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Abstract. Turbulence is characterized by the intermittent generation of very large
gradients and velocity differences. The present understanding of this phenomenon
is reviewed. In most cases the model of choice is the turbulent cascade, in which
eddies become stronger as they decay to smaller sizes. The simplest model, a
multiplicative process, has been studied in detail and leads to multifractals. It is
shown that other processes are possible and that they fit the experiments better in
some situations. Discrete long-lived structures form near the dissipative range of
scales and may dominate the statistics if they are singular enough. That is the case
in decaying two-dimensional turbulence. In the milder three-dimensional case,
experiments favor a mixed multiplicative{stochastic model, which only tends to
a multifractal in the limit of very large Reynolds numbers, probably beyond the
reach of experiments.

Introduction

Intermittency has several meanings in turbulence, but the

most interesting one for the purpose of this meeting is the

tendency of the probability distributions of some quanti-

ties in three-dimensional Navier{Stokes turbulence, typi-

cally gradients or velocity differences, to develop long tails

of very strong events. The problem is not that the distribu-

tions are not Gaussian. There is little reason in general for

that to be true. The question is rather that the extreme tails

become stronger as the Reynolds number increases, and that

the trend does not show any sign of stopping at the highest

experimental Reynolds numbers.

This is not altogether surprising, because turbulence is

believed to be singular in the limit of infinite Reynolds num-

bers. In an equilibrium system, global energy conservation

implies that the energy input should be equal to the average

viscous dissipation per unit mass

εv = ν |∇u|2, (1)

where ν is the kinematic viscosity of the fluid, and |∇u| is
the L2 norm of the velocity gradient tensor. The average

( ) is taken either over the whole flow or over a suitably
designed ensemble of experiments. The basic experimental

observation in turbulence is that the energy input required

to maintain a turbulent flow becomes independent of the

viscosity if the Reynolds number is high enough. In the

limit of ν → 0, this implies that the velocity field has to
develop infinite gradients.

The observation of intermittency goes beyond that singu-

lar behavior and implies that strong gradients become more

common as the Reynolds number increases, even when mea-

sured in terms of their r.m.s. values. In particular, all the

higher statistical flatness factors of the velocity gradients

are thought to diverge in the inviscid limit.

Intermittency is not limited to gradients. Turbulence is

a multiscale phenomenon, in which the ratio between the

largest and the smallest length scales can reach 105 − 106.

The fundamental problem is to understand how large-scale

quantities, such as the energy, are transported across that

range of scales to the smallest eddies, where they can, for

example, be dissipated. The generally accepted model is

the cascade, introduced by Richardson [1920], which states
that eddies of a given size only interact with those of some-

what larger or somewhat smaller sizes. Any interaction

between eddies of very different sizes takes places through

a sequence of such small cascade steps.

It is clear that, even if the underlying equations are de-

terministic, a phenomenon as complex as turbulence has

some components that can best be described as random. In

fact, when the physical consequences of the cascade were

first explored by Kolmogorov [1941], he assumed that the
process was complex enough for the eddies to lose all the

memory of their previous histories, and that their properties

after each cascade step could be described by purely ran-

dom distributions. It then follows that there is an `inertial'

range of scales in which the eddies are too large for vis-

cosity to be important, and too small to retain any effect of

large-scale inhomogeneities. The Navier{Stokes equations

are invariant to scaling transformations in that range, and

the probability distributions of, for example, the velocity

differences within an eddy, can only depend on the eddy

size.

Consider for example the velocity difference∆u between
two points separated by a distance r. The original Kol-
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Figure 1. The p.d.f.s of the longitudinal velocity gradient for

several Reynolds numbers, increasing in the direction of the arrow.

Normalized with the standard deviation. ReL = 260− 3.5× 10
6.

Symbols are Gaussian. Data from Jim�enez et al. [1993]; Belin
et al. [1997]; Antonia and Pearson [1999].

mogorov formulation assumes that the probability density

function (p.d.f.) p(∆u), is a universal function in the iner-
tial range of scales, whose only parameter is a velocity scale

depending on r. It then follows from energy conservation
arguments that

p(∆u) = F
[

∆u/(εr)1/3
]

, (2)

where ε is the average energy transfer rate across scales per
unit mass. In an equilibrium system, it has to be equal to

εv .

Equation (2) is valid as long as the separation r is much
larger than the Kolmogorov viscous cutoff η = (ν3/ε)1/4,

and much smaller than the integral scale of the largest eddies

Lε = u′3/ε, where u′ is the root-mean-square value of the
fluctuations of one velocity component. The extent of this

inertial range is a function,

Lε/η = Re
3/4
L , (3)

of the Reynolds number ReL = u′Lε/ν .

Intermittency in experiments

A consequence of the strict similarity hypothesis (2) is
that the p.d.f.s of the velocity gradients, which are essen-

tially the velocity differences across the Kolmogorov vis-

cous scale η, should be universal. Batchelor and Townsend
[1949] found that this was not true, and that the gradients

become increasingly intermittent as the Reynolds number

increases (Figure 1). The generation of intense gradients
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Figure 2. The p.d.f.s of the differences of the velocity component

in the direction of the separation, for separations in the inertial

range of scales. r/Lε = 0.02 to 0.36, increasing by factors of
2; equivalent to r/η = 180 to 3000. Nominally isotropic turbu-

lence at Reynolds number ReL = 10
5. In the top figure ∆u is

normalized with the global energy dissipation rate ε; distributions
are wider as the separation decreases. In the bottom figure ∆u
is scaled with the locally averaged dissipation over the separation

interval. Data courtesy of Belin et al. [1997].

was also found to develop gradually across the inertial cas-

cade. The distribution of the velocity differences across

distances of the order of the integral scale is approximately

Gaussian, but it becomes increasingly non-Gaussian as the

spatial separation is made much smaller than Lε (Figure

2a). It was also soon noted that it was theoretically diffi-

cult to justify how a formula such as (2), representing the

p.d.f. of a local property, could depend on a single global

parameter. In a sense, a small interval r has `no way to
measure' the averaged dissipation ε. Kolmogorov [1962]
himself sought to bypass that difficulty by substituting (2)

by a refined similarity hypothesis,

p(∆u) = F
[

∆u/(εrr)
1/3

]

, (4)
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where εr is no longer a global average, but the mean value
of the dissipation over a ball of radius of order r, centered
at the mid point of the interval. This refined similarity is

better satisfied by experiments (Figure 2b) although, from

the practical point of view it just transfers the problem of

characterizing the distributions of∆u to the characterization
of the statistics of εr .

It has become customary to measure the behavior of

p(∆u) in terms of its structure functions,

S(n) =

∫

∞

−∞

∆unp(∆u) d∆u, (5)

which can be normalized as generalized flatness factors,

σ(n) = S(n)/S(2)n/2 . (6)

It would follow from the strict similarity hypothesis (2) that

S(n) ∼ rn/3 (7)

and that all the σ(n) should be independent of the sepa-
ration. Figure 3 shows that this is not true. The flatness

increases as the separation decreases, and it only levels off

at lengths of the order of the Kolmogorov viscous scale.

This is where the statistics of the gradients are defined. For

separations in the viscous range, the flow is smooth, Tay-

lor series expansions can be used, and ∆u ≈ (∂xu)r. It
follows that in that range

σ(n) ≈ (∂xu)n/(∂xu)2
n/2

. (8)

From Figure 3, the velocity gradients become increasingly

non-Gaussian as the distance between Lε and η grows with
the Reynolds number.

The effect of structures

Because the velocity difference between two points which

are not too close to each other can be expressed as the sum of

velocity differences over subintervals, a loose application of

the central limit theoremwould suggest that its p.d.f. should

be roughly Gaussian. The key conditions for that to happen

are that the summands should be mutually independent, and

that their probability distributions should have comparable

finite variances [Feller, 1971, pages 169{172]. The first
of those two conditions is probably a good approximation

when the separation is much larger than the viscous cutoff,

but the second one depends on the structure of the flow.

The experimental non-Gaussianity suggests the presence of

occasional very strong velocity jumps. In the viscous range

of scales, those structures have been identified both exper-

imentally and numerically as very strong linear vortices, in

whose neighborhoods the strongest velocity gradients are

generated [Jim�enez et al., 1993; Belin et al., 1996]. An
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Figure 3. Fourth-order flatness of the differences of the velocity

component in the direction of the separation, for separations in the

inertial range of scales, r/Lε = 0.5 to r/η = 2. The Reynolds

numbers of the different flows range from ReL = 1800 to 10
6.

Data from Belin et al. [1997].

Figure 4. Intense vortex tangle in the logarithmic layer of a tur-

bulent channel. The vortex diameters are of the order of 10η, and
the size of the bounding box is of the order of the channel width.

Data from del �Alamo et al. [2006].

example of a tangle of such structures is shown in Figure

4.

In another example, the vorticity in decaying two-di-

mensional turbulence concentrates very quickly into rela-

tively few strong compact vortices, which are stable ex-

cept when they interact with each other [McWilliams, 1984].
The velocity field is dominated by them, and the flatness

of the velocity increments reaches values of the order of
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σ(4) ≈ 50−100, even at moderate Reynolds numbers. That
case is interesting because something can be said about the

probability distribution of the velocity gradients [Jim�enez,
1996]. We have noted that the p.d.f. of a sum of mutually

comparable independent random variables with finite vari-

ances tends to Gaussian when the number of summands is

large. This well-known theorem is a particular case of a

more general result about sums of random variables whose

incomplete second moments diverge as

µ2(s) =

∫ s

−s

x2p(x) dx ∼ s2−α when s→ ∞. (9)

When 0 < α ≤ 2, the sums of such variables tend to
a family of stable distributions parameterized by α. The
Gaussian case is the limit of that family when α = 2. In
the case of two-dimensional vortices with very small cores,

the velocity gradients at a distance R from the center of

the vortex behave as 1/R2. If we take s in (9) to be one
of those velocity derivatives, its probability distribution is

proportional to the area covered by gradients with a given

magnitude, and

µ2(s) ∼

∫ s1/2

0

R−42πR dR ∼ s−1. (10)

The velocity derivatives at any point, which are the sums

of the velocity derivatives induced by all the randomly

distributed neighboring vortices, should therefore be dis-

tributed according to the stable distribution with α = 1,
which is Cauchy's [Feller, 1971, pages 574{581],

p(s) =
c

π(c2 + s2)
. (11)

This distribution has no moments for n > 1. Its tails de-
cay as s−2, and the distribution of the gradients essentially

reflects the properties of the closest vortex. In real two-

dimensional turbulent flows, the distribution (11) is fol-

lowed fairly well, but its extreme tails only reach to the

maximum values of the velocity gradient found within the

viscous vortex cores, which are not exactly point vortices.

The common feature of the two cases just described is

the presence of strong structures that live for long times

because viscosity stabilizes them. They are therefore more

common than what could be expected on purely statistical

grounds. They are responsible for the tails of the probability

distributions of the velocity derivatives, but they are not the

only intermittent features of turbulent flows. The increase of

the flatness in figure 3 below r ≈ 50η is clearly connected
with the presence of the coherent vortices, but even for

larger separations there is a gradual increase of σ(4). That
suggests that the formation of intense structures takes place

across the inertial range, but much less is known about those

hypothetical inertial structures than about the viscous ones.

Cascade models

We can now recast the problem of intermittency in

Navier-Stokes turbulence into geometric terms. We have

already mentioned that the defining empirical observation

for turbulence is that the energy dissipation given by (1)

does not vanish even in the infinite Reynolds number limit

in which ν → 0. This means that the flow has to be-

come singular in the limit of infinite Reynolds number as

|∇u|Lε/u
′ ∼ Re

1/2
L . The strict similarity approximation

(2) assumes that those singularities are uniformly distributed

across the flow, but the experimental evidence just discussed

shows that this is not the case. The singularities are dis-

tributed inhomogeneously, and the inhomogeneity develops

across the inertial cascade. The problem of intermittency

is to characterize the geometry of the support of the flow

singularities in the limit of infinite Reynolds number.

In the absence of detailed physical mechanisms for the

dynamics of the inertial range, most intermittency models

are based on plausible processes compatible with the invari-

ances of the inviscid Euler equations. The precise power

law given in (7) for the structure functions depends on the

strict similarity hypothesis (2), but the fact that it is a power

law only depends on the scaling invariances of the equations

of motion. The energies and sizes of the eddies in the iner-

tial range are too small for the integral scales of the flow to

be relevant, and too large for the viscosity to be important.

They therefore have no intrinsic velocity or length scales.

Under those conditions, any function of the velocity which

depends on a length has to be a power. Consider a quan-

tity with dimensions of velocity, such as u(r) = S(n)1/n ,

which is a function of a distance such as r. On dimensional
grounds we should be able to write it as

u(r) = UF (ρ), (12)

where ρ = r/L, and L and U(L) are arbitrary length and
velocity scales. The value of u(r) should not depend on the
choice of units, and we can differentiate (12) with respect

to L to obtain

∂Lu = (dU/dL)F (ρ) − UρL−1(dF/dρ) = 0, (13)

which can only be satisfied if

dF

dρ
= cF ⇒ F ∼ ρc, (14)

where c = L(dU/dL)/U is an undetermined constant. This
suggests generalizing (7) to

S(n) ∼ rζ(n), (15)

where the exponents have to be empirically adjusted.

Only ζ(3) = 1 can be derived directly from the Navier-
Stokes equations. Equation (15) implies that the flatnesses
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σ(n) satisfy power laws with exponents ζ(n) − nζ(2)/2.
In Figure 3, for example, the fourth-order flatness follows a

reasonably good power law outside the viscous range, con-

sistent with ζ(4)−2ζ(2) ≈ −0.12. The anomalous behavior
near the viscous limit, and similar limitations at the largest

scales, mean that only very high Reynolds number flows can

be used to measure the scaling exponents, and that the range

over which they are measured is never very large. More-

over, most of the mass of the integrand of the higher-order

structure functions is in the extreme tails of the probability

distributions of the velocity differences, which implies that

very long experimental samples have to be used to accumu-

late enough statistics to measure the high-order exponents.

For these and for other reasons the scaling exponents above

n ∼> 8 − 10 are poorly known. This is unfortunate because
we will see later that some of the most interesting intermit-

tency properties of the velocity field, such as the nature of

the flow singularities in the infinite Reynolds number limit,

depend on the behavior of the ζ(n) for large n.

Another problem is that the cascades found in most ex-

perimental systems are short. The argument for (13) de-

pends on the absence of natural velocity and length scales,

which is never true. All flows have characteristic lengths

and velocities, such as the integral parameters or those in-

duced by viscosity. The invariance argument assumes that

those scales are lost during the cascading process, which

is a reasonable assumption after many cascade steps. But

the reduction in length scale in a recursive cascade is ex-

ponential, and it does not take many steps to span the scale

ranges found in nature. If we assume, for example, that

the size of the eddies is reduced by a factor of two in each

step, it would only take 20 steps to span the factor of 106

between the largest and the smallest length scales in even

the highest-Reynolds-number geophysical flows.

Experimental values for the scaling exponents are given

in Figure 5. They are generally smaller than the ones pre-

dicted by the strict similarity approximation, implying that

the moments of the velocity differences decrease with the

separation more slowly than they would if they were strictly

self-similar, and suggesting that new stronger structures be-

come important as the scale decreases.

Note that we have included in the figure values for odd-

order powers. Up to now we have not specified which ve-

locity component is being analyzed. Most experiments refer

to the one in the direction of the separation, which is the

easiest to measure, specially if time is used as a surrogate

for distance. The longitudinal p.d.f.s are not symmetric,

even in isotropic turbulence. Negative increments are more

common than positive ones because of the extra energy re-

quired to stretch a vortex, and the effect is clearly visible in

the distributions in Figures 1 and 2. The longitudinal odd-

order structure functions do not vanish, and their scaling

exponents are the ones used in the figure.
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Figure 5. Longitudinal scaling exponents, from various experi-

ments. Error bars are ±2σ from the scatter among experiments.

Multiplicative models

In the absence of a general solution for the Navier{Stokes

equations, most treatments of intermittency rely on phe-

nomenological models, which are in reality little more than

restatements of the experimental observations. The most

successful ones have been those based on the concept of a

multiplicative cascade, which is the next step in complica-

tion beyond the purely random Kolmogorov [1941] model.
Consider some flow property v, such as the locally-averaged
energy transfer rate by eddies of size rk, as they cascade
into smaller eddies of size rk+1. Denote by pk(vk) the
probability distribution of the value of v at the step k of the
cascade. The idea behind multiplicative cascades is that the

process is still local in scale space, and stochastic, but that

the intensity of the resultant eddies is not determined by a

globally averaged property such as ε, but by the intensity of
the `parent' eddy. We have already found that idea in the

refined similarity hypothesis (4).

Assume that the cascade is Markovian in the sense that

the probability distribution of vk depends only on its value

in the previous step,

pk+1(vk+1) =

∫

pT (vk+1|vk; k)pk(vk) dvk. (16)

This is in contrast to some more complicated functional

dependence, such as on the values of vk in some extended
spatial neighborhood, or on several previous cascade stages,

and has been experimentally found to be a reasonable ap-

proximation by Friedrich and Peinke [1997]. That assump-
tion also makes intuitive sense if vk+1 evolves faster, or on

a smaller scale, than vk , and is therefore in some kind of
equilibrium with its precursor. If the cascade is determinis-
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tic in that sense, vk can be represented as a product

vk/v0 = qkqk−1 · · · q1. (17)

in which the factors qk = vk/vk−1 are statistically indepen-

dent of each other.

If the underlying process is local, and invariant to scaling

transformations, the transition probability density function

has to have the form

pT (vk+1|vk) = v−1
k w(qk+1; k). (18)

The multiplicative model works most naturally for positive

variables, and we will assume that to be the case in the

following, but most results can be generalized to arbitrary

distributions. We will also assume for simplicity that all the

cascade steps are equivalent, so that the distributionw(q) of
the multiplicative factors is independent of k, and depends
only on our choice for the scale ratio rk+1/rk.

Local deterministic self-similar cascades lead naturally

to intermittent distributions, in the sense that the high-order

flatness factors for vk become arbitrarily large as k in-
creases. It follows from (16){(18) that the n-th order mo-
ment for pk can be written as

Sk(n) =

∫

ξnpk(ξ) dξ = S0(n)Sw(n)k, (19)

where Sw(n) is the n-th order moment of the multiplicative
factor q, and n is any real number for which the integral
exists. If we define flatness factors as in (5), we can rewrite

(19) as

σk(n)/σ0(n) = σw(n)k. (20)

It follows from Chebichev's inequality that

S(n) ≥ S(n − 2)S(2) ≥ S(n − 4)S(2)2 . . . , (21)

from where

1 ≤ σ(4) ≤ σ(6) . . . , (22)

which is true for any distribution of positive numbers.

Equality only holds for trivial distributions concentrated on

a single value. Except in that case, the expression in (20)

increases without bound with the number of cascade steps,

and the flatness factors diverge.

It is tempting to substitute k in (19) by a continuous
variable, in which case the p.d.f.s form a continuous semi-

group generated by infinitesimal scaling steps. This leads

to beautiful theoretical developments [Novikov, 1994], but
it is not necessarily a good idea from the physical point of

view. For example, while it might be reasonable to assume

that the properties of an eddy of size r depend only on those
of the eddy of size 2r from which it derives, the same ar-
gument is weaker when applied to eddies of almost equal

sizes. We will restrict ourselves here to the discrete case.

Limiting distributions

The multiplicative process just described can be sum-

marized as a family of distributions pk(vk) such that the
probability density for the product of two variables is

p(vk1
vk2

) = pk1+k2
(vk1+k2

), (23)

and it is natural to ask whether there is a limiting distribu-

tion for large k. We know that in the case of sums, rather
than products, such distributions tend to Gaussian under

fairly general conditions, and the first attempt to analyze

(23) was to reduce it to a sum by defining

z = k−1 log(vk/v0). (24)

The argument was that z would tend to a Gaussian distri-
bution, and that the limiting distribution for vk would be

lognormal.

This was soon shown to be incorrect [Novikov, 1971].
The central part of the distribution approaches lognormal-

ity, but the tails do not, because the central limit theorem

does not apply to them. The family of lognormal distribu-

tions is a fixed point of (23), but it is unstable, and it is

only attained if the individual generating distributions are

themselves lognormal [Jim�enez, 2000]. This contrasts with
the situation for sums of random variables, in which the

Gaussian distribution is not only a fixed point, but also has

a very large basin of attraction.

Multifractals

The problem with using transformation (24) to find the

limiting distribution of a multiplicative process is not so

much the technique of analyzing the statistics of products

in terms of those of sums, but the inappropriate use of the

central limit theorem. It can be bypassed by using instead

the theory of large deviations of sums of random variables.

The key result is obtained by expanding the characteristic

function of pk when k � 1, and states that

pk(vk) ≈

(

−φ′′

0

2πk

)1/2

ek[φ(z)−z], (25)

where z is defined as in (24) and φ, which plays the role
of an entropy, is a smooth function of z [Lanford, 1973].
Primes stands for derivatives with respect to z. Let us define
zn as the point where

φ′

n ≡ φ′(zn) = −n, (26)

which corresponds to the location of the maximum of φ+nz.

The entropy φ can be computed from the moments of

the transition probability density. Using Laplace's method

to expand the n-th moment of pk , we obtain

Sk(n) =

∫

∞

−∞

kek(n+1)zpk(vk) dz ≈

(

φ′′

0

φ′′

n

)1/2

ek(φn+nzn),

(27)
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from where, using (19),

λn ≡ logSw(n) = φ(zn) + nzn. (28)

The essence of Laplace's approximation is that, for k � 1,
most of the contribution to the integral in (27) comes from

the neighborhood of zn, so that it makes sense to consider
each such neighborhood as a separate `component' of the

cascade.

The geometric interpretation of this classification into

components as a multifractal was developed in the context

of three-dimensional homogeneous turbulence. The multi-

fractal formulation assumes very little about the nature of

each cascade step, but it is natural in turbulence to interpret

it as the process in which eddies decay to a smaller geomet-

ric scale. The argument works for any variable for which

scale similarity can be invoked, but we have seen that most

experiments are done for the magnitude of the velocity in-

crements across a distance r. If we assume for simplicity
that rk/rk+1 = e, so that rk/r0 = exp(−k), equations (24)
and (25) can be written as

vk/v0 = (rk/r0)
−zn , pk(zn) ∼ (rk/r0)

−φn . (29)

The multifractal interpretation is that the `component' in-

dexed by n, associated with the structure function S(n),
whose velocity increments are `singular' in terms of r with
exponent zn, lies on a fractal whose volume is propor-
tional to its probability, and which therefore has a dimension

D(zn) = 3 + φn.

Note that (28) implies that the scaling exponents in (15)

can be expressed as

ζ(n) = − logSw(n) = −λn. (30)

The scaling exponents, the multifractal spectrumD(zn), the
transition probability distributionw(q), and the limiting dis-
tribution p∞(v), unequivocally determine each other. Note
that this implies that the only real information in (25) is the

factor k in the exponent, which is required to recover the
exponent k of the moments in (20) after many cascade steps.
The rest of the expression for the p.d.f. is essentially a dif-

ferent notation for the scaling exponents. Note also that

different quantities have different scaling exponents. For

example, it follows from (4) that, if the scaling exponents

for the local dissipation are ζε(n), the exponents for ∆u
would be ζ∆u(n) = n/3 + ζε(n/3).

Strictly speaking, and assuming that the solutions to the

Navier{Stokes equations remain analytic at all times, the

velocity gradients stay bounded at any finite Reynolds num-

bers, and the self-similar behavior of the structure functions

cannot be continued beyond the viscous limit. Any dis-

cussion of the asymptotic behavior at very high orders is

therefore limited to a hypothetical infinite-Reynolds num-

ber limit, in which the velocity field becomes singular. In

that limit, several properties of the singularity can be de-

rived from the previous discussion. If we assume, for ex-

ample, that the multiplicative factor q is bounded above by
qb, which is reasonable for many physical systems, (24) im-

plies that zn ≤ log qb. In fact, if the transition probability

behaves near qb as w(q) ∼ (qb − q)β the scaling exponents

tend to

λn = n log qb − (β + 1) logn+ O(1), (31)

for n � 1. In the case in which w(q) has a concentrated
component at q = qb, the logn is missing in (31). In all
cases the singularity exponent of the set associated with

n → ∞ is z∞ = log qb, because the very high moments

are dominated by the largest possible multiplier. In the

case of a concentrated distribution, the dimension of this

set approaches a finite limit, but otherwise

D(n) ≈ −(β + 1) logn, (32)

which becomes infinitely negative. This should not be con-

sidered a flaw. The set of events which only happen at iso-

lated points and at isolated instants has dimension D = −1
in three-dimensional space, and those which only happen

at isolated instants, and only under certain circumstances,

have still lower negative dimensions. Sets with very neg-

ative dimensions are, however, extremely sparse, and are

difficult to characterize experimentally.

The breakdown coefficients

The multifractal spectrum of the velocity differences in

three-dimensional Navier-Stokes turbulence has been mea-

sured for several flows in terms of the scaling exponents,

and appears to be universal. For reviews see Nelkin [1994];
Sreenivasan and Stolovitzky [1995], and the book by Frisch
[1995]. From the discussion in the previous section it

should be possible to derive from it the transition proba-

bility pT (q) of the cascade multipliers, but that turns out
to be difficult. The relation lacks specificity. Transition

models that are very different give very similar results, and

it is impossible to choose among them using the available

data [Nelkin and Stolovitzky, 1996].

A better approach is to measure directly the probability

distributions w(q) of the transition multipliers. Early at-
tempts by Van Atta and Yeh [1975] and by Chhabra and
Sreenivasan [1992] concluded that they are approximately
independent of r, and that the multipliers of different cas-
cade steps are also mutually independent. However, later

experiments have shown that this was only a first approxi-

mation.

Consider for example the one-dimensional coarse-grained

surrogate dissipation,

εr =
1

r

∫ x+r/2

x−r/2

(∂xu)
2 dx, (33)
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Figure 6. (a) The p.d.f.s of the breakdown coefficients

of the surrogate averaged dissipation, for several averaging

lengths. ReL = 1.7 × 105. In order of narrower distribu-

tions: r/η = 10(×2)3000. Data from Belin et al. [1997].
(b) Midpoint value of the p.d.f. as a function of averaging

length. Various experiments, ReL = 1.6×103 −1.5×107.

From Jim�enez et al. [2000].

which was first used to define the breakdown coefficient

by Meneveau and Sreenivasan [1991]. The p.d.f.s of the
centered breakdown coefficients

q2r =
1

2
εr/ε2r, (34)

are shown in Figure 6(a). They are bell-shaped in the in-

ertial range, but they become wider at smaller separations.

Figure 6(b), which includes the data from the previously

mentioned early studies, shows that the maximum value of

the p.d.f. varies continuously with the separation.
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Figure 7. (a) Variance of the absolute value of the ve-

locity difference across segments of size r, conditioned to
the value of the velocity increment at size 2r. The solid
lines are r/η = 140(×2)1100, for ReL = 1.2× 106. Data

from the atmospheric surface layer by Antonia and Pearson
[1999]. , best fit to imperfect multiplicative model

(35); , best fit to pure multiplicative model; ,

pure stochastic cascade.

Imperfect multiplicative processes

In fact, the Markovian hypothesis (16) does not neces-

sarily imply a multiplicative cascade. The definition (18) of

the transition probabilities requires both the scaling invari-

ance of the equations, and locality in the sense that vk+1

depends only on vk. It is possible to define Markovian in-
variant models that depend on more complicated functionals

of vk, such as on the statistical moments. The original Kol-
mogorov [1941] cascade, for example, is trivially Marko-
vian, but the transition probability depends on vk+1/v

′

k ,

where v′k is the global standard deviation of vk . It was ar-

gued by Jim�enez and Wray [1998]; Jim�enez [2000], mostly
on theoretical grounds, that such complications are natural

when v is a field, rather than a scalar. The reason is that
the cascade is most likely implemented by some instability

that depends on the dynamics of the local structures, hence

its dependence on v, but which is triggered or modified by
the properties of the surrounding fluid, which is represented

by v′.

Consider for example the velocity increments ∆ur. The

simplest `mixed' cascade model, incorporating both multi-

plicative and stochastic elements, is

∆ur = ψ1∆u2r + ψ2∆u
′

2r, (35)

where ψ1 are ψ2 are independent random processes. The

limitψ1 = 0 is the purely stochastic cascade of Kolmogorov
[1941], whileψ2 = 0 is the multiplicative process discussed
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above. It follows from symmetry considerations that ψ2 = 0
in homogeneous flows. The rest of the statistics have to

be derived from experiments. One way is to examine the

standard deviation of ∆ur, conditioned on a given ∆u2r.

It follows from (35) that

∆u2
r − ∆ur

2
∣

∣

∣

∆u2r

=
(

ψ2
1 − ψ1

2
)

∆u2
2r + ψ2

2 ∆u′
2
2r,

(36)

and that

∆u′r/∆u
′

2r =
(

ψ2
1 + ψ2

2

)1/2

. (37)

The conditional variance is therefore parabolic on the con-

ditioning velocity difference. The apex of the parabola is

on the horizontal axis for a purely multiplicative model, but

it is off the axis for imperfect multiplicative models such

as (35). The conditional variance becomes independent of

∆u2r for a purely stochastic cascade. Experimental results

are given in figure 7 for a high-Reynolds number case in

the atmospheric surface layer. They fit best a mixed model

with

ψ1 = 0.41, ψ2
1 = 0.25, ψ2

2 = 0.40. (38)

The theory of processes such as (35) is not as well developed

as those of either the purely stochastic or the multiplicative

case. We summarize here some elementary results, but a

fuller treatment has to be left for future publications.

The n-th order structure function of ∆uk is a polynomial

of order k in the moments σj(p) = ξp
j of

ξj =
(

ψ2
1 + ψ2

2

)−1/2

ψj , j = 1, 2. (39)

The expansion for Sk(n) is

Sk(n) ∼ σk
1 (n) + lower order terms, (40)

where the expansion includes a constant term, independent

of k. If all the moments σ1(p) are less than unity, the con-
stant dominates for k � 1, and the statistics become regular,
with finite moments. Otherwise, some of the moments di-

verge. We can use Chebichev's inequality to guarantee that,

once a moment diverges, all the moments of higher orders

diverge as well. For large k the structure functions then
approach a power law, and the tails of the probability dis-

tributions behave as in multifractals. Note, however, that it

may take longer to reach that limit than in a true multiplica-

tive process, and that even approximate multifractality may

not be reached in the limited cascades of the experimental

Reynolds numbers.

From the experimental values in (38) it is impossible to

say which would be the asymptotic limit of the cascade.

The first two moments of the reduced stochastic coefficient

are

ξ1 = 0.51, ξ21 = 0.38. (41)

What is required for some higher moment to exceed unity

is that the p.d.f. of ξ1 should have some non-zero mass
above ξ1 = 1. From the values in (41) that seems highly
likely, and the experimental behavior of the structure func-

tions strongly suggests that that is the case, but the result is

weaker than in true multiplicative models.

Conclusions

We have reviewed the current understanding of the in-

termittent generation of very large velocity differences in

turbulent fluids. In most cases the model of choice is the

turbulent cascade, in which eddies become stronger as they

decay to smaller sizes. The simplest model, a multiplicative

process, has been well studied in the literature, and leads

to multifractals. We have shown that other processes are

possible, and that they fit the experiments better in some

situations.

Discrete long-lived structures form near the dissipative

range of scales, and they may dominate the statistics if

they are singular enough. That is the case in decaying

two-dimensional turbulence, in which the structures block

the cascade. In the milder three-dimensional case, ex-

periments favor a mixed multiplicative{stochastic cascade

model, which would only tend to a multifractal in the limit

of very high Reynolds numbers, probably beyond the reach

of experimental, and even geophysical, flows.

Multiplicative or mixed cascades, and the resulting in-

termittency, are not limited to Navier-Stokes turbulence.

The equations of motion have only entered our discussion

through the assumption of scaling invariance. Multifrac-

tal models have in fact been proposed for many chaotic

systems, from social sciences to economics, although the

geometric interpretation is hard to justify in most of them.

Many examples are given in Schroeder [1991].

It is also important to realize that the fact that a given

process can in principle be described as a cascade does

not necessarily mean that such a description is appropriate.

Neither does a cascade imply a multiplicative process. For

each particular case we need to provide a dynamical mech-

anism that implements both the cascade and the transition

multipliers. In three-dimensional Navier-Stokes turbulence,

the basic transport of energy to smaller scales and to higher

gradients is vortex stretching. The differential strengthen-

ing and weakening of the vorticity under axial stretching and

compression also provide a natural way of introducing the

self-similar transition probabilities of the local dissipation.

Examples of non-intermittent cascades abound. Forced

two-dimensional turbulence is dominated by an inverse en-

ergy cascade to larger scales, which is not intermittent. Con-

versely, we have already mentioned that the vorticity in de-

caying two-dimensional turbulence gets concentrated into

stable vortex cores which eventually block the decay. The

resulting enstrophy distribution is highly intermittent, but it
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is not well described by a cascade, nor by a multifractal.

In addition, the intermittency of some systems is not a

small-scale effect in all directions. Turbulent mixing of a

passive scalar, which is the key process in turbulent heat

transfer and in the atmospheric dispersion of pollutants, is

an extremely intermittent phenomenon. The gradients of

the scalar tend to be very localized, but they concentrate in

sheets, narrow in thickness but otherwise extended. Another

problem in which intermittency is confined to large-scale

surfaces is the motion of a three-dimensional pressureless

gas, which has been used as a model for hypersonic turbu-

lence and for the large-scale evolution of dark matter in the

early universe.

In summary, the intermittent generation of extreme events

is a fascinating property of many complex systems, includ-

ing three-dimensional Navier-Stokes turbulence, which in-

terferes, sometimes strongly, with their description by sim-

ple cascade models. It has different roots in different sys-

tems, but significant advances have been made in its quan-

titative kinematic analysis. In some cases we also have a

qualitative understanding of the underlying physical pro-

cesses. But in very few cases do we understand it well

enough to make quantitative predictions.
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