INTER-SCALE CAUSALITY IN NEAR-WALL TURBULENCE

Zengrong Hao¹ and Ricardo García-Mayoral² Department of Engineering, University of Cambridge, CB2 1PZ, UK. E-mail: r.gmayoral@eng.cam.ac.uk

This work aims to map how information is transferred between different lengthscales through the momentum equations in near-wall turbulence, with a particular focus on streamwise and spanwise lengthscales. For this we use direct simulations in streamwise-spanwise-periodic turbulent channels. In this setup, the flow can be viewed as a dynamical system where the state space variables $\phi = \{u, w, v, p\}$ are the streamwise (x), spanwise (z) and wall-normal (y) velocities and the pressure, which depend on the x- and z-wavenumbers $\mathbf{k} = (k_x, k_z)$, y, and t. The evolution equations for ϕ are the Navier-Stokes equations plus the continuity equation, which can then be written as

 $F(\phi_{\mathbf{k},y,t}) = N(\psi_{\mathbf{k}',y,t},\psi_{\mathbf{k}+\mathbf{k}',y,t}),$

where F represents the linear part of the equations and N the nonlinear terms, which are responsible for the transfer of information from other lengthscales into lengthscale **k**. The objective of this work is to quantify the relative importance of the different terms in N. The aim is to obtain results such as: w in wavelength λ_1 in combination with $\partial_z u$ in wavelength λ_2 play a significant role in the dynamics of u in wavelength λ_3 , and so forth – note that, in turn, u in wavelength λ_3 and $\partial_z u$ in wavelength λ_2 do not appear combined in the momentum equation for w in wavelength λ_1 . While intimately connected to triadic interactions, which are obtained from energy considerations, this analysis, relying instead on the momentum equations, aims to add a layer of directionality (i.e. causality) to the triple interactions.