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MULTI-AGENT REINFORCEMENT LEARNING IN FLOW MODELLING AND CONTROL

Petros Koumoutsakos
School of Engineering and Applied Sciences, Harvard University

E-mail: petros@seas.harvard.edu

What is the best way to learn fluid mechanics: by observing or by interacting with the flow field? Reinforcement Learning
(RL) caters to the later approach for the modeling and control of fluid flows. Both problems can be cast in a similar
formalism implying agents that provide either a closure or a control mechanism. Agents learn to optimize the long term
consequences of their actions to the environment resulting in policies that map states to actions. We demonstrate how this
can be a potent way of discovery of effective modeling and control strategies in turbulent flows. I will analyse success
and failures of RL in collective swimming, navigation and closures for wall bounded flows. I will argue that while RL is a
potent modality for discovery of (causal?) flow processes progress hinges on the proper incorporation of fluid mechanics
knowledge in its algorithmic components.
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INFORMATION FLOW AND BOTTOM-UP CAUSATION IN A QUASI-GEOSTROPHIC
TURBULENCE

X. San Liang1,2, Lipo Wang3, and Weipeng Li3
1Fudan University, Shanghai, China;

2 Shanghai Qizhi (Andrew C. Yao) Institute, Shanghai, China;
3Shanghai Jiaotong University, Shanghai, China.

E-mail: xsliang@fundan.edu.cn

A fundamental problem regarding the emergence of patterns in a fluid flow is how energy and information are exchanged
across scales. While energy transfer has been extensively investigated, the latter, which is believed to be more fundamental
since, in statistical physics, entropy may control the redistribution of energy, has been mostly overlooked. This latter
transfer is what we nowadays call information transfer or information flow (IF). During the past few decades, IF has
been put on a rigorous footing (beginning with [1]), with a bonus finding that causality actually can be derived from first
principles[3], other than axiomatically proposed as an ansatz. A comprehensive study with generic systems has been
fulfilled recently, with explicit formulas attained in closed forms[3]. The resulting metric of causality is invariant upon
arbitrary nonlinear transformation, indicating that it is an intrinsic physical property[4]. The principle of nil causality,
which every formalism seeks to verify in applications, turns out to be a theorem in this framework. In the linear sense, the
maximum likelihood estimator of the metric is very concise, involving only the common statistics namely covariances.
A corollary is that causation implies correlation, but not vice versa[2]. Problems such as causal graph reconstruction and
self-loop identification are made easy[5].

The above formalism has been validated with benchmark systems like baker transformation, Hénon map, Kaplan-Yorke
map, Rössler system[3], among others. It has also been applied to many real world problems in the diverse disciplines such
as climate science, neuroscience, financial economics, etc. The recent remarkable success of El Niño Modoki predition[6],
which has become a benchmark problem for the testing of AI algorithms, is such an example.

In this talk, we will present an application to the investigation of the formation of patterns out of an otherwise noisy
quasi-geostrophic flow. By inverting a three-dimensional elliptic differential operator, the model is first converted into a
low-dimensional dynamical system, where the components correspond to different time scales. The information exchange
between the scales is then computed through ensemble prediction. Two cases are distinguished: The first concerns the
emergence of coherent structures out of white noises, while the second has a basic flow in presence. It is found that in
both cases the processes are dominated by a bottom-up causation, as collective patterns emerge out of independent entities
(self-organization), but in the second case, top-down causation also plays a role at times when certain conditions are met.

Keywords: causality; information flow; multiscale interaction; self-organization; quasi-geostrophic turbulence
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MACHINE-AIDED DISCOVERY OF SIGNIFICANT REGIONS IN ISOTROPIC TURBULENCE

Miguel P. Encinar1 and Javier Jiménez1

School of Aeronautics, Universidad Politécnica de Madrid, Madrid, Spain.
E-mail: mencinar@torroja.dmt.upm.es

Even if statistics of turbulent flow fields may be homogeneous, instantaneous snapshots of the flow are inhomogeneous
at many scales. They exhibit regions where one or more observables of the flow, e.g. kinetic energy or enstrophy, are
particularly intense, and stay so for a period of time. Turbulence researchers refer to these regions as coherent structures
[7], and they have been a staple in turbulence analysis since their early observations [1]. Typically the relevance of some
measurable quantity to the flow dynamics is inferred from the equations of motion (e.g. vorticity appears in the kinetic
energy equation) and they are characterised by observing their distribution (following the example, intense vorticity is
found to be organised in intense vortices that tend to cluster together [2]).
In this work, we attempt to study regions of the flow relevant to its dynamics, reversing the classical procedure sketched
above. We take an approach similar to the one recently proposed by Jiménez [3, 4, 5], which seeks to discover features
of the flow staying as free from human bias as possible. First, an initial condition is seeded with localised perturbations,
and simulations are performed for each perturbed flow field, tracking the perturbation growth as a function of time. The
perturbations used here zero either the local velocity fluctuations or the local vorticity within a region of a given size ∆.
Some perturbations are found to grow up to 103 times more than others after one turnover, in terms of the global kinetic
energy or enstrophy of the perturbation field. Because perturbations are local in space, the procedure classifies regions of
the flow according to how much they grow when perturbed. The most ‘reactive’ regions are studied, showing that they
tend to contain strong events, either strong vortices, strong velocity perturbations, or both. We study the top 5% of the
structures that grow the most or the least, referring to them as significant or insignificant, respectively.
Large velocity perturbations (∆ > 60η) grow or not based on the contribution of the region to the turbulent kinetic energy,
whereas smaller ones (∆ < 60η) do so based on the vorticity the local flow induces in the rest of the flow field. For the
limiting size, ∆ ≈ 60η, both features are equally important for perturbation growth and thus significant regions have
more energy and enstrophy than insignificant ones. Figures (1b) and (1c) show the typical configuration of significant and
insignificant regions of the flow at size 60η, hinting that the flow in significant regions is more ‘complex’. The complexity
of the flow is characterised using a box-counting algorithm [6], which allows us to estimate the fractal dimension of the
three-dimensional distribution of enstrophy. Figure (1a) shows the estimated fractal dimension for the significant and
insignificant sets, with fractal dimensions D ≈ 1.4 and D ≈ 2.3 respectively. This suggests that intense regions of vortex
clusters are more sensitive to perturbations than the weaker vorticity layers found in insignificant regions.
This work is supported by the grant ERC-AdG-101018287, “CausT”.
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Figure 1. (a) Average box-counting for the significant (blue) and insignificant (orange) regions. The slopes are fitted to D = 2.3

(insignificant) and D = 1.4 (significant). (b,c) Example of the flow in one significant (a) and one insignificant (b) region. The red
iso-surface denotes intense enstrophy and the blue surface, intense kinetic energy. Thresholds are chosen from a percolation analysis.
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CAUSALITY IN ISOTROPIC TURBULENCE AT LOW REYNOLDS NUMBER

Xinxian Zhang1 and Javier Jiménez2
1School of Aeronautical Science and Engineering, Beihang University, PR China.

E-mail: zhangxinxian@buaa.edu.cn
2Aeronautics, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

E-mail: jjsendin@gmail.com

What kind of turbulent structures most affect the flow in homogeneous isotropic turbulence (HIT) at low Reynolds
number? How do they affect it? Even though these questions have been discussed for years, they remain open. Here, we
address whether causality analysis may provide us with new insights on them.

For our analysis, we perform a large number of three-dimensional direct numerical simulations of HIT in a 643

cubical grid, at Reynolds number Reλ ≈ 50. Following previous work in 2-D turbulence [1, 2], we modify small parts of
the flow (cells) at t = 0, monitor the effect on the flow, and define as casually significant cells those whose modification
leads to a large overall change in the flow at some later measurement time, t = tm. Our goal is to first determine whether
especially significant flow regions exist, and, second, whether they share some common characteristic. To do this, 65
basic initial turbulent flows are created, and each of them is divided into 103 cubical cells, about 12η on the side. The
flow within each cell is modified in eight different ways (4 modifications of the vorticity field, and 4 of the velocity field),
and the simulations are continued for one or two turnover times. Several definitions of ‘significance’ are used, based on
the normalized L2 and L∞ norms of the velocity and vorticity difference between the modified and unmodified flows at
t = tm: i.e., ∥∆u∥2, ∥∆u∥∞, ∥∆ω∥2, and ∥∆ω∥∞. They all measure the importance of the original cell in determining
the future behaviour of the flow as a whole. This is repeated for each cell and each kind of experimental modification, for
a total of 65× 1000× 8 = 5.2× 105 simulations. In addition, two normalizations are used for the significance: ‘absolute
significance’, defined as in ϵa(L2u) = ∥∆u∥2/∥u∥t=0

2 , and ‘relative significance’, as in ϵr(L2u) = ∥∆u∥2/∥∆u∥t=0
2 .

Norms without superscript are evaluated at t = tm. The final step is to find which ‘diagnostic’ cell properties, defined as
cell averages ⟨•⟩c at t = 0, can best be used to predict whether cells will turn out to be significant or not.

Our results indicate that especially significant regions exist in HIT at low Reynolds number. Figure 1 shows the
classification score of three different diagnostic quantities, where unity means 100% classification success, zero means
100% failure, and 0.5 is akin to a random guess. Figure 1(a), for a vorticity experiment, shows that the most sensitive
cells are in that case those with initially high enstrophy, and that their effect peaks at about half a turnover time. Figure
1(b), for a velocity experiment, shows that the diagnostic quantity in this case is high initial kinetic energy. Note that these
are not trivial results, such as that strong perturbations have strong effects, because the diagnostic ability applies to both
absolute and relative significance, especially for velocity perturbations. In general, high enstrophy and high-energy cells
do not coincide, suggesting two different types of significant flow configurations.

�

��� ���

Figure 1. Score for the classification of cells as significant or insignificant, using three different diagnostic quantities, ⟨ω2⟩c, ⟨q2⟩c,
and ⟨S2⟩c. For perturbations (a) ω → 0. (b) u → 0. Significant and insignificant regions are defined by the L2 norm of the velocity
difference, ∥∆u∥2, both as ‘absolute significance’, ϵa(L2u), or as ‘relative significance’, ϵr(L2u).
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INTER-SCALE CAUSALITY IN NEAR-WALL TURBULENCE

Zengrong Hao1 and Ricardo García-Mayoral2

Department of Engineering, University of Cambridge, CB2 1PZ, UK.
E-mail: r.gmayoral@eng.cam.ac.uk

This work aims to map how information is transferred between different lengthscales through the momentum equations in
near-wall turbulence, with a particular focus on streamwise and spanwise lengthscales. For this we use direct simulations
in streamwise-spanwise-periodic turbulent channels. In this setup, the flow can be viewed as a dynamical system where
the state space variables φ = {u,w, v, p} are the streamwise (x), spanwise (z) and wall-normal (y) velocities and the
pressure, which depend on the x- and z-wavenumbers k = (kx, kz), y, and t. The evolution equations for φ are the
Navier-Stokes equations plus the continuity equation, which can then be written as

F (φk,y,t) = N(ψk′,y,t, ψk+k′,y,t),

where F represents the linear part of the equations and N the nonlinear terms, which are responsible for the transfer of
information from other lengthscales into lengthscale k. The objective of this work is to quantify the relative importance of
the different terms in N . The aim is to obtain results such as: w in wavelength λ1 in combination with ∂zu in wavelength
λ2 play a significant role in the dynamics of u in wavelength λ3, and so forth – note that, in turn, u in wavelength λ3
and ∂zu in wavelength λ2 do not appear combined in the momentum equation for w in wavelength λ1. While intimately
connected to triadic interactions, which are obtained from energy considerations, this analysis, relying instead on the
momentum equations, aims to add a layer of directionality (i.e. causality) to the triple interactions.
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CAUSALITY IN TURBULENT ENTRAINMENT OF A PASSIVE SCALAR
IN FREE-SHEAR FLOWS

G. Boga, E. Stalio and A. Cimarelli
DIEF, University of Modena and Reggio Emilia, 41125 Modena, Italy.

E-mail: gabriele.boga@unimore.it; enrico.stalio@unimore.it; andrea.cimarelli@unimore.it

Numerical experiments on the turbulent entrainment and mixing of scalars in an incompressible temporal planar jet flow
[1] have been performed [2]. These simulations are based on a scale decomposition of the velocity field, thus allowing
the establishment from a dynamic point of view of the evolution of different scalar fields under the separate action of
large-scale coherent motions and small-scale fluctuations, see Figure 1(a). This is the main novelty that differentiates the
present work from other studies dealing with the analysis of flow realization snapshots, e.g. [3], [4] and [5]. The turbulent
spectrum can be split into active and inactive flow structures. The large-scale engulfment phenomena actively prescribe
the mixing velocity by amplifying inertial fluxes and by setting the area and the fluctuating geometry of the scalar interface
[6]. On the contrary, small-scale isotropic nibbling phenomena are essentially inactive in the mixing process. It is found
that the inertial mechanisms initiate the process of entrainment at large scales to be finally processed by scalar diffusion
at the molecular level. This last stage does not prescribe the amount of mixing but adapts itself to the conditions imposed
by the coherent anisotropic motion at large scales. The effectiveness of the large-scale motions in prescribing a large
scalar interface area and in maintaining steep scalar gradients resulted in a faster growth in entrained volume with respect
to the one induced by small-scale fluctuations, as shown in Figure 1(b). Additionally, the presence of protruding bulges
on the scalar interface generated by large-scale motions resulted in a faster growth of the jet width with respect to the
small-scale case, as can be seen in the inset of Figure 1(b). The present results may have strong repercussions for the
theoretical approach to scalar mixing, as anticipated here by simple heuristic arguments which are shown able to reveal
the rich dynamics of the process. Interesting repercussion are also envisaged for turbulence closures, in particular for
large-eddy simulation approaches where only the large scales of the velocity field are resolved.
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Figure 1. (a) Instantaneous scalar interface (θth = 0.02Θcl) in the two experiments at time t = 120: small-scale driven scalar field
(left) and large-scale driven scalar field (right). (b) Temporal evolution of the entrained volume V and of the position of the interface hθ
(inset) for the scalar field driven by the unfiltered velocity field V and hθ (solid line), by the large-scale velocity field Ṽ and h̃θ (dashed
line) and by the small-scale velocity field V ′′ and h′′

θ (dashed-dotted line).
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CAUSALITY IN RAYLEIGH-BÉNARD AND TAYLOR–COUETTE TURBULENCE

Detlef Lohse
Physics of Fluids, University of Twente

The Rayleigh-Bénard (RB) and Taylor-Couette (TC) systems have always been the drosophila of physics of fluids, with
various concepts in fluid dynamics such as stability, pattern formation, transition to turbulence, transitions in the boundary
layer, or transport properties being tested with these well-defined flows with well-known underlying dynamical equations
and boundary conditions. We think that RB and TC are excellent playgrounds to also test new ideas on causality in turbu-
lence and to better understand what one can learn when asking questions on observed effects and underlying causes.

Examples are about the connection between the number of observed large-scale rolls in these systems and the aspect ratio,
about flow reversals and how they depend on the control parameters, about multiple co-existing turbulent states, and about
the effects of plate roughness on the turbulent transport properties of the flow.

I will try to elucidate the questions formulated in the flyer of the workshop in the context of these examples, which are all
current research questions in the field of RB and TC turbulence.
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CAUSALITY IN IMMISCIBLE RAYLEIGH-TAYLOR TURBULENCE

Stefano Brizzolara1,2, Marco Edoardo Rosti3, Andrea Mazzino 4 and Markus Holzner2,5
1 Institute of Environmental Engineering, ETH Zurich, CH-8039 Zurich, Switzerland

2 Swiss Federal Institute of Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
3 Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University,

1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
4 DICCA, University of Genova and INFN, Genova Section, Via Montallegro 1, 16145, Genova, Italy
5 Swiss Federal Institute of Aquatic Science and Technology Eawag, 8600 Dübendorf, Switzerland
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Rayleigh-Taylor instability (RTI) originates at the interface between a layer of heavier and lighter fluid in the presence of
an acceleration. At late times, the RTI evolves in a self-similar turbulent state, sustained by the continuous conversion of
potential into kinetic energy [1]. RT turbulence phenomenology entails that, by balancing kinetic and potential energy,
one obtains a quadratic scaling in time of the mixing zone, i.e. h(t) = αAgt2, where A is the Atwood number (the ratio
between the density increment and the mean density) and g the gravitational acceleration. α is a constant coefficient that
represents the efficiency at which the potential energy is converted into kinetic energy [2].
When the two phases are immiscible, the interfacial tension does not allow a complete mixing of the fluids. In fact, the
turbulence fragments one fluid into the other, generating an emulsion-like state where the characteristic droplet size (the
Hinze scale) decreases in time, resulting from a balance between the kinetic and the interfacial energy density. In our
work we study the properties of this emulsion-like state, and in particular the causal relation between the self-similar
turbulence state and the emulsion properties represented by the Hinze scale, the interface surface area and the velocity
pair-correlation function.
To this purpose, we compare physical experiments (Figure 1) and direct numerical simulations to a self-consistent phe-
nomenological theory designed to describe the underlying phenomenon [3]. With their phenomenology, Chertkov and
co-authors speculate that the Hinze scale passively adapts to the large scales of the flow. The bubble generation is there-
fore considered to be a consequence of the large-scales, and is believed to not produce any back-reaction on the global
features of the mixing.
Our experiments and simulations reveal that the convergence of the α coefficient is slowed down by the interfacial tension;
more in detail, the stronger the interfacial tension, the later the turbulence reaches its self-similar state for which α is
constant. Nevertheless, whether this correlation implies causality is not yet clear. Indeed, the delay in reaching the self-
similar state could be due to the bubbles at the Hinze scale, that are originated not only from the interfacial tension but
also from the kinetic energy cascade. If the bubbles delay the self-similar state, this means that they back-react on the
large scales for some time. If this is the case, the assumption under which the emulsion properties can be considered a
consequence of the large scale evolution breaks down, and a new phenomenology has to be derived.
To clarify the relation between the large scales and the bubble production, we aim to control independently each of the
governing parameters. That is, we will keep the Hinze scale evolution unchanged and modify the interfacial tension at
the same time. This can be done by decreasing the Atwood number and the interfacial tension together. We expect that
this will provide a clear picture on the causal relations underpinning the evolution of immiscible RT turbulence that is
potentially relevant for a broader class of turbulent flows with unsteady forcing mechanisms.

Figure 1. Snapshots of a laser induced fluorescence RT turbulence experiment (time interval between the images: 0.1 s, scale bar:
14mm). The experiment is conducted using hexane as light fluid and a mixture of water and glycerol (37% in weight) as heavy fluid.
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Computer infrastructures allow studying turbulent flows in more complicated geometries and at higher Reynolds numbers.
By performing direct numerical simulations (DNS) all the spatial and temporal turbulent scales and associated dynamics
may be captured. Nevertheless, the chaotic nature of the dynamical system does not allow to easily identify the relationship
between different variables required for a complete understanding of the flow dynamics. In particular, such a relationship
between the signals of different quantities can be inferred through, for instance, sensitivity, correlation, and causality
analyses. Despite its simplicity, correlation-based inference is incapable of addressing the directionality of information.
To overcome this deficiency, information theory provides alternative causality measures, such as information flow [1] and
transfer entropy [2].
In the present study, we propose to compute the causality between the quantities of interest (QoIs) and flow variables,
exploiting the acquired information to drive an Adaptive Mesh Refinement (AMR) algorithm. The resulting algorithm
will be compared to the case of using information based on correlation and (local) sensitivity analyses. In a first step, for
the two-dimensional flow around a circular cylinder at Re = 200, the transfer entropy between the velocity magnitude
and a given quantity of interest, i.e. the cylinder drag, is computed and analysed.
The AMR technique aims at automatically designing a mesh, controlling the error and thus ensuring a significant com-
putational saving. It becomes fundamental when the flow solution is not a-priori known. The main ingredients are
error measurement and refinement strategy. In the open-source spectral-element code Nek5000 [3] the h-refinement is
implemented which consists of the isotropic splitting the element when a certain criterion is satisfied. Regarding error
evaluation, we have been using the spectral error indicator (SEI), which is a local measure of the quadrature and truncation
errors, and the adjoint error estimator (AEE), a goal-oriented and dual-weighted residuals estimator. Unfortunately, the
adjoint linear operator suffers from exponential sensitivity to any small perturbations, due to the chaotic nature of turbulent
flows. In the literature, several methods have been proposed to remedy this, e.g. ensembles, shadowing or filtering, but no
practical solution has been found yet. As a novel alternative, we propose an error estimator based on transfer entropy for
identifying the regions which are causally related to our QoI. Moreover, considering some cases where SEI and AEE have
been already applied, see [4, 5], a thorough comparison between the performance of different error indicators is possible
and allows assessing the benefits of causality.
Bearing in mind this, we aim to address some fundamental questions as: is the casual inference, here measured through
transfer entropy, really different from correlation? How is sensitivity analysis related to these? The answer to these
questions is not only important for AMR, but also for relevant data-driven methods (e.g. optimization) of turbulent flows.

Figure 1. a) The instantaneous velocity magnitude for the flow around a circular cylinder at Re = 200. b) For each spectral element
the time-averaged transfer entropy between the velocity magnitude and the cylinder drag (middle). c) Spectral error indicator averaged
in time.
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4Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge,
MA, 02139, USA

†E-mail: elopez8@hawk.iit.edu
The aim of this work is to analyze the formation mechanisms of large-scale coherent structures in urban fluid
flows, with focus on the so-called arch vortex. As shown in Figure 1 (left), this vortex is formed on the leeward
side of wall-mounted obstacles, and this structure has an important impact on the transport of pollutants in
urban areas. To this end, we assess causal relations between different proper-orthogonal-decomposition (POD)
modes obtained from well-resolved large-eddy simulation (LES) data (slightly coarser than direct numerical
simulation) of a number of urban configurations similar to that shown in Figure 1 (left). The causal relations
are identified by conditional transfer entropy, which is an information-theory quantity which estimates the
amount of information contained in the past of one variable about another, and as such offers a value indicating
the predictive power available in the history of such variables. When applied to kinematic systems, transfer
entropy reveals underlying dynamics driving different entities of the system, differentiating between causes and
effects for each variable. This allows for an understanding of the origins of different phenomena in the flow,
with the aim of identifying the modes responsible for the formation of the arch vortex. A preliminary study has
been carried out to determine the causal relations present in the nine-equation model of near-wall turbulence
developed by Moehlis et al. [1]. The aim of this is to verify the ability of the proposed method to identify
causal interactions we expect to see a-priori. As shown in Figure 1 (right), some of the most prominent causal
relations are analogous to those reported by Lozano-Durán et al. [2] in turbulent channel flow, namely: Mode
2 ↔ Mode 4 (mean-flow instability in the spanwise direction); Mode 2 → Mode 6 and Mode 2 → Mode 9
(lift-up mechanism); Mode 6 → Mode 4 (roll generation). The complete contribution will contain an analogous
analysis on the dominant POD modes of various urban environments, with the goal of shedding light into the
mechanisms of pollutant transport in cities.

Figure 1. (Left) Streamlines in a simplified urban flow illustrating the arch and horseshoe vortices; flow from left to

right. (Right) Causality analysis performed on the model by Moehlis et al. [1].
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Energy-containing eddies are the elementary structures that carry most of the kinetic energy and momentum in wall-
bounded turbulence. These eddies follow a self-sustaining cycle and can be structured in a hierarchical form attached to
the wall. In this paper, the packets of energy-containing eddies are artificially quenched at the inlet of a turbulent channel
flow direct numerical simulation (DNS), and the spatial evolution of the energy of the eddies is studied. The velocity
fields from streamwise periodic channel flow (PCH-DNS) at Reτ = 550 are filtered and used as the inlet velocity field
for a channel flow DNS with inlet-outflow boundary conditions (IOCH-DNS). The turbulent transport spectra (Figure
1a) suggest that ridge λz = 3y distinguishes the energy-containing eddies and the eddies involved in the energy cascade.
The turbulent fluctuations and energy below the ridge λz = 3y are removed, and only the eddies involved in the energy
cascade are fed into IOCH-DNS at every time step. The mean velocity and fluctuating velocity profiles of IOCH-DNS
are shown in Figure 1b, at x = 3h, the mean velocity profile is distorted, and the streamwise fluctuation is evolved by
extracting energy from the mean flow. The streamwise length of 24h is required to recover the turbulent fluctuations and
energy when the energy-containing motions are removed at the inlet. At x = 24h, the fluctuating velocity profiles are in
good agreement with the PCH-DNS in the near-wall region, whereas, in the regions far from the wall (y+ > 150) the
fluctuations are damped. The pre-multiplied spanwise energy spectra of the streamwise velocity (kzϕuu) of PCH-DNS
are aligned along the ridge λz = 10y. In IOCH-DNS, as the flow evolves, energy starts to recover in the near-wall region
(y+ ≈ 10 ∼ 15) at a spanwise wavelength of λ+

z ≈ 100, equal to the spanwise spacing of near-wall streaks, which
indicates that the formation of near-wall streaks is the primary process in the recovery of energy-containing motions.

(a) (b)

Figure 1. (a) The pre-multiplied spanwise spectra of turbulent transport (k+z y+T̂+
turb) of PCH-DNS at Reτ = 550. Dashed green line is

at λz = 3y, (b) Mean velocity profile and Root-mean-squared fluctuating velocity profiles at Reτ = 550. Here, black line, PCH-DNS;
blue line, IOCH-DNS at x = 0h; green line, IOCH-DNS at x = 3h; red line, IOCH-DNS at x = 24h.
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Causally important events are studied in turbulent channel flow by seeing the effect of intervening init. The methodology
follows the causal analysis of 2D HIT by Jiménez [1]. The basic idea is to perturb a small part (hereafter "cell") of the
flow, and measure how much the development of the flow changes from the original, to know the causal significance of
the perturbed cell. This experiment is repeated many times, and common flow features of causally significant or irrelevant
cells are elucidated using large data ensembles. In this study, we perform a total of 29520 direct numerical simulations of
turbulent open channel flow at Reτ = 609. The domain size is lx × ly × lz = πh × h × πh, where x, y and z are the
streamwise, wall-normal and spanwise directions, respectively, and h is the channel height. The initial perturbation is to
remove the velocity fluctuations in the cell, implemented by overwriting the velocity in the cell with its x− z mean, and
imposing continuity after the modification. Cells are cubes of size of l+cell = 25, 50, 100 and 150, where the superscript
+ denotes wall units. Because the flow is inhomogeneous in y, the central height of the cell, ycell, is also an important
parameter, and is varied from lcell/2 (attached to the wall) to 300 wall units. Causal significance is either measured by the
squared norm of the velocity difference between the perturbed and original flows, εu = ||uper −uorg||2, or by its relative
growth εu(t)/εu(0).
Causal features change a lot depending on whether the causal significance is measured by the absolute magnitude of the
difference, εu, or by its relative growth. When the magnitude is used, cells with an initially larger perturbation tend to
be more causally significant. This result is robust to the evaluation time, to lcell and to ycell. On the other hand, when
the growth is used, the causally significant cells depend on the time and on ycell. At the time, tsig , at which the causal
significance of the different cells diverges the most, significant cells tend to be in sweeps, whereas irrelevant ones tend to
be in ejections. Figure 1 shows εu averaged over x − z for: (a) significant cells, and (b) irrelevant ones. Generally, the
perturbation initially spreads both up and down, but only grows substantially after it reaches the wall. As characterized by
the peak height of εu (bold line), the perturbation of the significant cells move down to the wall faster than the irrelevant
ones. This suggests that sweeps tend to be more causally significant than ejections because they carry the perturbation
faster to the wall, where it develops due to the higher shear. The time tsig is found to be roughly proportional to ycell,
supporting the idea that the perturbation propagation toward the wall decides its causal significance.

Funded by the Caust grant ERC AdG-101018287.

(a) (b)

Figure 1. Temporal and wall-normal development of εu, averaged over x−z. (a) Conditioned to causally significant perturbations. (b)
Causally irrelevant. Causal significance defined by relative growth, and normalized by the initial x− y − z mean value of all samples.
Vertical line: tsig . Bold line: Peak height of εu. l+cell = 100, y+

cell = 300.
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We carry out experiments in a plane Couette-Poiseuille channel (fig.1). The streaks and rolls are quantified respectively
by the streamwise velocity ux and the spanwise velocity uz , measured using Particule Image Velocimetry (PIV).

Figure 1. Couette-Poiseuille channel

We study the decay of turbulence using a ’quench’ protocol, i.e. an abrupt decrease of the Reynolds number Re from a
fully turbulent state to a laminar regime[1].
We show that the rolls decay faster than the streaks. The streaks have two decay stages in the decay process. During the
first stage of the decay, the remaining rolls slow down the decay of the streaks. This is consistent with the lift-up effect,
i.e. the formation of streaks by linear advection of the rolls.
We also study the effect of the noise, which is the external disturbance generated by the belt driving cylinder, on the
transient decay and the permanent regime. The decay dynamics is independent of the noise level. The noise shifts the
apparent critical onset of transition. We use the susceptibility of uz in the permanent regime to quantify the noise intensity.
We present very recent results about the study the waviness of streaks using vortex generators to induce unstable wavy
streaks. The evolution of the streaks becoming wavy from a straight state is characterized using stereoscopic PIV. We
apply a spatial filter to separate the straight part and the wavy part of the flow (fig.2). Our experimental results show how
the appearance of the spanwise velocity and the wall-normal velocity is correlated to the increase of the waviness of the
streaks, as expected from self-sustaining models and give quantitative support to this relation.

Figure 2. Decomposition of small scale streamwise velocity into straight and wavy components
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Wall-bounded turbulent flows are ubiquitous in nature. Understanding the causality behind phenomena we observe in
turbulence is essential for the modelling and control of industrial flows. Causal inference of scientific phenomena can be
roughly categorized as interventional or observational [1]. Interventional studies rely on modifying the system conditions
and assessing the consequences. They are often used for practical purposes due to the intuitive connection of cause and
effect they portray [2]. However, in large complex systems such as turbulent flows, interventions are usually impossible
in experimental setups and prohibitively expensive in numerical studies. Observational causal inference, conversely, only
requires the time history of the flow and is more economical both computationally and experimentally. Nevertheless, the
methods to evaluate observational causality are neither well-defined nor straightforward. To date, meaningful metrics to
capture the causal relations between quantities remain to be established. In this paper, we study the causal interactions
between energy-containing eddies in the buffer layer of a turbulent channel flow. The domain chosen for the channel
as shown in figure 1(a) is a minimal box, which is sufficient to isolate the relevant dynamical structures [3]. For the
interventional study, we examine the causality by freezing in time one of the Fourier mode coefficients in the buffer layer
and observe its impact on other quantities. For the observational study, the time signal of the Fourier mode coefficients is
extracted and the information flux proposed in [4] and illustrated in figure 1(b) is computed to find the causal interactions
between different modes. The results and procedures of both studies are compared. Finally, the possibility of replacing
interventional causal inference with its observational counterpart is discussed.

Funded by National Science Foundation under Grant 032707-00001.

(a) (b)

Figure 1. (a) Turbulent kinetic energy in the buffer layer. (b) Schematic of information flux.
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Disease transmission over human networks and information dissemination over social networks have become important
areas of studies with significant societal impacts. The studies of these phenomena are founded on network science [1],
which combines graph theory, dynamical systems, and data science. Taking inspirations from network-based analysis [2],
we examine perturbation dynamics for turbulent flow networks. In this talk, we present the vortical network broadcast
analysis for time-varying turbulent flows to identify the optimal flow modification strategy.

Network science specializes in analyzing, modeling, and controlling interaction dynamics over a collection of el-
ements. Turbulent flow analysis is a key candidate to benefit from network science, because turbulence is influenced
by the rich interactions amongst a large number of vortices present over a range of scales. In fact, we can study such
vortical interactions by quantifying the induced velocity generated by the vortical structures [3]. Through the network-
based analysis tools, we are able to extract dominant interactions present in turbulence and model its dynamics [4]. Of
particular interest in this talk is the use of time-varying vortical networks to quantify time-dependent turbulent base flows.
We quantify how perturbations added to turbulence can influence the overall perturbation dynamics using the network
broadcast analysis [5]. This approach reveals the most amplified disturbances broadcast over the time-evolving turbu-
lence network. We show that the broadcast analysis shares similarities with resolvent analysis [6, 7] in its formulation but
for non-harmonic dynamics.

We demonstrate the utility of the network broadcast analysis to identify flow structures that can optimally modify
turbulent flows for the examples of two-dimensional isotropic turbulence and separated turbulent flow over an airfoil.
The results from these examples suggest that the present formulation holds promise in guiding time-adaptive flow control
efforts to effectively modify the behaviors of turbulent flows.

We thank the support from the US Air Force Office of Scientific Research (FA9550-21-1-0178), Army Research Office
(W911NF-19-1-0032), and Office of Naval Research (N00014-19-1-2460).
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FIGURE 4. The broadcast modes of BS and NS networks. (a) The vorticity field about which the
broadcast modes are computed; (b) the BS broadcast mode (bBS); and (c) the NS broadcast mode
(bNS). Vorticity contours for ω/ω∗ = ±1 are superposed on the modes in (b,c) for comparison.

3.4. Broadcast-mode-based perturbation
Since the broadcast mode b(x) identifies effective nodes to initialize perturbations, we use
it to perturb the initial condition of the turbulent vorticity field as

ωp(x, t0) = ω0(x) + a [b(x) − 〈b(x)〉] . (3.5)

Here, the removal of the spatial mean 〈b(x)〉 ensures that no net circulation is introduced
to the bi-periodic domain due to the added perturbation (Jiménez 2018). The perturbation
amplitude is chosen such that a||b − 〈b〉||2/||ω0||2 = 0.001. We evolve the turbulent flow
from this perturbed initial condition ωp(x, t0) and track the flow modification (Jiménez
2018, 2020) with

∆ω(x, t) = ωp(x, t) − ω(x, t). (3.6)

This modification is assessed with respect to the broadcast modes extracted from the NS
and BS networks and to different time horizons tm over which the broadcast modes are
extracted.

4. Results

4.1. Biot–Savart versus Navier–Stokes broadcast modes
For the initial vorticity field shown in figure 4(a), we extract the broadcast mode from
S0 = (I − αA0)

−∆t0 using (2.9). The broadcast modes for the BS and NS networks are
presented in figures 4(b) and 4(c), respectively, as bBS and bNS. The BS broadcast mode
suggests that the vortex cores, featured with high levels of vorticity, are the regions of
high broadcast strength. The study of Taira et al. (2016) identified these regions as the
network ‘hubs’, which are characterized by high levels of vortical interaction occurring in
turbulent flow. In a similar problem setting, Jiménez (2018) also labelled the vortices as
the influential structures that dominate the evolution of the 2-D turbulence.

The NS broadcast mode paints a different picture. We find that the volumes of high
broadcast strength occupy the regions between opposite-sign vortex pairs, as highlighted in
the green region in figure 4(c). This observation agrees with Jiménez (2020), where these
vortex ‘dipoles’ are identified as the influential structures in the 2-D turbulence through
a Monte Carlo-based search over all subvolumes in the flow. These vortex dipoles, acting
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the green region in figure 4(c). This observation agrees with Jiménez (2020), where these
vortex ‘dipoles’ are identified as the influential structures in the 2-D turbulence through
a Monte Carlo-based search over all subvolumes in the flow. These vortex dipoles, acting

.
25

65
7A

9C
C

 4
2

A:
58

6 
A8

4
A6

 1
0,

0:
A2

A
/2

2C
D

64
CC

C9
6

2
A:

58
6

A6
C6

A
7D

6
2

2:
2

6
2C

9C
C

 4
2

A:
58

6 
A8

4
A6

C6
A

 9
CC

5
: 

A8
 

7
 

 

(a)

(b)

Broadcast analysis of 2-D turbulence 910 A15-9

−5
5

0
0.03

0
0.04

(a) (b) (c)

FIGURE 4. The broadcast modes of BS and NS networks. (a) The vorticity field about which the
broadcast modes are computed; (b) the BS broadcast mode (bBS); and (c) the NS broadcast mode
(bNS). Vorticity contours for ω/ω∗ = ±1 are superposed on the modes in (b,c) for comparison.

3.4. Broadcast-mode-based perturbation
Since the broadcast mode b(x) identifies effective nodes to initialize perturbations, we use
it to perturb the initial condition of the turbulent vorticity field as

ωp(x, t0) = ω0(x) + a [b(x) − 〈b(x)〉] . (3.5)

Here, the removal of the spatial mean 〈b(x)〉 ensures that no net circulation is introduced
to the bi-periodic domain due to the added perturbation (Jiménez 2018). The perturbation
amplitude is chosen such that a||b − 〈b〉||2/||ω0||2 = 0.001. We evolve the turbulent flow
from this perturbed initial condition ωp(x, t0) and track the flow modification (Jiménez
2018, 2020) with

∆ω(x, t) = ωp(x, t) − ω(x, t). (3.6)

This modification is assessed with respect to the broadcast modes extracted from the NS
and BS networks and to different time horizons tm over which the broadcast modes are
extracted.

4. Results

4.1. Biot–Savart versus Navier–Stokes broadcast modes
For the initial vorticity field shown in figure 4(a), we extract the broadcast mode from
S0 = (I − αA0)

−∆t0 using (2.9). The broadcast modes for the BS and NS networks are
presented in figures 4(b) and 4(c), respectively, as bBS and bNS. The BS broadcast mode
suggests that the vortex cores, featured with high levels of vorticity, are the regions of
high broadcast strength. The study of Taira et al. (2016) identified these regions as the
network ‘hubs’, which are characterized by high levels of vortical interaction occurring in
turbulent flow. In a similar problem setting, Jiménez (2018) also labelled the vortices as
the influential structures that dominate the evolution of the 2-D turbulence.

The NS broadcast mode paints a different picture. We find that the volumes of high
broadcast strength occupy the regions between opposite-sign vortex pairs, as highlighted in
the green region in figure 4(c). This observation agrees with Jiménez (2020), where these
vortex ‘dipoles’ are identified as the influential structures in the 2-D turbulence through
a Monte Carlo-based search over all subvolumes in the flow. These vortex dipoles, acting
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high broadcast strength. The study of Taira et al. (2016) identified these regions as the
network ‘hubs’, which are characterized by high levels of vortical interaction occurring in
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the influential structures that dominate the evolution of the 2-D turbulence.
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Figure 1. Network broadcast analysis of two-dimensional isotropic turbulence [5]. (a) Vorticity field. (b) Network broadcast mode.
Reprinted with permission from Cambridge University Press.
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ON-THE-FLY REDUCED-ORDER MODELING OF TURBULENT FLOW RESPONSE TO
HIGH-DIMENSIONAL FORCING WITH TIME-DEPENDENT BASES

Hessam Babaee
Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA

Predicting how turbulent flow responds to high-dimensional forcing is of interest to many important problems in fluid
mechanics including causality in turbulence, transition, and flow control. Clearly, finding the response of the turbulent
flow to a high-dimensional forcing is computationally prohibitive as many forward samples of the direct numerical sim-
ulations of the turbulent flow are required. We present an on-the-fly reduced-order modeling technique based on forced
optimally time-dependent decomposition (f-OTD) to significantly accelerate the computations. In the f-OTD formulation,
the response of the system is decomposed to a set of time-dependent orthonormal bases and a set of time-dependent coef-
ficients. We present a variational principle whose optimality conditions yield the evolution equations for the f-OTD bases
and their coefficients. As a result, the f-OTD formulation does not require offline data generation to extract the f-OTD
modes and because the f-OTD modes are time-dependent, they can adapt on the fly to intrinsic or externally excited flow
instabilities. We will demonstrate the performance of the f-OTD formulation for several benchmark problems.
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TIME-LOCALIZED RESOLVENT ANALYSIS FOR THE STUDY OF CAUSAL RELATIONS IN
TURBULENT FLOWS
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Resolvent analysis [2, 4] has been successfully used to study complex nonlinear phenomena, such as hairpin vortices
and their associated fast pressure fluctuations in turbulent pipe flow [3], and scaling and self-similarity in turbulent chan-
nel flow [5]. In resolvent analysis, we rewrite the Navier-Stokes equation as a linear mapping between the nonlinearity,
interpreted as an input, and perturbations about a steady (or periodic [6]) mean flow, the output. In this input-output for-
mulation, the resolvent is the linear input-output map, and its operator properties shed light on the effect of nonlinearities
on the mean, linearized flow. Singular value decomposition of the resolvent operator provides the orthogonal bases for
the input and output spaces and helps rank the input-output mode pairs in terms of amplification by the resolvent. This
framework is able to identify the dominant spatial perturbation structures in turbulent flows [3, 4, 6].

The input-output formulation has been used to investigate causality in turbulence. For turbulent channel flow, authors of
[1] identify the most significant forcing mode of the resolvent at the fundamental wave number and find that removing the
flow component aligned with this mode from a numerical simulation at each time step inhibits turbulence. The authors
further identify the dyadic interactions of velocity that most contribute to the principal forcing mode, and reconstruct
the associated flow configurations. The paper argues for a causal link between the flow configurations responsible for
the dyadic interactions that produce the principal forcing mode, and the appearance of strong nonlinear forcing upon the
mean flow.

However, this method does not consider temporally-local nonlinear forcing and its transient effect on the flow. Time-
localization is needed to establish cause-and-effect relations, which must respect the arrow of time. We thus propose
generalizing resolvent analysis to time-localized nonlinearities and flow perturbations. Given input forcing modes and
the outputs they produce, one would indeed need the time localization of the input and the output to further subdivide the
output into its input and output components and to draw conclusions about cause and effect in accordance with the arrow
of time.

In order to obtain time-localization while retaining frequency information, the resolvent analysis can be modified to
project the flow state variables onto a wavelet basis rather than a Fourier basis in time. Each wavelet acts as a band-pass
filter and extracts information from a signal over a time band of a characteristic width determined by the wavelet scale, at
a time position determined by the wavelet’s shift.

In this work, we construct the time-localized resolvent operator for the fully developed channel flow and oscillating
boundary layer flow. Given an input mode at a specific time, we bisect its associated output modes into preceding and
succeeding responses with respect to the time-localized input. The temporally varying resolvent operator allows us to
identify causes and effects of temporally local velocity fluctuations of different scales, in the form of nonlinear forcing.
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UNCOVERING THE LINK BETWEEN DIMENSIONAL ANALYSIS AND CAUSALITY
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Figure 1. Data-driven dimensional analysis can identify relevant dimen-
sionless numbers. Buckingham Pi predicts 12 dimensionless numbers for
this case study; a data-driven analysis identifies two dimensionless num-
bers that are sufficient to describe the observed trends [JdI20].

Statistical formulations of causality are designed
to overcome lurking variables [Joi81; PB14]: im-
portant factors that are neglected by the experi-
menter or hidden by easily observable correlations.
This focus is necessary to deal with the complex-
ities of social and biological systems, where enor-
mous complexity makes controlling all important
factors impossible. Statistical methods are formu-
lated to mitigate [RR83], or innoculate [BHH+78],
an analysis against such lurking factors using a
theory-independent approach of treatment assign-
ment based on randomized tests. However, in the
physical sciences, the ideas stemming from dimen-
sional analysis enable a more physics-constrained
approach.
The familiar Buckingham Pi theorem [Buc14] is the
fundamental result of dimensional analysis, stating
that any physical law involving measured quantities
is necessarily a function of a smaller number of di-
mensionless groups. However, this fundamental re-
sult can be endowed with greater structure; a sim-
ple log-transform of input quantities leads to a vec-
tor subspace interpretation of dimensionless num-
bers [CRI16].
The subspace formulation of the Buckingham Pi theorem has two important applications: (i) a formal analysis of lurking
variables [RLI19]; and (ii) data-driven approaches to dimensional analysis (Fig. 1). In this talk, we review recent devel-
opments in dimensional analysis that provide a physics-constrained view of causality applied to the classical pipe flow
experiments by Reynolds and a realistic dataset of particle-laden turbulent flow simulations subject to radiation.
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LARGE-SCALE DYNAMICS DETERMINES THE PREDICTABILITY OF EXTREME EVENTS IN
TURBULENCE
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Extreme events in geophysical flows have a strong impact in human life and in diverse economical activities, and their
prediction is crucial to mitigate their consequences. Particularly now, in the context of climate change, interest has
emerged to develop models and indicators that allows for early detection and warning of extreme events. Some of these
models have proved successful [1], but it is unclear if they can be improved because the predictability limit of extreme
events is unknown: how far in advance can we predict extreme events with a perfect model? This limit is usually
determined by the rate at which the uncertainty of the initial conditions is amplified by the chaotic dynamics of the system
[2], i.e., by the leading Lyapunov exponent. Its inverse, the Lyapunov time, provides the time scale over which predictions
become unfeasible. However, this estimate does not offer direct information on the predictability of particular features of
the flow, such as the extreme bursts of a relevant quantity.
In this talk, we show that it is now possible to measure the predictability of extreme events directly by probing phase
space with a computationally-intensive approach. This allows to assess the exact potential of predictive models and to
determine precisely the conditions under which they may be effective. We analysed the predictability of extreme bursts
of the dissipation in a two-dimensional Kolmogorov flow by producing massive ensembles of initial conditions perturbed
around independent base flows. We produced millions of realisations to cover the full attractor of the Kolmogorov flow,
and used the Kullback—Leibler divergence [3], an information-theoretical tool, to assess predictability. This analysis
shows that extreme bursts of the dissipation may be successfully predicted beyond a few Lyapunov times, but that their
predictability depends strongly on the phase-space region from which they emerge. Specifically, we reveal that predictable
and unpredictable events evolve from two distinctly different large-scale circulation patterns (see figure). These results
open the possibility of improving predictive models by tuning them to the large-scale dynamics. Our approach could
be adapted with the available compute power to more complex flows, for instance to test the predictability of extreme
relaminarisation events in transitional flows or the bursting in near-wall turbulence.
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Figure 1. (a) Temporal evolution of the average entrophy, Ω = 〈ω2〉, in two independent bursts of the dissipation ε = νΩ, where
ν is the kinematic viscosity. The red line corresponds to a burst that is unpredictable at t = 0, while the blue line corresponds to a
predictable burst. Tλ = λ

−1 and λ is the leading Lyapunov exponent. (b)Visualisation of the flow in the temporal evolution plotted in
(a); red, the unpredictable burst; blue the predictable burst. Panels on the left correspond to t = 0, before the burst, and panels on the
right to the moment of the burst, tmax = 5.5Tλ and tmax = 5.9Tλ. The colors correspond to the value of the vorticity from −6 (dark
blue) to 6 (ligth yellow), and the red lines to the streamlines of the velocity field.
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CAUSALITY IN DROP-TURBULENCE INTERACTIONS: IDENTIFYING THE DRIVER OF DROP
DEFORMATION AND BREAKUP
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E-mail: alberto.vela.martin@zarm.uni-bremen.de

Binary mixtures of inmiscible fluids in turbulent conditions are ubiquitous in natural phenomena and industrial applica-
tions. The physical properties of these flows depend strongly on the structure of the disperse phase, in which the breakup
of fluid particles—drops or bubbles—plays a fundamental role. Understanding and modelling turbulent breakup is essen-
tial to predict and control the dynamics of inmiscible mixtures, but this remains a challenge to theoretical and empirical
approaches. Fluid-particle breakup is often viewed from an energetic perspective, in which the surface energy of the
particle is a marker of its degree of deformation. This approach is very convenient, but requires isolating the mechanisms
that lead to the effective increments of the surface energy, and thus to breakup. Fluid-particle deformation occurs when
turbulent kinetic energy is transformed into surface energy, but the opposite mechanism is also possible; fluid-particle
relaxation produces turbulent kinetic energy through oscillatory motions in which the surface energy may increase locally
(although not on average). Only the former mechanism can cause breakup, but distinguishing it from the latter is difficult
because of the complexity of surface-turbulence interactions.
In this talk, we address this problem by resorting to causality analysis applied to drops embedded in isotropic turbulence.
We leverage our recent findings on the mechanism that causes the increments of the surface energy, which may be locally
described as the stretching of the drop surface by the local rate-of-strain tensor [1]. We decompose this quantity into
local and non-local components, which describe the contribution to surface-energy increments due to eddies far from the
drop surface (outer stretching), and close to it or inside the drop (inner stretching). We average these quantities over the
surface of single drops, and construct temporal signals of the contribution to the surface energy due to inner and outer
stretching that cover the evolution of drops until breakup. We study the causal relation between these signals in massive
ensembles of time-resolved independent single-drop simulations at different Weber numbers (see figure 1(a)). First, we
show that the temporal auto-correlation of the outer stretching scales with turbulence quantities, while that of the inner
stretching scales with the characteristic relaxation time of the interface. Moreover, their cross-correlation shows that
negative inner stretching (surface relaxation) occurs on average after positive outer stretching (surface deformation due
to turbulence) with a time delay that scales with the relaxation time, suggesting that the latter is the cause of the former
(see figure 1(b)). We corroborate this hypothesis by applying convergent cross mapping [2], a non-linear test of causality,
to the signals. These results indicate that the causes of drop breakup may be largely identified by analysing the outer
stretching; it depends mostly on turbulence dynamics, it is the main source of surface-energy increments, and drives the
inner stretching, which acts as a rather ‘passive’ surface-energy dissipation mechanism.
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Figure 1. (a) A drop embedded in isotropic turbulence at Weber numbers We = 1.8. The frame is fixed at the centre of the drop, blue
isosurfaces mark intense vorticity. The size of the computational box is marked in Kolmogorov units. (b) Temporal evolution of the
contributions to surface energy (SE) of (blue) outer and (red) inner eddies in the evolution of a single drop in isotropic turbulence.
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BUTTERFLIES IN THE ATMOSPHERE: EVALUATING LOCAL DIVERGENCE ON THE MODEL
ATTRACTOR

Mark Rodwell1
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E-mail: mark.rodwell@ecmwf.int

Global numerical weather prediction is often limited by Lorenz–type “butterflies” in the flow [1]. Here we think of these
as local flow configurations associated with pronounced uncertainty growth–rates, as demonstrated in short–range en-
semble predictions. Some of these configurations correspond to potential instabilities of the flow. Often, forecasts for
severe downstream weather only show an improvement in skill when these butterflies have passed. Here the focus is
on cyclogenesis [3] and meso-scale convective [2] butterflies in the middle latitudes. A key question is how operational
ensemble forecast systems represent the uncertainty growth–rates associated with these instabilities? A “Lagrangian”
growth-rate, which follows the ensemble-mean flow, is found to be a convenient approach to highlighting sources of un-
certainty (Fig. 1). At short (∼ 12 h) lead-times, operational forecast models differ in these growth-rates. Partly this is
related to pragmatic approaches to ensemble initialisation (application of singular vector perturbations for example) and
approximations for model uncertainty, but there may also be a component associated with differences in the underlying
“deterministic” model. Growth-rates can be evaluated by comparing ensemble spread with ensemble-mean errors (rela-
tive to estimates of the truth — observations or analyses from data assimilation). Results suggest that growth-rates for
the cyclogensis butterfly are over-estimated (indicating an un-tapped source of predictability), while for the meso-scale
convective butterfly they are under-estimated (the forecast is too confident).
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Figure 1. Single frame from an animation of cyclogenesis in the background forecasts of the ECMWF ensemble of data assimilations,
focusing on synoptic spatio–temporal scales. The frame is centred at 00 UTC on 18 January 2020. The red contour shows the location of
the tropopause on the 315 K isentropic upper-level surface (where potential vorticity (PV) is 2 PV Units. Vectors show horizontal winds
on the 850 hPa lower-level surface (coloured blue if the moisture flux exceeds 100 gkg−1ms−1). Black dots indicate ensemble–mean
precipitation (the radius is proportional to the precipitation rate up to the maximum size at 2 mmh−1). Shading shoes the uncertainty
growth–rate for the ensemble standard deviation of PV on 315 K (following the ensemble-mean flow). Contours extend the shading
scheme to the most extreme values, which are indicated at the ends of the colour bar. Figure 3. from [3]
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PREDICTABILITY OF HOMOGENEOUS ISOTROPIC TURBULENCE
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We discuss the chaoticity and the predictability of a turbulent flow on the basis of high-resolution direct numerical simu-
lations at different Reynolds numbers. The maximum Lyapunov exponent of turbulence, which measures the exponential
separation of two initially close solutions of the Navier-Stokes equations, is found to grow with the Reynolds number
of the flow, with an anomalous scaling exponent, larger than the one obtained on dimensional grounds. For large per-
turbations, the error is transferred to larger, slower scales, where it grows algebraically generating an inverse cascade
of perturbations in the inertial range. In this regime, our simulations confirm the classical predictions based on closure
models of turbulence [1]. We also discuss how to link chaoticity and predictability of a turbulent flow in terms of a finite
size extension of the Lyapunov exponent.
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INHERENT HIGH-FREQUENCY INSTABILITIES DEVELOPING FROM SMOOTH NOISELESS
INITIAL CONDITIONS
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This talk takes a more conventional approach to causality, and considers the origin of high-frequency short-wavelength
disturbances. In the case of a vortex sheet, Moore [1] showed that a finite-time curvature singularity could develop from
smooth, ‘noise-free’, initial conditions. We demonstrate that high-frequency oscillations can develop in a finite time in
solutions to the Kuramoto-Sivashinsky (KS) equation from smooth, ‘noise-free’, initial conditions.

This work was motivated by the calculations of Brinckman and Walker [2] who showed numerically that, because of
the development of oscillations with asymptotically short wavelengths, unsteady high-Reynolds-number solutions of the
Navier-Stokes (NS) equations do not always converge to unsteady regular solutions of the boundary-layer equations.
Cowley [3] argued heuristically that these oscillations were Rayleigh instabilities triggered by one or more singularities
in complex space.

We believe that our analysis sheds light on the origin of short-wavelength disturbances in high-Reynolds-number flows.
We restrict attention to the KS equation because the analysis of the complex-space structure of solutions to the NS
equations is difficult in two or three spatial dimensions. The KS equation shares the key properties of the NS equation that
are responsible for the instability, i.e. the KS equation possesses a destabilising term for a range of high wavenumbers,
and it is non-linear, allowing these destabilising modes to be filled out in the Fourier spectrum (even if no such modes
are present in the initial condition). Further, the kinematic-wave equation, as an asymptotic limit of the KS equation,
is analogous to the role of the boundary-layer equation as an asymptotic limit of the NS equation. Hence, as well as
illustrating the genesis of high-frequency instabilities, we believe that our analysis indicates why unsteady solutions
of the NS equations do not always converge to solutions of the boundary-layer equations at high Reynolds numbers.
More specifically, by considering exponentially small terms in an unsteady asymptotic solution of the KS equation in
the complex plane (and in particular by considering various Stokes and anti-Stokes lines), we can predict the asymptotic
breakdown of regular kinematic-wave solutions by short-wave instabilities. These instabilities can develop at far smaller
times than the formation of, say, shocks in kinematic-wave solutions; naïvely, one might have expected that the shock-
formation time would have been when short-wavelength disturbances would have developed.
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CAUSE AND EFFECT IN TURBULENCE - A STATISTICAL POINT OF VIEW
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Classical questions of cause and effect concern the temporal invertibility and are already a very fundamental problem
for spatio-temporally parabolic equations such as the Navier-Stokes equations, e.g. when considering linear or weakly
nonlinear stability problems. If the system then shows strongly chaotic properties, questions of invertibility for large time
horizons are hardly treatable.
One way out of this dilemma is a statistical view of turbulence, and indeed the turbulence community considers a variety
of statistical laws such as Kolmogorov’s scaling laws to be absolutely fundamental. This complicates matters further,
however, because then cause and effect are no longer as clear-cut as Navier-Stokes would have us believe even on small
time horizons.
In the statistics of Navier-Stokes processes, the time direction is of course not changed, but formally instantaneous pro-
cesses "run in parallel", or, in the case of statistically stationary processes, time levels are thus even "interwoven" with
each other.
This complicates its treatment considerably, because cause and effect now take on a different meaning. To illustrate
this, let us consider heat conduction through the molecular motion in gases as an example system, even if the analogy
to Navier-Stokes is not ideal. On the level of molecular interaction processes, the underlying dynamic system is still
reversible. On a statistical level, however, this is no longer true because, as is well known, entropy increases and this is
accompanied by the "birth" of two symmetries in the heat conduction equation that do not exist in the original dynamic
system for the molecules. These symmetries prevent the reversal of the arrow of time and, at the same time, one of the
symmetries generates the fundamental solution of the heat conduction equation. The heat equation is formally parabolic
in space-time and thus principally non-invertible.
In the statistics of turbulence, something rather similar happens, because the infinite-dimensional statistical systems such
as the Hopf functional equation or the Lungren hierarchy admit further so-called statistical symmetries that go beyond
those of the Navier-Stokes equations and characterise intermittency and non-Gaussian behaviour [3, 4]. In the recent
coupled PRL/PRF publications [2, 1], we have been able to show that it is especially these statistical symmetries that
determine the statistics of the process in turbulent shear flows, i.e. are central for the correct description of high velocity
moments . Therein, invariant solutions for the statistics of high moments have been generated (the corresponding invariant
PDF solutions also exist; a publication on this is in preparation and results will be shown at the conference). It should be
noted that these are fundamentally different from the "invariant solutions" that are currently being intensively discussed
in structure formation processes in transitional and low-Re turbulent flows. In this field, only classical Navier-Stokes
symmetries are used, such as (spatial) reflections and the like.
However, there is a fundamental difference between the symmetries admitted by the heat conduction equation and those in
turbulence, namely that the statistical symmetries of turbulence are formally infinite-dimensional. This formally implies
a freedom in the "choice of symmetries“, and we do not know how turbulence "chooses" them in a concrete case.
Here we come full circle to the question of cause and effect in turbulence and this goes beyond the question of whether
there is a spatio-temporal connection between cause and effect. Two central questions will be addressed: (i) We do see
very clearly the effect in the choice of the statistical symmetries "picked by turbulence" and the corresponding solutions
for the moments. However, the concrete choice of symmetries, i.e. the cause, remains unclear; (ii) The question where the
statistical symmetries come from, i.e. what is the cause of its appearance goes even deeper, because the presence of the
symmetries, i.e. the effect, is very clearly visible e.g. in [2] .
Regarding question (i), we already have a clear proposal, namely that the cause and effect of the turbulence statistics
are connected by an eigenvalue problem of the Lundgren hierarchy based on the statistical symmetries, which will be
presented in its first outlines at the conference. Question (ii) goes even deeper. Here, finally, the comparison with heat
conduction should be made again. The key principle underlying the heat conduction process is the entropy inequality, but
something analogous is not yet known for turbulence - a largely unresolved question.
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VARIABILITY OF THE FLOW AROUND AN IMPULSIVELY STARTED PITCHING BLADE
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The motion of fluid flow is described by the continuity equation and the Navier-Stokes equations, where the development
of the flow is determined by the initial and boundary conditions. The Navier-Stokes equations are non-linear, so that the
actual flow development depends sensitively on the initial conditions. Since the initial conditions can only be determined
with finite precision, any two solutions of the equations of motion with initial conditions that differ only by a very small
amount, will eventually diverge, as the small initial differences propagate and grow exponentially with time; this is com-
monly referred as the ‘Butterfly effect’, coined after the shape of the Lorenz attractor and the dynamical behaviour of the
non-linear dynamical system it represents [3, 4].

We employ particle image velocimetry (PIV) to study the motion induced by an accelerating and pitching cambered plate
using an industrial robot to precisely control the motion [1, 2]. The Reynolds number is 2.2×105. Initially a boundary
layer forms and leading edge and trailing vortices are formed, after which the flow quickly transitions to a disordered tur-
bulent flow state. When repeating such measurements, one would expect that the turbulent flow in individual repetitions
would quickly become uncorrelated, in particular for the small-scale turbulent flow structure. However, contrary to this
expectation, the small-scale structure of the flow remains highly correlated, as is illustrated in Figure 1 by measurements
in three separate runs; please note the high degree of similarity of the detailed vortical flow structures, despite the high
Reynolds number.

To characterise how causality in the generation of a flow can be characterised in such experiments, we consider the
Lagrangian trajectories of virtual particles in the measured flow field, and consider the separation ||δx|| between individual
realisations. We compute the local finite-time Lyapunov exponents [5]. Despite the turbulent nature of the flow, the overall
growth of ||δx|| appears to be linear, i.e. ||δx|| = ct, with c = 0.004 [m/s]; this implies a separation of 4 [mm] at the end
of the motion, which is still less than the resolution of the measurement (6 [mm]). A smaller section of the flow displays
exponential growth of ||δx|| ∼ exp(σt), with: σ ∼= 5 [s−1]; this corresponds to only 10 [mm] for the results presented in
Fig. 1. The question remains when such a flow transits from a chaotic to a truly turbulent flow state.
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Figure 1. Three individual realisations of the motion of a translating and pitching cambered plate blade at time t = 0.528 s after the start
of the motion, depicting the out-of-plane component of the vorticity computed from planar PIV data. Note the detailed resemblance of
the small-scale vortical structures. The Reynolds number is 2.2×105. (Dimensions are in [m].)
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GENERALISED QUASILINEAR APPROXIMATIONS OF TURBULENT CHANNEL FLOW.
STREAMWISE NONLINEAR ENERGY TRANSFER
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A generalised quasilinear (GQL) approximation [1, 2] is studied in turbulent channel flow at Reτ ≃ 1700 (Reτ is the
friction Reynolds number). The focus of the present study is given to its application in the streamwise direction to explore
the nonlinear interactions between energy-containing streamwise waves, which have been understood to originate from
the streak instability and/or transient growth mechanism in the self-sustaining processes at different length scales. Waves,
vortices and streaks are interrelated (causal) in wall-bounded turbulent shear flows; e.g. there cannot be streaks without
vortices and viceversa. In this fashion, the GQL approximation provides a robust interventional tool to explore scale
interactions, given that it is capable of suppressing particular triadic interactions in a controlled manner [3]. The GQL
approximation decomposes the flow into two groups, the former of which contains a set of low-wavenumber Fourier modes
and the latter are composed of the rest high-wavenumber modes. The former low-wavenumber group is then solved by
considering the full nonlinear equations, while the latter high-wavenumber group is obtained from the linearised equations
around the former. The performance of the GQL approximation is compared with that of the QL model [4], in which the
low-wavenumber group only contains zero streamwise wavenumber. The QL case has been found to exhibit the most
anisotropic second-order turbulence statistics throughout the entire wavenumber space of the spectra, in agreement with
the previous studies [4, 5]. Only a small increase in the number of streamwise modes allowed to interact nonlinearly has
resulted in a rapid recovery of the scaling of the streamwise wavelengths with the distance from the wall, which was absent
in the streamwise spectra of the QL case. These cases also exhibited spectra extending over a wider range and reaching out
to smaller scales, when compared to the QL case whose spatial spectra were highly localised in the wavenumber space.
The production spectra of the QL model have also been found to be highly localized and the turbulent transport is inhibited
in the streamwise direction. In effect, it is found that the QL model exhibits a considerably reduced multi-scale behaviour
at the given moderately high Reynolds number. Finally, it is proposed that the energy transfer from the low to the high-
wavenumber group in the GQL approximation, referred to as the ‘scattering’ mechanism [2], depends on the neutrally
stable leading Lyapunov spectrum of the linearised equations for the high wavenumber group. This has explained the
gradual extension of the spectra of the GQL model over a wider range, when the cut-off streamwise wavelength for the
velocity decomposition in the GQL model is sufficiently large. This is also consistent with the emergence of the trivial
solution in the high-wavenumber group, when the cut-off wavelength is sufficiently small (figure 1).

C. G. H. and Y. H. acknowledge the support of the Leverhulme trust (RPG-123-2019).

Figure 1. Premultiplied streamwise wavenumber spectra of k+
x Φ+

uu(y
+, λ+

x ) for (a) LES and (b) GQL25 (25 streamwise modes).
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INVARIANT SOLUTIONS AND CAUSALITY IN TURBULENCE
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It has been well known that the self-sustaining process [1] in the minimal flow unit [2] is interpreted theoretically as
nonlinear equilibrium represented by simple invariant solutions, such as a fixed point [3] and a periodic orbit [4], to the
Navier–Stokes equation. We believe that this theoretical interpretation can be extrapolated to self-sustaining structure and
dynamics in the buffer layer of near-wall turbulence, in which the sustaining turbulence exhibits essentially a single scale
in space and time. However, spatially or temporally multiscale realisations have been observed in wall turbulence [5]. The
former are large-scale structures irrupting into the near-wall region, while one example of the latter is intermittent bursting
associated with vigorous turbulence activity. Such spatially or temporally multiscale structures and events in turbulence
are beyond the characterisation by simple invariant solutions of a single scale in space and time.

In this talk, causation of spatially or temporally multiscale realisations in turbulence is discussed in terms of the known
invariant solutions to the Navier–Stokes equation and their connecting orbits in phase space. Large-scale turbulent oblique
stripes have been observed commonly in transitional plane Couette and Poiseuille flows [6]. They consist of a number
of smaller-scale low-velocity streaks and associated streamwise vortices, i.e. the minimal flow units. Similar large-scale
oblique stripes have also been found even in fully developed turbulent boundary layers and channels at high Reynolds
numbers [7]. Recently, Reetz, Kreilos and Schneider [8] have found a multiscale steady solution to the Navier–Stokes
equation that resembles oblique stripe patterns in plane Couette flow. The multiscale equilibrium arises from the spatially
doubly subharmonic instability of the Nagata steady solution [3]. The bifurcated invariant solution explains the origin of
the large-scale oblique turbulence structure in transitional wall-bounded shear flow. As in wall turbulence, hierarchical
turbulence structures have been observed in Rayleigh–Bénard convection, i.e. wall-bounded thermal convection [9]. The
recently found three-dimensional steady solution [10] to the Boussinesq equation for Rayleigh–Bénard convection reveals
the widely observed scaling law of heat transfer, Nu ∼ Ra

1/3 (Nu and Ra being the Nusselt number and the Rayleigh
number, respectively), as well as the multiscale structure consisting of larger-scale thermal convection and near-wall
plumes which become smaller at higher Rayleigh numbers, suggesting that the causality of the hierarchical structure in
convective turbulence could be traced to multiscale nonlinear equilibrium achieving a high heat flux.

Homoclinic and heteroclinic orbits to the periodic edge states [4] have been found in minimal plane Couette turbulence
at low Reynolds numbers [11, 12]. Bursting events in the minimal flow unit can be characterised in terms of occasional
excursions from the invariant solution embedded in turbulence along its homoclinic orbit. However, bursting in fully de-
veloped wall turbulence at higher Reynolds numbers cannot be interpreted as a connecting orbit to such a simple invariant
solution. Recently, another turbulent attractor has been identified in a relatively small periodic box for plane Couette
flow at high Reynolds numbers, exhibiting wavy large-scale streaks with vigorous turbulence activity in comparison to
commonly observed Couette turbulence [13]. In a larger periodic box, this attractor would be a turbulent saddle unstable
to spatially subharmonic perturbations, and transient approach to the wavy vigorous saddle along its connecting orbit
in phase (sub)space might be the causation of multiscale bursting events in plane Couette turbulence at high Reynolds
numbers.
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Rayleigh–Bénard convection is one of the most canonical flows and the fundamental problem in hydrodynamic stability
theory. When the Rayleigh number Ra (dimensionless temperature difference) reaches a certain critical value, convection
occurs and becomes turbulent eventually as Ra increases. One of the primary interests in convective turbulence is the
scaling law of the Nusselt number Nu (dimensionless vertical heat flux) with Ra, and two power laws for very high Ra,
the ‘classical’ scaling Nu ∼ Ra

1/3 and the ‘ultimate’ scaling Nu ∼ Pr
1/2

Ra
1/2 (where Pr is the Prandtl number), have

been intensively discussed (see e.g. Ref. [1]). The classical scaling has been reported in many experiments and numerical
simulations, and recently found for nonlinear steady solutions to the Oberbeck–Boussinesq equations [2, 3, 4]. On the
other hand, the ultimate scaling has not been observed yet in conventional Rayleigh–Bénard convection.
Recently, it has been numerically found that the ultimate scaling can be achieved in thermal convection between permeable
walls [5]. In the simulation, the vertical transpiration velocity on the walls is assumed to be proportional to the local
pressure fluctuation (Jiménez et al., 2001 [6]). In the present work, we have employed the permeable-wall condition and
obtained steady solutions for thermal convection between horizontal, no-slip and permeable walls with a distance H and
a constant temperature difference ∆T by using the Newton–Krylov iteration (for details, see Ref. [7]).
Figure 1(a) shows Nu of the two-dimensional (2-D) and three-dimensional (3-D) steady solutions and the turbulent state
in the thermal convection between permeable walls as a function of Ra. The ultimate scaling Nu ∼ Ra

1/2 can be
observed at high Ra in both steady and turbulent states. It is also confirmed that the steady solutions exhibit higher heat
transfer than those in the turbulent state. Thermal and flow structures of the 2-D and 3-D steady solutions at Ra = 107 are
shown in figures 1(b,c). In the steady ultimate states, the buoyancy induces remarkable large-scale thermal plumes fully
extending from one wall to the other, leading to strong vertical velocity of the order of the terminal velocity U as well
as intense temperature fluctuation of O(∆T ). Consequently, the wall-to-wall heat flux scales with U∆T independent of
thermal diffusivity, although the heat transfer on the walls is dominated by thermal conduction.

0

(a) (b) (c)
2-D steady solution
3-D steady solution
Turbulent state 
(Kawano et al. [5])

Figure 1. Steady and turbulent thermal convection between permeable walls with the permeability parameter βU = 3 for the horizontal
period L/H = 1 and Pr = 1. (a) Nu as a function of Ra. The black lines indicate the ultimate scaling Nu ∼ Ra

1/2. (b) Temperature
and flow fields of the 2-D steady solution at Ra = 10

7. Large-scale counter-clockwise (or clockwise) rolls are visualised by the black
solid (or dashed) streamlines. (c) Thermal and vortical structures of the 3-D steady solution at Ra = 10

7. The red and grey objects,
respectively, represent the isosurfaces of the high temperature and of the positive second invariant of the velocity gradient tensor.
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A new class of nonlinear solutions in the plane Couette flow (PCF) system is discovered. The solutions are obtained by
a homotopy continuation from the axisymmetric Taylor vortex flow in the limit of narrow gap between coaxial cylinders
which are rotating independently.

The Taylor-Couette system is controlled by the two Reynolds numbers, Ro and Ri, defined by Ro = ωorod
ν and Ri =

ωirid
ν , based on the radii, ro and ri, of the outer and inner cylinders which are rotating with the angular velocities, ωo

and ωi, respectively, where ν is the kinematic viscosity and d = ro − ri is the gap. The present analysis starts with a
derivation of the correct form of equations of motion for the Taylor-Couette system in the narrow gap limit, which are
parameterized by the Reynolds number, R = ωi(1−µ)rd

ν , and the rotation number, Ω = ωi(1+µ)d
2

ν , where r = ro+ri
2 is

the average radius and µ = ωo

ωi
is the angular velocity ratio. From these definitions of R and Ω, we find that

Ω = 2R
1− η
1 + η

1 + µ

1− µ
, (µ 6= 1), (1)

where η = ri
ro

is the radius ratio, so that Ω → 0 as η → 1 for a fixed value of R, namely, the system is reduced to the
PCF system in the narrow gap limit. However, this limit must be considered in such a way that the product of Ω and R
remains finite, as the system is known to become unstable to infinitesimal axisymmetric perturbations at a finite value of
the Taylor number, Ta = Ω(R − Ω) (see, for instance, [1]). Recall that the PCF system (Ω = 0) never becomes linearly
unstable for any R. ( Note the narrow gap limit corresponds to the Rayleigh line Ω = R for µ=1 as examined in [2].)

After linear instabilities for various µ by the past stability analyses [1] are confirmed, resulting nonlinear states of axi-
symmetric Taylor vortex flow (TVF) bifurcating from circular Couette flow are obtained. It is found that axisymmetric
TVF possesses both anti-symmetric and symmetric mean flow components (see Ǔanti(z) and Ǔsym(z) in Figure 1(a)).
Then, by exploiting the property that axisymmetric flows depend only on Ta, irrespectively on the values of Ω and R
provided Ω(R−Ω) remains the same, attempts are made to search for a homotopy continuation route of three-dimensional
wavy vortex flows (WVF) from the axisymmetric TVF branch at finite R, by using Ω as a homotopy parameter (see Figure
1(b)). The figure shows the existence of new PCF solutions indicated by open circles at Ω = 0 along the continuation
routes before reaching the PCF solutions of [3] indicated by black squares. It is found that the new solutions inherit the
property of the axisymmetric TVF in the narrow gap limit, namely the symmetric mean flow component. Recall that those
solutions known to exist so far in PCF, such as [3, 4], are all characterized by the mean flows which are anti-symmetric.

(a) (b)

Figure 1. (a) Anti-symmetric (left) and symmetric (right) mean flow components of axisymmetric TVF where z = r−r
d/2

. µ =1.0, 0.5,
0.25, 0.0, -0.5 from bottom to top. Ta = 150. (b) Bifurcation of WVF with respect to the momentum transport, MT . R = 150. red:
µ=1.0, blue: µ=0.9, green: µ = 0.5. Black squares: the PCF solutions in [3]. Open circles: new PCF solutions.

Further investigations of the flow fields of the new solutions would contribute toward the study of turbulent transport in
conjunction with the similarity between the narrow-gap Taylor-Couette system and Rayleigh-Bénard convection [5].
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Recently, direct numerical simulations have provided evidence that the information exchange between the near–wall and
the outer region of turbulent channel flows is an asymmetric process, with information being preferentially transported
from the outer flow towards the wall [2]. Causalitywise, this observation implies that the flow structures in the outer layer
exert a significant influence on the dynamics of their counterparts in the near–wall region [4], whilst the impact of the
latter on the outer layer structures seems to be limited. Compared to the canonical case, the causal relations between
outer and near–wall dynamics in hydraulic free–surface flows over mobile sediment beds are less well understood. In
this talk, we discuss as an example for an open causality problem in hydraulics the development of streamwise–aligned
sediment ridges on an initially flat mobile sediment bed sheared by a turbulent open channel flow (cf. figure 1). While
these sediment ridges are well–known to closely interact with secondary currents of Prandtl’s second kind, it remains
unclear whether a lateral bed variation causes the formation of secondary flow patterns in a ‘bottom–up mechanism’
or whether, vice versa, a spanwise variation of the turbulent flow is responsible for the evolution of the characteristic
bedforms implying a ‘top–down mechanism’ [5].
By means of interface–resolved direct numerical simulations incorporating an immersed boundary technique and a dis-
crete element model [7, 3], we show that the formation of sediment ridges is controlled by the outer large–scale velocity
streaks and associated Reynolds stress–carrying structures in a ‘top–down mechanism’ that is in line with the concept of
causality in canonical single–phase channel flows outlined in [2]. In this context, two–point two–time correlations reveal
that the sediment bed evolution follows the dynamics of the large–scale structures in the channel bulk with a delay of
several bulk time units, underlining the causal relation between both. The large–scale flow structures induce spanwise–
alternating regions of low and high bed shear stress and thus lead to a locally reduced or enhanced erosion activity. The
eroded sediment concentrates in a rather thin but intense sediment transport layer above the bed that disrupts the clas-
sical buffer–layer processes. The dynamics of the largest–scale structures in the channel bulk, on the other hand, do
not significantly differ from those in single–phase smooth–wall open channels, thereby supporting earlier observations
over fully–rough bottom walls according to which the outer flow is essentially unaffected by the details of the near–wall
dynamics [6, 1].

Funding The current work was supported by the German Research Foundation (DFG) through grant UH242/12-1.

Figure 1. Instantaneous snapshot of sediment ridges and troughs together with a large–scale low–speed streak, visualised as isosorface
of the streamwise velocity fluctuation u′. Brighter particle colours indicate a larger distance to the bottom wall. The mean secondary
flow pattern is shown as vector plot at the downstream end of the periodic domain, main flow is from bottom left to top right. Simulation
parameters: Reb = 9500, Reτ = 830, Ga = 57, ρp/ρf = 2.5, Hf/D = 25.
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Particulate flow systems exhibit a number of puzzling phenomena with important practical consequences. One prominent
example is their non-trivial spatial distribution which sometimes manifests itself in the form of clustering and/or preferen-
tial concentration with respect to turbulent flow structures [1]. This “de-mixing” of the dispersed phase can significantly
affect the operation of diverse processes, such as chemical reactions, heat transfer, growth of droplets in clouds, etc.
Modern laboratory experiments and high-fidelity numerical simulations have enabled researchers to gather an enormous
wealth of data, with the aid of which a number of aspects pertaining to particle-turbulence interaction have already been
elucidated. However, many other questions still elude our understanding, e.g. how to disentangle the roles of density and
particle size in determining the particle dynamics.
In order to simplify the problem, we propose to study particles suspended in simple invariant solutions (equilibria, peri-
odic orbits) to the Navier-Stokes equations. Since these flows are believed to be relevant to turbulence [2], they allow us
to design tractable numerical laboratories for the investigation of particle dynamics. In a first step we have demonstrated
the feasibility of this approach by using Nagata’s equilibrium solution in Couette flow for this purpose [3]. It could be
shown that the well-known focusing of heavy particles into low-speed streaks (and subsequent apparent velocity lag) can
be captured in this manner. Subsequently we have started to explore a number of solutions in different flow configura-
tions: open channel flow, rectangular duct flow, homogeneous flow under different types of forcing. In addition to using
equilibrium solutions, we have also employed periodic orbits, both in wall-bounded and unbounded flows.
At the workshop we are going to report on our ongoing research in this direction. We will discuss the stability of the
respective invariant solutions with respect to the addition of finite-size particles, as well as our attempts to extract new
physics from these systems.

Figure 1. Trajectory of a spherical particle (diameter D/h = 0.16, density ratio ρp/ρf = 10) suspended in the “gentle” Couette
periodic orbit of [4] at Re = 250 and zero gravity. The temporal interval corresponds to approximately 500 bulk time units. The view
is into the streamwise direction (left) and into the span (right); the grey-colored boxes indicate the domain size, while the trajectory is
unwrapped in the periodic directions.
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Bypass transition to turbulence is a very sensitive phenomenon, whose accurate prediction can have important repercus-
sions in aeronautical design. Even formulated as an initial value problem, a causal explanation for the seemingly random
occurrence of turbulent spots remains yet incomplete. The initial condition energetically closest to the laminar state, while
just able to cause transition to turbulence, is called minimal seed [1]. This elegant concept was initially introduced for
parallel shear flows, where a given geometry and Reynolds number entirely define the minimal seed. Such a picture is
challenged in spatially developing flows [2]. Using nonlinear adjoint optimisation, we show how the resulting minimal
seed in spatially developing boundary layer flows depends explicitly on three optimisation parameters: the inlet Reynolds
number at the start of the computational domain, the horizon time and the dimensions of the computational domain. Our
results suggest a new scaling for the energy of the minimal seed with the Reynolds number, other parameters being held
constant. We analyse the physical structure of the minimal seed for several Reynolds numbers by classifying patterns of
high and low streamwise velocity perturbations. Both Orr and lift-up mechanisms can be singled out during the temporal
evolution of the minimal seeds. We then show that shorter optimisation times result in suboptimal transition.

Financial support by the Swedish Research Council (VR) Grant No. 2016-03541 and computing time provided by the
Swedish National Infrastructure for Computing (SNIC) are gratefully acknowledged
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Figure 1. Streamwise perturbation velocity (blue for negative; red for positive) for (a,b) optimal disturbances above the minimal seed in
the set-up described in [2]. (a) E0 = 1.7×10−2, Reδ∗ = 275 (b) E0 = 3.0×10−2, Reδ∗ = 395.98. (c,d) Evolution of perturbations
(a,b) at t = 200
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In the past decades machine learning has had a rapidly growing impact on many fields of natural-, life- and social sciences
as well as engineering. Machine learning excels at classification and regression tasks from complex heterogeneous datasets
and can answer questions like “What statistical associations or correlations can we see in the data?”, “What objects are
in this picture?”, or “What is the most likely next data point?”. But many questions in science, engineering, and politics
are about “What are the causal relations underlying the data?” or “What if a certain variable changes or is changed?” or
“What would have happened if some variable had another value?”. Data-driven machine learning alone fails to answer
such questions. Causal inference provides the theory and methods to learn and utilize qualitative knowledge about causal
relations. Together with machine learning it enables causal reasoning given complex data. Furthermore, causal methods
can be used to intercompare and validate physical simulation models. In this talk I will present an overview of this exciting
and widely applicable framework and illustrate it with some examples from Earth sciences and beyond.


