple with the streak density
over widths of this order. It follows from figure 6 that this corresponds to y+

2 ≈ 100, and
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Figure 10. Correlation R(ρ+
s , ṽ+) scaled in local wall units. (a) At different window size in case M2000: black,

�z+ ≈ 214; red, �z+ ≈ 308; blue, �z+ ≈ 411; green, �z+ ≈ 510. (b) At different Reτ when �z+ ≈ 200:
blue, L550; red, M950; black, M2000; green, M4200.

that the accumulation hypothesised in Toh & Itano (2005) is a wall-layer effect that should
become increasingly less relevant as the Reynolds number increases.

4. Bottom-up influence on the LSM generation and preservation

In order to examine the possibility of bottom-up influence during the LSM generation
process, two further numerical experiments are performed. In the first, the flow in
the channel is initialised with a laminar velocity profile near the upper wall and a
turbulent velocity profile near the lower wall, as in Schoppa & Hussain (2002). The initial
perturbations, added below y+ = 50 in the lower half of the channel, are constructed by
filtering the flow in case W535 to retain the velocity fluctuations with λ+z < 230. As
experience shows that early flow adjustments kill part of these perturbations, they are
amplified by a moderate factor (approximately 1.3) before being added to the flow, so
that the near-wall Reynolds stress is similar to the fully developed one after the initial
decay. This ensures that the channel transitions to turbulence, and is robust to amplification
factors up to two. Part of the adjustment is the imposition of continuity by the first
simulation step, which is not initially satisfied near the upper boundary of the added streaks
( y+ = 50), but the effect is minor. The code and computational parameters are as in W535
(see table 1), with the Reynolds number fixed to Re = Umh/ν = 9800, which corresponds
to Reτ ≈ 535 near the lower wall.

Before detailed quantitative analysis, it is helpful to have an overview of the development
of the flow. Figure 11 shows the time history of the local Reτ on the upper and lower walls.
The lower-wall Reτ initially decreases a bit, and then increases until t = 20, gradually
approaching its target value of Reτ = 535. On the upper wall, the flow remains laminar
until turbulent transition occurs around t = 60. The upper Reτ then quickly increases until
t = 75, after which it approaches its turbulent level, Reτ = 535. The time evolution of
the mean velocity profile is displayed in figure 12, non-dimensionalised by the local wall
units at the corresponding time instants. In the lower side, shown in figure 12(a), the
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Figure 11. Time history of the local Reτ on the upper (blue solid line) and lower (red solid line) walls. The
dashed vertical lines (1)–(6) mark the corresponding time instants in figures 13 and 18: (1) t = 5, (2) t = 20,
(3) t = 30, (4) t = 50, (5) t = 60 and (6) t = 68.
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Figure 12. Time evolution of the mean velocity profile, U+, scaled in local wall units. (a) In the lower
half-channel from t = 10 to t = 50: red solid line, t = 10; pink solid line, t = 20; green solid line, t = 30;
sky blue solid line, t = 40; blue solid line, t = 50. And (b) in the upper half-channel, from t = 50 to t = 90:
red dashed line, t = 50; pink dashed line, t = 60; green dashed line, t = 70; sky blue dashed line, t = 80; blue
dashed line, t = 90. The black lines (black solid line) denote the profile in case W535. The arrows indicate
increasing time.

profile overlaps the fully developed one below y+ = 20 for t = 10–50, and the agreement
gradually extends to higher positions as time develops. This suggests that turbulent
structures are gradually being constructed at higher positions as the flow approaches
equilibrium. After t = 50, the mean velocity profile collapses to the fully developed flow.
In the upper half-channel, shown in figure 12(b), the profile quickly changes from laminar
to turbulent as that wall transitions at t = 60–70, as also indicated by the abrupt increase
of Reτ in figure 11. The flow continues to adjusts after t = 80, and the whole channel then
evolves to a fully developed turbulent state.

We consider in this section the evolution of the flow structures near the lower wall,
where the initial perturbations are added. The evolution of the upper half-channel is closer
to classical bypass transition, and is discussed in Appendix B. The distribution of the
streamwise velocity fluctuations in the lower half-channel is displayed in figure 13 at the
three selected times indicated by the lines (1)–(3) in figure 11. At t = 5, the perturbations
are confined to the near-wall region, which is dominated by small-scale velocity streaks.
Turbulent fluctuations gradually spread farther from the wall, in accordance with the
evolution of the velocity profile in figure 12, and streaks of increasingly larger scales
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Figure 13. Distributions of u′ in the lower half-channel at (a) t = 5, (b) t = 20 and (c) t = 30. Length in the
x direction is 2π and in the z direction is 4π. Red: u′+ = 3; blue: u′+ = −3. Flow is from bottom right to top
left.

appear at t = 20 and 30. The approximate size of the largest streaks at t = 20 is λz ∼ 0.7h,
and they grow to λz ∼ h at t = 30. The turbulent fluctuations visually occupy the whole
lower half-channel after that time.
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Figure 14. Time evolution of kzE∀
uu(t, λz) as a function of λz in the lower half-channel. The vertical white

lines mark the time instants t = 5, 20 and 30.

The evolution of the streamwise velocity fluctuations towards larger scales can be
quantified by the time-dependent spanwise energy spectrum, defined as

Euu(t, y, kz) = 1
Lx

Lx∫
0

(
∣∣û(t, x, y, kz)

∣∣2 + ∣∣û(t, x, y, −kz)
∣∣2) dx. (4.1)

The evolution of its integral over the lower half-channel, E∀
uu(t, λz), is shown in figure 14 as

a function of λz and of time. The energy is initially concentrated around 100 < λ+z < 230,
where the initial perturbations have been introduced, and spreads to wider wavelengths as
LSMs are gradually generated. The final peak at λz ∼ h develops for t � 30, in accordance
with figure 13. The numerical experiment evolves to a fully developed turbulent state after
t = 120, with much lower fluctuations compared with the peaks before t = 100.

After confirming that the flow is able to generate LSMs with the only input of initially
imposed near-wall streaks, the question of whether streak accumulation is required for
this generation is explored by means of the temporal evolution of the correlation (3.14)
between the near-wall streak density, ρs( y+

1 = 13), and the wall-normal velocity ṽ( y2).
Figure 15(a) presents the time history of this correlation coefficient R(t, y2), with an
averaging window �z+ ≈ 200.

The wall-normal locations for which R > 0.1 are confined below y+
2 = 100, implying

only local interactions within the buffer layer, and no change can be observed before or
after the LSMs appear at t ≈ 30. Therefore, the conclusion reached in § 3.2 approximately
the lack of correlation between the streak density and the outer velocity also applies to the
LSM generation process.

The same lack of correlation holds when a delay is introduced in R. The correlation
between ṽ( y2, t0) and ρs( y1, t0 − �t) is shown in figure 15(b) as a function of �t. If the
outer LSMs were a result of streak accumulation, as assumed by the bottom-up hypothesis,
this correlation should peak at some finite delay, but it is clear from the figure that the
correlation maximum is at �t = 0, and that it never reaches above y+

2 ≈ 30. This again
argues against the hypothesis that the formation of outer scales is due to the previous
accumulation of streaks in the near-wall region.
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Figure 15. (a) Time history of the correlation R(ρs, ṽ) with �z+ ≈ 200. Vertical white lines mark the time
instants t = 5, 20 and 30. (b) The correlation R between ṽ(x, y2, z, t0) and ρs(x − xad, y1, z, t0 − �t) as function
of �t. Here �z+ ≈ 200. The statistics are compiled by scanning x and z; t0 = 30h/Um and xad = (uad( y2) −
uad( y1))�t is the streamwise offset due to the different advection velocities.

Although this numerical experiment shows that the generation of LSMs does not depend
on the accumulation of the near-wall streaks, it could still be possible that the maintenance
of the LSMs depends on the existence of large-scale non-uniformities near the wall.
This is tested by a second numerical experiment, in which the LSMs below y+ = 50 are
artificially removed after the flow has become fully turbulent in the first experiment.

Fourier filtering is applied at t = 300 to the lower side of the channel below y+ = 50, to
remove the fluctuations of the three velocity components with λz > h/2. The subsequent
evolution of the streamwise turbulent kinetic energy at scales λz > h is displayed in
figure 16(a). The influence of the filtering gradually rises to y+ ≈ 100, whereas new
energy appears in the buffer layer at t ≈ 305, with a local maximum near t = 308,
possibly reflecting the top-down influence of the LSMs remaining in the outer region. The
adjustment of the buffer layer lasts until t ≈ 315, after which Euu recovers its equilibrium
distribution. The time evolution of kzEuu at y+ = 200 during this recovery process is
displayed in figure 16(b). The energy peak at λz ≈ 1.5h evolves smoothly with time, and
the influence of the disturbed buffer layer can hardly be seen.

This result suggests that the removal of LSMs below y+ = 50 has little impact on the
preservation of LSMs in the outer region. Notably, the adjustment time of the buffer layer
in response to the sudden filtering is approximately �t = 15h/Um (�t+ ≈ 440), which
is of the same order as the average lifetime of LSMs at the present Reynolds number
(Lozano-Durán & Jiménez 2014b), and should thus be long enough for the LSMs to decay
if their maintenance mechanism had been interrupted. Figure 16(b) shows that they do not.

In summary, the twin experiments in this section strongly suggest that the production
and preservation of LSMs in the outer region do not rely on the existence of large-scale
organisation in the near-wall region, in accordance with the results of Flores & Jiménez
(2006) and others mentioned in the introduction. They all suggest that the possible
bottom-up influence is not essential for the preservation of the outer structures.

5. Summary and conclusions

The inner–outer co-supporting model of Toh & Itano (2005), which had up to now only
been studied in turbulent channels with short simulation boxes, has been examined in
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Figure 16. Time evolution of (a)
∑
λz>h kzEuu(t, y+, λz) and (b) kzEuu at y+ = 200 in the lower half-channel

from t = 285 to t = 330. The vertical white lines are t = 300 and t = 315.

full-sized simulations at low to moderate Reynolds numbers. The model has three stages:
the near-wall streaks drift in the spanwise direction under the influence of the outer LSMs;
they accumulate in areas of large-scale velocity convergence; and areas of high streak
density lead to the formation of new LSMs.

We have confirmed the first stage by tracking near-wall streaks by a method similar
to PIV. The streaks drift spanwise with velocities of the order of ±uτ , and this drift is
correlated with the large-scale velocity of the outer structures. Moreover, the coupling
not only happens between the wall and the largest LSMs. Structures centred at distance
y from the wall in the logarithmic layer couple most strongly with the drift of streaks
over spanwise distances of O( y), in agreement with the standard model of a hierarchy of
wall-attached eddies (Townsend 1961).

The evidence for streak accumulation is less clear, and we have shown that most of the
effect observed in Toh & Itano (2005) and Abe et al. (2018) is due to their requirement that
streaks should have a streamwise velocity lower than the mean profile. When this condition
is removed, the streak density becomes fairly uniform, and its correlation with the outer
structures mostly disappears. In fact, it even changes sign far enough from the wall. The
latter also turns out to be due to the spurious modulating effect of the non-uniform wall
shear induced by the large outer scales. When this is taken into account, the correlation
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between the outer flow and the streak density is uniformly positive, but mostly restricted
to structures below y+ ≈ 150, suggesting that the co-supporting cycle is a wall-layer effect
that becomes less relevant as the Reynolds number increases. The reason is traced to the
lifetime of the streaks, which is too short to couple to higher and wider structures, but
which is probably artificially stabilised by the short simulation boxes in Toh & Itano
(2005) (interestingly, this possibility was anticipated in that paper, but largely forgotten
afterwards).

In addition to the examination and quantification of the top-down influence, the
bottom-up branch of the cycle is investigated by means of two numerical experiments
that facilitate the artificial isolation of the structures at different scales. The first
focuses on the generation process of LSMs, starting from artificially assembled near-wall
streaks in an otherwise fluctuation-less flow. The correlation between the streak density
and the outer flow changes little before or after the LSM spontaneously appear
and their size gradually grows. Moreover, the streak accumulation history hardly
influences the appearance of large-scale components of the wall-normal velocity, implying
that the streak merging does not have a strong relation with the generation of the
LSMs.

A final experiment concentrates on the preservation of existing LSMs. The large-scale
component of the velocity fluctuations in the near-wall region is filtered out once the
flow is fully established, but the outer LSMs are essentially unaffected during the
regeneration of the buffer region. Both experiments argue against the bottom-up branch
of the co-supporting hypothesis of Toh & Itano (2005).
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Appendix A. Parameters of the PIV scheme

This appendix tests the effect on the correlation coefficient defined in (3.6) of the
interrogation parameters of the PIV drift estimation in § 3.1.

Figure 17(a) displays the effect of the measurement interval �t on the correlation
R(ws, ∂ṽ/∂z). In general, the correlation drops as �t grows, and becomes too weak to
be useful for �t+ � 60. The most probable reason is that the delay acts as a filter that
rejects structures with lifetimes shorter than �t. The lifetime of ejections in the buffer
layer is known to be approximately 30 viscous units (Lozano-Durán & Jiménez 2014b),
independently of the Reynolds number, and this is probably the reason why the correlations
in figure 17(a) drop rapidly above �t+ > 30. It is also why we choose �t+ = 20 in § 3.1.
As in the line contours in figure 5, the dashed red line in figure 17(a) is computed using
only values at the streak axes. The difference with the solid line, which uses the full field
of the drift velocity, is also minor in this case.

Figure 17(b) shows the effect of the advection velocity of the interrogation windows,
which is relatively small except in extreme cases such as uad = 0. The PIV correlation
does not itself use streamwise information, and the estimation of ws should work as long
as the same point of the streak can be identified at the two instants used in the correlation.
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Figure 17. Correlation R(ws, ∂ṽ/∂z), as defined in (3.6), against y+
2 . (a) At different �t+; u+

ad = 8.0; black
solid line, �t+ = 10.2; red solid line, 20.3; violet solid line, 40.6; green solid line, 60.8; blue solid line,
101.4. The dashed red line is drawn using only values at the streak axes. (b) Correlation against y+

2 at different
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ad = 6; black solid line, u+

ad = 8; red solid line, u+
ad = 10 pink solid line, u+

ad = 12; brown solid line,
u+

ad = 16. Both panels are for case M950 and �z+ = 214.

As streaks tend to be long and oriented streamwise, small advection misalignments are not
critical, but large advection errors risk mixing the irregularities of the streak geometry,
such as meandering, with its spanwise drift. The optimum correlation is obtained in
figure 17(b) when using the advection velocity obtained elsewhere by physical arguments
(u+

ad = 8).
However, it is clear from figure 17 that the largest effect on the correlation is not from the

PIV parameters, but from the choice of the correct smoothing filter for the wall distance
of interest. As shown by figure 6 in the body of the paper, outer structures of a given
height couple most strongly with spanwise regions of a particular width in the buffer
layer.

Appendix B. The flow in the upper side of the numerical experiment

This appendix discusses the flow in the upper side of the numerical experiment in
§ 4, where the LSMs appear before the near-wall streaks. Distributions of vortices and
streamwise velocity fluctuations before and during the transition are displayed in figure 18.
Pairs of large-scale low- and high-speed regions form in the upper half of the channel
at t = 50, at a time when the small-scale vortical structures are still very rare. The
LSMs gradually move closer to the wall after t = 50, whereas near-wall structures are
still absent and their intensity is progressively enhanced, with energy drawn from the
local mean shear. Small-scale vortices are first generated around t = 60, in the strongest
high-speed regions of the LSMs, accompanied by an increase at the local Reτ on the
upper wall (see figure 11). The generation of vortices then intensifies and quickly spreads
to other regions of the upper wall, whose Reτ grows rapidly. At t = 68, the small-scale
vortical structures occupy most of the upper wall region, and the near-wall small-scale
streaks take their final shape. This evolution suggests that the LSMs can grow and
sustain themselves under the influence of the mean velocity profile, even without near-wall
streaks.
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Figure 18. Time evolution of u′ and vortices in the upper half-channel. Length in the x direction is 2π, and in
the z direction is 4π. The vortices are displayed by iso-surfaces of the second invariant of the velocity gradient
tensor, and coloured red for u′ > 0 and blue for u′ < 0. Flow is from bottom right to top left.
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