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Recent developments on wall-bounded turbulence

Javier Jim énez

Abstract. The study of turbulence near walls has experienced a renaissance in the last decade, in
part because of the availability of high-quality numericalsimulations. The viscous and buffer layers
over smooth walls are now fairly well understood. They are essentially independent of the outer flow,
and there is a family of numerically-exact nonlinear structures that predict well many of the best-known
characteristics of the wall layer, such as the intensity andthe spectra of the velocity fluctuations, and
the dimensions of the dominant structures. Much of this progress was made possible by the increase
in computer power that made the kinematic simulations of thelate 1980s cheap enough to undertake
conceptual dynamical experiments. We are today at the earlystages of simulating the logarithmic layer.
A kinematic picture of the various processes present in thatpart of the flow is beginning to emerge, and it
is leading to a rough dynamical understanding. Some of it, surprisingly, in terms of linear models. Many
processes mimic those in the buffer layer, but in an averagedLES sense, rather than applied to individual
structures. The paper discusses the present status of our understanding of this region, and possible future
developments.

Desarrollos recientes sobre la turbulencia de pared

Resumen. El estudio de la turbulencia parietal ha renacido en la última década, debido en parte a la
aparición de simulaciones numéricas de alta calidad. Lascapas viscosas y tampón cercanas a la pared se
entienden hoy dı́a bastante bien. Esencialmente son independientes del flujo exterior, y existe una familia
de soluciones no lineales a la ecuaciones del flujo, numéricamente exactas, que predicen adecuadamente
muchas de las caracterı́sticas más conocidas de esta capa parietal, tales como la intensidad y los espectros
de las fluctuaciones de velocidad, o las dimensiones de las estructuras dominantes. Una gran parte de estos
avances fue posible gracias al aumento de la potencia de los ordenadores, que hizo que las simulaciones
cinemáticas de los años 1980 se abarataran hasta permitirexperimentos dinámicos conceptuales unos
años más tarde. Hoy dı́a estamos iniciando las primeras simulaciones de la capa logarı́tmica. Esto nos
ha proporcionado un esbozo cinemático de los distintos procesos de esa región del flujo, y una primera
aproximación a su dinámica; sorprendentemente, usando en algunos casos modelos lineales. Muchos de
los procesos recuerdan a los de la capa tampón, pero en un sentido promediado, en vez de aplicados a
estructuras individuales. Este artı́culo discute el estado actual de nuestra comprensión de esta parte del
flujo, y los probables desarrollos futuros.

1 Introduction

Any paper on turbulence in a mathematical journal has to start with a disclaimer, because it deals with
chaotic solutions to the Navier–Stokes equations, for which existence and uniqueness results are mostly
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unavailable. We will restrict ourselves here to the incompressible case, for which the equations of motion
are,

∂tu + u∇u + ρ−1 ∇p = ν∇2u, (1)

∇ · u = 0, (2)

whereu is the vector velocity,p is the pressure,ρ is the fluid density, assumed constant, andν the kinematic
viscosity.

Even in the absence of proof, there is overwhelming experimental and theoretical evidence that the
behaviour of fluids is well described by (1)–(2) for scales larger than the mean free path between molecular
collisions,λg. The smallest active scale of a turbulent flow is, at least in the mean, the Kolmogorov viscous
scaleη [53], which is at least of orderO(Re1/4λg) for a gas. The Reynolds numberRe = u′Lε/ν is given
in terms of the root-mean-square intensity of the velocity fluctuationsu′, and of the integral scale of the
largest eddiesLε. It measures the scale ratio between the largest and the smallest turbulent scales, and it
is typically of the order of thousands, or millions. It is then always true thatη ≫ λg, and that turbulent
flows are described almost everywhere by (1)–(2). There are theoretical reasons to suspect that scales of
the order ofλg may appear locally and intermittently [28], but the same arguments show that they should
not influence any low-order integral quantities such as the energy or the enstrophy. This is confirmed by
experiments.

We will therefore not worry here about existence problems, or even about the question of turbulence
in general. The paper deals with the features that distinguish sheared turbulence in the neighbourhood of
walls from free shear flows, and we will see that those differences are mostly restricted to relatively large
structures, for which intermittency has little influence.

Wall-bounded turbulence includes pipes, channels and boundary layers. We will restrict ourselves to
cases with little or no longitudinal pressure gradients, since otherwise the flow tends to separate, and to
resemble the free shear case. It was in attached wall-bounded flows where turbulence was first studied
scientifically [16, 12], but they remain to this day worse understood than homogeneous or free-shear flows.
That is in part because what is sought in both cases is different. Turbulence is a multiscale phenomenon. En-
ergy resides in the largest eddies, but it cannot be dissipated until it is transferred to the smaller scales where
viscosity can act. The classical conceptual framework for that process is the self-similar cascade proposed
in [46], which basically assumes that the transfer is local in scale space, with no significant interactions
between eddies of very different sizes. From that model, andfrom energy conservation arguments, Kol-
mogorov [35] derived how energy is distributed among the inviscid eddies in the ‘inertial’ range of scales
of statistically homogeneous flows. He also computed the viscous scale that we have mentioned above,
where the energy is finally dissipated, and where the inertial cascade ends. The resulting energy spectrum,
although now recognized as only an approximation, describes well the experimental observations, not only
for isotropic turbulence, but also for small-scale turbulence in general. A sketch can be found in figure 1(a).

Isotropic theory gives no indication of how energy is fed into the turbulent cascade. In shear flows, the
energy source is the gradient of the mean velocity. The mechanism is the interaction between that gradient
and the average momentum fluxes carried by the velocity fluctuations [53]. In free shear flows, such as jets
or mixing layers, this leads to a large-scale instability ofthe mean velocity profile [9], and to large-scale
eddies with sizes of the order of the flow thickness. Those ‘integral’ scales contain most of the energy. The
subsequent transfer to the smaller eddies is thought to be essentially similar to the isotropic case.

The mean velocity profiles of wall-bounded flows, such as pipes or boundary layers, are not unstable in
the same way as the free shear cases, although we will see later that the energy of linear perturbations can
still grow. Wall-bounded turbulence is consequently a weaker phenomenon. While the velocity fluctuations
in a jet can easily reach 15-20% of the mean velocity differences, they rarely exceed 5% in a boundary layer.
Wall-bounded flows are however of huge technological importance. Probably half of the energy being spent
worldwide to move fluids through pipes and canals, or to move vehicles through air or through water, is
dissipated by turbulence in the immediate vicinity of the wall.

Wall-bounded flows are also interesting because they force us to face squarely the role of inhomogeneity.
This can be seen in figure 1(b) which is the equivalent of figure1(a) for a wall-bounded turbulent flow.
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Figure 1. Spectral energy density, kE(k). (a) In isotropic turbulence, as a function of the isotropic
wavelength λ = 2π/|k|. (b) In a numerical turbulent channel [18] with half-width h+ = 2000, plotted
as a function of the streamwise wavelength λx, and of the wall distance y. The shaded contours
are the density of the kinetic energy of the velocity fluctuations, kxEuu(kx). The lines are the
spectral density of the surrogate dissipation, νkxEωω(kx), where ω are the vorticity fluctuations.
At each y the lowest contour is 0.86 times the local maximum. The horizontal lines are y+ = 80
and y/h = 0.2, and represent conventional limits for the logarithmic layer. The diagonal is λx = 5y.
The arrows indicate the implied cascades.

Each horizontal section of this figure is equivalent to the spectra in figure 1(a). The energy is again at large
scales, while the dissipative eddies are smaller. In this case, however, the size of the energy-containing
eddies changes with the distance to the wall, and so does the range of scales over which the energy has to
cascade. The eddy sizes containing most of the energy at one wall distance are in the midst of the inertial
cascade when they are observed farther away from the wall. The Reynolds number, defined as the scale
disparity between energy and dissipation at some given location, also changes with wall distance. The main
emphasis in wall turbulence is not on the inertial energy cascade, but on the interplay between different
scales at different distances from the wall.

Models for wall-bounded turbulence also have to deal with spatial fluxes that are not present in the ho-
mogeneous case. The most important ones are those of momentum. Consider a turbulent channel, driven by
a pressure gradient between infinite parallel planes, and decompose the flow quantities into mean values and
fluctuations with respect to those means. Denote byU , V andW the mean velocities along the streamwise,
wall-normal and spanwise directions,x, y andz, and the corresponding fluctuations by lower-case letters.
Using streamwise and spanwise homogeneity, and assuming that the averaged velocities are stationary, the
mean streamwise momentum equation is

∂y〈uv〉 + ρ−1 ∂xP = ν∂yyU, (3)

where the average〈·〉 is conceptually defined over many equivalent independent experiments. Streamwise
momentum is fed into the channel by the mean pressure gradient, ∂xP , which acts over its whole cross
section. It is removed only at the wall, by viscous friction.Momentum has to flow from the centre to
the wall, carried that way by the averaged momentum flux of thefluctuations,−〈uv〉, which is called the
kinematic Reynolds stress. Reynolds stresses reside in eddies of roughly the same scales as the energy,
and it is clear from figure 1(b) that the sizes of the stress-carrying eddies change as a function of the wall
distance by as much as the scale of the energy across the inertial cascade. This implies that momentum is
transferred in wall-bounded turbulence by an extra spatialcascade. Momentum transport is present in all
shear flows, but the multiscale spatial cascade is characteristic of very inhomogeneous situations, such as
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wall turbulence, and complicates the problem considerably.
This paper is both a review and a prospective. In the next section we outline the classical theory of

wall-bounded flows, and define the different flow regions. In section 3 we review the current structural
understanding of the near-wall viscous layers, including recent work on equilibrium exact solutions to the
equations of motions, and how they are related to turbulence. This is the review part of the paper, and it can
be considered as relatively well established. The remaining sections deal with the outer layers, about which
less is known, and it is mostly a road map of what, in the opinion of the author, would need to be done in
the next few years to complete our knowledge of those regions.

2 The classical theory of wall-bounded turbulence

The wall-normal variation of the length of the energy cascade divides the flow into several distinct regions.
Wall-bounded turbulence over smooth walls can be describedby two sets of scaling parameters [53]. Vis-
cosity is important near the wall, and the units for length and velocity in that region are constructed with
the kinematic viscosityν and with the friction velocityuτ = (τw/ρ)1/2, which is based on the shear stress
at the wallτw, and on the fluid densityρ. Magnitudes expressed in those ‘wall units’ are denoted by+

superscripts. There is no scale disparity in this region, asseen in figure 1(b), because most large eddies are
excluded by the presence of the impermeable wall. The energyand the dissipation are at similar sizes. If
y is the distance to the wall,y+ is a Reynolds number for the size of the structures, and it is never large
within the viscous layer, which is typically defined at most as y+ . 150 [41]. It is conventionally divided
into a viscous sublayer,y+ . 5, where viscosity is dominant, and a ‘buffer’ layer in which both viscosity
and inertial effects should be taken into account.

Away from the wall the velocity also scales withuτ , because the momentum equation requires that
the Reynolds stress,−〈uv〉, can only change slowly withy to compensate for the pressure gradient. This
uniform velocity scale is the extra constraint introduced in wall-bounded flows by the momentum transfer.
The length scale in the region far from the wall is the flow thicknessh. In most of the examples in this
paper,h will be the semi-channel height, from the wall to the centralplane. Between the inner and the outer
regions there is an intermediate layer where the only available length scale is the wall distancey.

Both the constant velocity scale across the intermediate region, and the absence of a length scale other
thany, are only approximations. It will be seen below that large-scale eddies of sizeO(h) penetrate to
the wall, and that the velocity does not scale strictly withuτ even in the viscous sublayer. However,
if those approximation are accepted, it follows from symmetry arguments that the mean velocity in this
‘logarithmic’ layer is

U+ = κ−1 log y+ + A. (4)

This forms agrees well with experimental evidence, with an approximately universal Kármán constant,
κ ≈ 0.4, but the theoretical argument has been repeatedly challenged, and a short critical discussion will be
included in section 4.1.

Equation (4) does not extend to the wall, and the intercept constantA depends on the details of the
viscous near-wall region. For smooth walls,A ≈ 5.

The viscous, buffer, and logarithmic layers are the most characteristic features of wall-bounded flows,
and they constitute the main difference between those flows and other types of turbulence.

The viscous and buffer layers are extremely important for the flow as a whole. The ratio between the
inner and the outer length scales is the friction Reynolds number,h+, which ranges from 200 for barely
turbulent flows, to5 × 105 for large water pipes. In the latter, the near-wall layer is only about3 × 10−4

times the pipe radius, but it follows from (4) that, even in that case, 40% of the velocity drop takes place
belowy+ = 50. Because there is relatively little energy transfer among layers, except in the viscous region,
those percentages also apply to where the energy is dissipated. Turbulence is characterized by the expulsion
towards the small scales of the energy dissipation, away from the large energy-containing eddies. In the
limit of infinite Reynolds number, this is believed to lead toa non-differentiable velocity field. In wall-
bounded flows that separation occurs not only in the scale space for the velocity fluctuations, but also in the
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shape of the mean velocity profile for the momentum transfer.The singularities are expelled both from the
large scales, and from the centre of the flow towards the logarithmic layers near the walls.

Because of this ‘singular’ nature, the near-wall layer is not only important for the rest of the flow, but it is
also largely independent from it. That was for example shownby numerical experiments in [26], where the
outer flow was artificially removed above a certain wall distanceδ. The near-wall dynamics was essentially
unaffected as long asδ+ & 60.

The near-wall layer is relatively easy to simulate numerically, because the local Reynolds numbers are
low, but it is difficult to study experimentally, because it is usually very thin in laboratory flows. Its modern
study began experimentally in the 1970’s [31, 38], but it gotits strongest impulse with the advent of high-
quality direct numerical simulations in the late 1980’s andin the 1990’s [32]. We will see below that it is
one of the turbulent systems about which most is known.

The logarithmic law is located just above the near-wall layer, and it is also unique to wall turbulence.
Most of the velocity difference that does not reside in the near-wall region is concentrated in the logarithmic
layer, which extends experimentally up toy ≈ 0.2h (figure 1b). It follows from (4) that the velocity
difference above the logarithmic layer is only 20% of the total whenh+ = 200, and that it decreases
logarithmically as the Reynolds number increases. In the limit of infinite Reynolds number, all the velocity
drop is in the logarithmic layer.

The logarithmic layer is an intrinsically high-Reynolds number phenomenon. Its existence requires
at least that its upper limit should be above the lower one, sothat 0.2h+ & 150, andh+ & 750. The
local Reynolds numbersy+ of the eddies are also never too low. The logarithmic layer has been studied
experimentally for a long time, but numerical simulations with even an incipient logarithmic region have
only recently become available [4, 18, 14]. It is much worse understood than the viscous layers.

3 Models for the buffer layer

The region belowy+ ≈ 100 is dominated by coherent streaks of the streamwise velocityand by quasi-
streamwise vortices. The former are an irregular array of long(x+ ≈ 1000) sinuous alternating streamwise
jets superimposed on the mean shear, with an average spanwise separation of the order ofz+ ≈ 100 [51].
The quasi-streamwise vortices are slightly tilted away from the wall, and stay in the near-wall region only
for x+ ≈ 200. Several vortices are associated with each streak [24], with a longitudinal spacing of the order
of x+ ≈ 400. Most of them merge into disorganized vorticity outside theimmediate neighbourhood of the
wall [47].

It was proposed soon after they were discovered that streaksand vortices were involved in a regeneration
cycle in which the vortices were the results of an instability of the streaks [52], while the streaks were
caused by the advection of the mean velocity gradient by the vortices [7, 31]. Both processes have been
documented and sharpened by numerical experiments. For example, disturbing the streaks inhibits the
formation of the vortices, but only if it is done betweeny+ ≈ 10 andy+ ≈ 60 [26], suggesting that it
is predominantly between those two levels that the regeneration cycle works. There is a substantial body
of numerical [17, 57, 49] and analytic [42, 29] work on the linear instability of model streaks. It shows
that streaks are unstable to sinuous perturbations associated with inflection points of the distorted velocity
profile, whose eigenfunctions correspond well with the shape and location of the observed vortices. The
model implied by these instabilities is a time-dependent cycle in which streaks and vortices are created,
grow, generate each other, and eventually decay. Reference[26] discusses unsteady models of this type,
and gives additional references.

Although the flow in the buffer layer is clearly chaotic, the chaos is not required to explain the turbulence
statistics. Simulations in which the flow is substituted by an ordered ‘crystal’ of identical ‘minimal’ sets of
structures [24] reproduce the correct statistics (figure 2). In a further simplification, that occurred at roughly
the same time as the previous one, nonlinear equilibrium solutions of the three-dimensional Navier–Stokes
equations were obtained numerically, with characteristics that suggested that they could be useful in a
dynamical description of the near-wall region [39]. Other such solutions were soon found for plane Couette
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Figure 2. Profiles of the root-mean-square velocity fluctuations. Simple lines are a full channel
with h+ = 180 [32]; △ , a minimal channel with h+ = 180 [24]; ◦ , a permanent-wave
autonomous solution [27]. , streamwise velocity; , wall-normal velocity.

flow [39, 60], plane Poiseuille flow [54, 59, 60], and for an autonomous wall flow [27]. All those solutions
look qualitatively similar [58, 29], and take the form of a wavy low-velocity streak flanked by a pair of
staggered quasi-streamwise vortices of alternating signs, closely resembling the spatially-coherent objects
educed from the near-wall region of true turbulence.

In those cases in which the stability of the equilibrium solutions has been investigated, they have been
found to be saddles in phase space, with few unstable directions. The flow could therefore spend a substan-
tial fraction of its lifetime in their neighbourhood,because its orbit would move slowly in the neighbourhood
of the fixed point. Exact limit cycles, and heteroclinic orbits based on these fixed points, have been found
numerically [30, 55], and several reduced dynamical modelsof the near-wall region have been formulated
in terms of low-dimensional projections of such solutions [6, 50, 57].

The fixed-point and limit-cycle solutions found by different authors were recently reviewed and ex-
tended in [23]. It turns out that they can be classified into ‘upper’ and ‘lower’ branches in terms of their
mean wall shear, and that both branches have very different profiles of their fluctuation intensities. The
‘upper’ solutions have relatively weak sinuous streaks flanked by strong vortices. They consequently have
relatively weak root-mean-square streamwise-velocity fluctuations, and strong wall-normal ones, at least
when compared to those in the lower branch. Their mean and fluctuation intensity profiles are reminiscent
of experimental turbulence [27, 60], as shown in figure 2, andso are several other properties. For example,
the range of spanwise wavelengths in which the nonlinear solutions exist is always in the neighbourhood
of the observed spacing of the streaks of the sublayer [23]. ‘Lower’ solutions have stronger and essentially
straight streaks, and much weaker vortices. Their statistics are very different from turbulence.

The near-wall statistics of full turbulent flows, when compiled over scales corresponding to a single
streak and to a single vortex pair, are independent of the Reynolds number, and agree reasonably well with
those of the fixed points, although there is a noticeable contribution from unsteady bursting [23]. When
they are compiled over much larger boxes, however, the intensity of the fluctuations does not scale well in
wall units, even very near the wall [13]. That effect is due tolarge outer-flow velocity fluctuations reaching
the wall, and it is unrelated to the structures being considered in this section.

This is shown in figure 3, which contains two-dimensional spectral energy densities of the streamwise
velocity,kxkzEuu(kx, kz) in the buffer layer, displayed as functions of the streamwise and spanwise wave-
lengths. The three spectra in the figure correspond to turbulent channels at different Reynolds numbers.
They differ from each other almost exclusively in the long and wide structures represented in the upper-
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Figure 3. Two-dimensional spectral energy density of the streamwise velocity in the near-wall
region (y+ = 15), in terms of the streamwise and spanwise wavelengths. Numerical channels
[2, 4, 18]. , h+ = 547; , 934; , 2003. Spectra are normalized in wall units,
and the two contours for each spectrum are 0.125 and 0.625 times the maximum of the spectrum
for the highest Reynolds number. The heavy straight line is λz = 0.15λx, and the heavy dots are
λx = 10h for the three cases.

right corner of the spectrum, whose sizes are of the order ofλx × λz = 10h × h. Those spectra are fairly
well understood [2, 22, 18]. The lower-left corner containsthe structures discussed in this section, which
are very approximately universal and local to the near-walllayer. The larger structures in the upper edge of
the spectra, and specially those in the top-right corner, extend into the logarithmic layer, scale in outer units,
and correspond approximately to the ‘attached eddies’ thatwere proposed long ago by Townsend [56].

4 The logarithmic layer

We noted in section 2 that the logarithmic layer is expensiveto compute. The first simulations with an
appreciable logarithmic region have only recently appeared, but even in them the relevant range of wall
distances is short. In figure 1(b), for example,h+ = 2000, and the upper and lower logarithmic limits are
approximatelyy+ = 400 andy+ = 150. Even so, those simulations, as well as simultaneous advances in
experimental methods, have greatly improved our understanding of the kinematics of the structures in this
region, and are beginning to hint at their dynamics.

Before considering those results, it is important to remarkthat the meaning of the word ‘model’ is
probably always going to be different in the logarithmic andin the buffer layer. Near the wall, the local
Reynolds numbers are low, and the structures are smooth and essentially analytic. It is then possible to
speak of ‘objects’, and to write differential equations fortheir behaviour. Above the buffer layer, both
things are harder to do. In the logarithmic layer, the integral scale isLε ≈ y, the r.m.s. velocity fluctuations
areO(uτ ), and the turbulent Reynolds number isRe = O(y+). The definition of the outer layer,y+ ≫ 1,
implies that most of its structures have large internal Reynolds numbers, and that they are most probably
turbulent themselves. There is presumably a cascade connecting the energy-containing structures with
the dissipative scales, and their velocity fields can be expected to have nontrivial algebraic spectra and
non-smooth geometries. Such objects ‘have no shape’, and can only be described statistically. They are
‘eddies’, rather than ‘vortices’, because turbulent vorticity is always at the viscous Kolmogorov length
scaleη, separated from the energy-containing eddies by a scale ratio Lε/η ≈ Re3/4. An example of such
an object is given below in figure 5.
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While the models discussed above for the buffer layer are in the realm of direct numerical simulations
(DNS), and of classically identifiable structures, in the outer layers we are in the domain of large-eddy
simulations (LES), and of statistical modelling, in the sense that we cannot probably find simple structures
including all the scales of the flow. The most that we can expect is a simple description of the statistics
of the larger scales, coupled to a stochastic model for the turbulent cascade ‘underneath’. This of course
does not mean that the logarithmic layer can not be DNSed, andthis author firmly believes that such direct
simulations will be required before this part of the flow is understood, but the tools of choice are different.
We have seen above that DNS has been the driving force behind the revival of turbulence research in the
past few decades and that, for the buffer layer, it has also been the predominant technique. Experiments are
difficult very near the wall, while simulations are relatively simple. Experimental results in that region are
few, and, whenever a disagreement is found between numericsand experiments, it can probably be assumed
that the simulations are right. The same is not true in the logarithmic layer. It is still true that DNS provides
an unprecedented level of detail on the flow, and that it allows conceptual experiments that are difficult
to carry out in a wind tunnel, but outer-layer experiments are plentiful and reliable. Any model of those
regions has to reconcile the results of both techniques.

Perhaps the first new information provided by the numerics onthe logarithmic layer was spectral. It
had been found experimentally that there are very large scales in the outer regions of turbulent boundary
layers [20, 33], and DNS provided information about their two-dimensional spectra, and about their wall-
normal correlations [2, 4]. The longest scales are associated with the streamwise velocity componentu. Its
spectral density in the logarithmic layer has an elongated shape along the lineλ2

z = yλx, while the two
other velocity components are more isotropic (see figure 4).

When three-dimensional flow fields eventually became available, it was found that there is a self-similar
hierarchy of compact ejections extending from the buffer layer into the outer flow, within which the coarse-
grained dissipation is more intense than elsewhere [5]. They correspond to the isotropic spectra ofv in
figure 4(a). When the flow is conditionally averaged around them, these ejections are seen to be associated
with extremely long, conical, low-velocity regions in the logarithmic layer [5]. The intersection of those
cones with the plane defined by a given wall distance is parabolic, and explains the quadratic behaviour
of the spectrum ofu. These structures are not only statistical constructs. Individual cones are observed as
low-momentum ‘ramps’ in streamwise sections of instantaneous flow fields [36], and one of them can be
seen in the streamwise velocity isosurface in figure 5.

When the cones reach heights of the order of the flow thickness, they stop growing, and become long
cylindrical ‘streaks’, similar to those of the sublayer, but with spanwise scales of2 − 3h. They are fully
turbulent objects. Neither in simulations nor in experiments has it been possible to determine a maximum
length for those ‘global modes’. They cross numerical boxesof length25h (see figures 4 and 5), and, in
experiments, they are of the same order as the wind-tunnel dimensions [19]. The overall arrangement of
the ejections and cones is reminiscent of the association ofvortices and streaks in the buffer layer, but at a
much larger scale.

The wall-normal dimension of these streaks is of the order ofthe flow thickness, and they span the
distance from the central plane to the wall [2, 4]. Their near-wall footprints are seen in the spectra of the
buffer layer as the ‘tails’ in figure 3, and account [18] for the experimentally-observed Reynolds number
dependence of the intensity of the near-wall velocity fluctuations [13]. Less easily explained is the more
controversial Reynolds-number dependence ofu′+ in the logarithmic layer, initially also observed in [13],
but there is also evidence of its association with the large-scale streaks. The dependence disappears when
the spectral energy associated with the global streaks is removed (see figure 6). That would imply that the
velocity fluctuations in the large streaks do not scale withuτ , which is indeed suggested by the analysis of
both experimental and numerical data [4]. That issue can however be considered as open.

Since we saw above that the sublayer streaks originate from the advection of the mean shear by cross-
stream perturbations, which is a linear process, there is some hope that a linear model could also capture the
formation of the outer-layer streaks. The mean velocity profile of turbulent channels is linearly stable [45],
but it has been known for some time that even stable flows can lead to large transient energy amplifications,
because the evolution operator of the linearized Navier–Stokes equations is not self-adjoint [15, 10, 43].

194



Wall-bounded Turbulence

10
−1

10
0

10
1

10
−1

10
0

      λ
x
/h

λ z/h

Figure 4. Two-dimensional spectral densities of the streamwise and transverse velocities in the
logarithmic region, y/h = 0.15, in terms of the streamwise and spanwise wavelengths. Numerical
channel with h+ = 2000 [18]. , kxkzEuu; , kxkzEvv; , kxkzEww. The contour
for each spectra is 0.25 times its maximum. The dashed straight line is λz = (yλx)1/2. The dotted
one is λz = λx. The heavy dot is λz = λx = y.

Figure 5. Isosurface of the streamwise fluctuation velocity, u+ = −2, in a computational channel
with h+ = 550 [2]. The flow is from left to right, and the box shows the full semi-channel height,
and the full periodic streamwise length of the computational box, 25h. Only a narrow strip of width
3.15h is shown. Figure courtesy of O. Flores.
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Figure 6. Root-mean-square intensity of the fluctuations of the streamwise velocity in channels
at different Reynolds numbers. Data and symbols as in figure 3. (a) Full velocity fluctuations. (b)
With the energy removed for structures longer than λx = 6h, and wider than λz = h.

Simple linearized analysis of a uniform shear shows that thelong-time asymptotic state of any localized
perturbation is au-streak, but it provides no wavelength-selection mechanism. Viscosity provides a length
scale, and the mean profile of real shear flows determines a wall-normal modal structure. The key modelling
assumption appears to be to use the samey-dependent eddy viscosity required to maintain the experimental
mean profile [44]. Note that this implies that the resulting model applies to averaged eddies, rather than to
individual structures. The analysis can be found in [3]. It turns out that there are two sets of wavelengths
for which the total energy is most amplified, with eigenfunctions that are localized at the two locations
where the viscosity does not depend ony. Near the wall, where the viscosity is mostly molecular, they
have spanwise wavelengths and eigenfunctions similar to the observed sublayer streaks. Near the central
plane, whereνT ≈ uτh is also roughly uniform, they are large-scale streaks with spanwise wavelengths
of the order of the observed3h, and wall-normal eigenfunctions that agree well with the dominant proper
orthogonal decomposition eigenmodes of the streamwise velocity at those wavelengths.

We know less about how the ejections are created, but linear analysis also gives some information on
them. Although the linear transient growth of the streamwise velocity is by now well established, it is less
often realized that, in the same way that transverse perturbations createu-streaks, anyu perturbation that is
not infinitely long can transfer energy into the transverse velocity components. In fact, the same transient-
growth analysis giving the large-scale streaks contains nontrivial amplifications forv andw. This would in
principle provide the possibility of a linear cycle in whichv ejections create streaks by extracting energy
from the mean shear, while the streaks in turn create ejections. Unfortunately the wavelengths that are most
amplified foru are not the same ones that are most amplified forv. The former are streaks elongated along
x, while the most amplifiedv andw are roughly isotropic in the wall-parallel plane. This agrees with the
spectral evidence in figure 4, but means that nonlinearity would be required to match the wavelengths, and
to close the cycle. It is however easy to visualize a process by which an ejection creates a strong streak,
whose enveloping shear layer becomes unstable and creates new, shorter ejections. In fact, we have seen
that compact ejections can be identified at all scales in the logarithmic and outer layers, both numerically
and experimentally, and that they are associated with streaks. It is known, from the analysis of their relative
lengths and lifetimes, that the observed ejections cannot be the origin of the full length of the streak to
which they are associated, and that some causal link from streaks to ejections is also required [3].

The scenario just described is mostly derived from simulations, and from the linear analysis of the
averaged equations of motion. A different scenario has beenproposed from the observation of streamwise
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sections of experimental flow fields. In it, the basic object is a hairpin vortex growing from the wall, whose
induced velocity creates the low momentum ramps mentioned above [1]. In the model, which was motivated
by the behaviour of hairpin vortices in the numerical simulation of a particular laminar velocity profile [63],
the hairpins regenerate each other, creating vortex packets that are responsible for the very long observed
streaks [11]. While the two models look very different at first sight, they can probably be reconciled to a
large extent. Vortex packets would correspond to the instability waves on the shear layer around the streak,
and the strengthening of the streak by the vortices would correspond to the vortex regeneration process. In
fact, preliminary analysis of the averaged flow field in the neighbourhood of ejections suggests that, while
the primary streak instability near the wall is sinuous, thedominant modes away from the wall may be
varicose, leading in the mean to symmetric hairpins. Varicose perturbations to model streaks have been
studied less often than sinuous ones, because the observations of the sublayer streaks clearly suggest a
sinuous instability, but, whenever both symmetries have been studied in the same setting, their instability
eigenvalues have usually turned out to be of the same order [29].

The main difference between the two models is their respective emphasis on vortices and eddies, al-
though that might be largely a matter of notation, perhaps influenced by the coarser resolution of most
experiments when compared with simulations. An apparentlymore serious difference is the treatment of
the effect of the wall. The ‘numerical’ model emphasizes theeffect of the local velocity shear, rather than
the presence of the wall, while the ‘experimental’ one appears to require the formation of the hairpins in the
buffer region. That could again be a matter of notation, but it is more likely due to the reliance of the ex-
perimental model on laminar numerical simulations, using molecular viscosity [63]. There is little question
that large structures in turbulence feel the effect of smaller ones [44]. While the modelling of this random-
izing effect as a simple eddy viscosity can be criticized, that model should be much closer to reality than
the much weaker molecular dissipation of a laminar environment. When the linear evolution of an initially
compact ejection is analysed using the eddy viscosity mentioned above, the structures created near the wall
do not grow very much, and most ejections observed at a given wall distance have to be created ‘locally’
[5]. Indeed, numerical experiments in which the viscous wall cycle is artificially removed have outer-flow
ejections and streaks that are essentially identical to those above smooth walls [14]. Experimentally, this is
equivalent to the classical observation that the outer layers in turbulent boundary layers are independent of
wall roughness [21].

At wall distances between the inner and the outer layers, linear analysis does not provide a single
dominant most-amplified wavelength, because the eddy viscosity has no single absolute length scale. The
analysis of the initial value problem in that region resultsin self-similar structures that grow linearly with
time. This, however, is probably the most interesting part of the flow, because self-similarity is the most
characteristic feature of turbulence, and because the logarithmic layer is the only part of wall-bounded
turbulence with the potential of supporting an indefinitelylarge scale ratio. Whether the linearized equations
can say something about this region, or whether nonlinearity is required at all levels, can only be speculated
at the moment.

4.1 The logarithmic velocity profile

Before leaving completely the subject of the logarithmic layer, it might be of interest to spend a few para-
graphs on the question of the logarithmic velocity profile in(4). That equation was one of the first quanti-
tative theoretical results obtained in turbulence, and it was a genuine prediction. It is difficult to distinguish
empirically a power law with a small exponent from a logarithm, and the early engineering correlations
for the experimental mean velocities in boundary layers andpipes used power laws, with exponents in the
range0.15 − 0.2. On the other hand, power laws are theoretically difficult tojustify, because dimensional
analysis shows that an equation of the type

U = Const.yξ, (5)

either requires a characteristic scale for both the velocity and the length, or alternatively none at all. We
have seen thatuτ acts as a uniform velocity scale in wall-bounded flows, but itis unclear whether (5) should
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be written, in the intermediate region, in terms of the viscous length scale, or of the flow thickness. The
logarithmic law was formulated as a velocity profile that could be expressed in terms of any length scale.
While there have been many derivations, most of them are equivalent to the observation that, if there is no
available length scale, the only dimensionally possible form for the mean velocity gradient is

∂U

∂y
=

uτ

κy
, (6)

from where (4) follows by integration. The argument is usually credited to Millikan [37], who actually used
the requirement that an inner solution, scaled on the viscous length, should match over a finite range ofy
another solution scaling on the flow thickness. Since the ratio h+ between the two length scales is arbitrary,
this implies that the expression for the velocity profile should work for any length scale, and leads to (6). In
fact, the argument has to be slightly more involved, as is easily seen by repeating (6) with the gradient of
U2 substituted for the gradient ofU .

Reference [40] recasts the previous argument in terms of theLie analysis of the invariances of the
equations of motion, and notes that the solutions have to be invariant to all the possible transformations. The
argument above uses the invariance of the inviscid equations to geometric stretching, which is why it can
say nothing about the choice of the dependent variable, but it is only after adding the Galilean invariance,
which applies only toU , that (6) is selected. When that is taken into account, the mean velocity can be
written as

U+ = Ũ(y/L) + a(L), (7)

which should be independent of the arbitrary length scaleL. Differentiating with respect toL now gives
(6). This argument is much closer to Millikan’s [37], who matched an inner solution of the formU+

in(y+),
to an outer one expressed in ‘defect’ form,U+

centre − U+
out(y/h). The extra additive constant in the defect

form is required for the argument.
Note that Galilean invariance makes the logarithmic profile(4) incompatible with the no-slip boundary

condition at the wall, but that the logarithm is singular at that point, and that the inviscid equations used to
derive it do not, in any case, support tangential boundary conditions.

The question of the detailed derivation of the logarithmic profile is of more than academic interest, and it
is striking that even today, almost eighty years after it wasoriginally proposed by Prandtl and Von Kármán,
the validity of (4) keeps being regularly challenged, both experimentally and theoretically. A summary of
its early history can be found in the book by Schlichting [48]. A flavour of the current controversies, that
centre on questions such as whether a scale-independent region really exist, or on which origin should be
used fory in (4), can be found in [62, 8, 61].

The main interest of the subject is however that there are variables other than the mean velocity that
also show an apparent logarithmic behaviour. Two examples,the fluctuations of the spanwise velocity and
of the pressure, are given in figure 7. The figure also includesan example that does not behave logarith-
mically, for comparison. Logarithmic variables are interesting because they are potentially singular. The
increment of such a variable across the logarithmic layer isO(log h+), and, in the limit of high Reynolds
numbers, it should grow without bound. For none of the two fluctuations plotted in figure 7 can we use
Galilean invariance to justify a logarithmic law, and it would be very interesting to understand why these
particular variables, and not others, behave in that way. There is also the question of what is actually the
law being represented in the figure. It is unclear, for example, whetherp′, p′2, or some other power behave
logarithmically. The exponent can be varied within fairly wide limits without changing the quality of the
fit.

5 Conclusions

We have briefly reviewed the present state of the understanding of the different regions of wall-bounded
turbulent flows. The dynamics of the viscous layers near smooth walls is a subject that, like most others
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Figure 7. Profiles in a turbulent channel with h+ = 2000 [18] of: , mean velocity; ,
r.m.s. spanwise velocity; , r.m.s. pressure; , r.m.s. wall-normal velocity. The two
vertical lines are y+ = 100 and y/h = 0.2, and all curves have been scaled so as to be one and
zero at those two limits.

in turbulence, is not completely closed, but which has evolved in the last two decades from empirical
observations to relatively coherent theoretical models. It is also one of the first cases in turbulence, perhaps
together with the structure of small-scale vorticity in isotropic turbulence, in which the key technique for
cracking the problem has been the numerical simulation of the flow. The reason is that the Reynolds
numbers of the important structures are low, and therefore accessible to computation, while experiments
are difficult. For example the spanwise Reynolds number of the streaks is only of the order ofz+ = 100,
which is less than a millimetre in most experiments, but we have seen that it is well predicted by the range
of parameters in which the associated equilibrium solutions exist. We have seen that the larger structures
coming from the outside flow interfere only weakly with the near-wall region, because the local dynamics
are intense enough to be always dominant. The spacing of the streaks just mentioned has been observed up
to the highest Reynolds numbers of the atmospheric boundarylayer [34].

The structures in the viscous layers have a well-defined length scale, determined by viscosity, that
allows them to be described as individual objects. In the outer layer, where the relevant length scale is the
flow thickness, we have seen that at least some of the structural properties can be described by the linear
analysis of the most amplified transient modes of the mean velocity profile. In this case there is however a
full turbulent cascade, instead of a single scale, and the eddies can only be described in a statistical sense.
The next few years will probably be dominated by modelling efforts for the logarithmic layer, where there
is no unique dominant length scale, and where self-similarly growing statistical objects should probably
substitute individual structures or modes.

In the opinion of the present author, a key contributor to further progress in this area should be numerical
simulation, in the same way as it was for the viscous layers, and for motivating the analysis of the outer
ones. The main obstacle at present is one of cost, and was shared by the original low-Reynolds number
simulations that eventually led to the understanding of thebuffer layer. The simulation in [18] took six
months on 2000 supercomputer processors. It took a similar time, twenty years before, to run the simulation
in [32] at h+ = 180. As long as each numerical experiment takes such long times,it is only possible to
observe the results, and the simulations are little more than better-instrumented laboratory experiments.

As computers improve, however, other things become possible. When the low-Reynolds number simu-
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lations of the 1980s became roughly 100 times cheaper in the 1990s, it became possible to experiment with
them in ways that were not possible in the laboratory. The series of ‘conceptual’ simulations that led to the
results in section 3 were of this kind.

The cost of simulating the logarithmic layer is beginning tobe within the reach of modern computers.
The next decade will bring it down to the level at which conceptual dynamical experiments become com-
monplace. The motivation will be both theoretical and technological. The momentum cascade across the
range of scales in the logarithmic layer will probably be thefirst three-dimensional self-similar cascade to
become accessible to computational experiments. Its simplifying feature is the alignment of most of the net
transfer along the direction normal to the wall. The main practical drive is probably large-eddy simulation,
in which the momentum transfer across scales in the inertialrange has to be modelled for the method to be
practical [25].
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