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Abstract

Surveys of the skin-friction velocity under a high-Reyreld
number turbulent boundary layer were conducted to obtan th
imprint generated by large-scale structures in the logauiit
region. Two spanwise arrays of hot-films, separated in the
streamwise direction, were employed to investigate théuevo
tion of the large-scale footprint with the emphasis on usage
future real-time control. An estimate of the downstreamtfoo
print, based on the upstream input, is compared directlpeo t
measurement from the second array. Firstly, Fourier decemp
sition and proper orthogonal decomposition reveal thessm
homogeneity and periodicity. Then, by using Taylor's hypot
esis as a first-principal estimate, the anticipatefrcontrol

for targeting high-speed structures is 68.3 % accurateringe

of timing. When only considering the spanwise modes that re-
main coherent, and their individual convective speedsadce-
racy is improved to 72.7 %. In the final part, we elucidate @n th
spanwise inclination and meandering of large-scale sirast

It is shown how inclined structures do not drift in the spagavi
direction in the conditionally averaged results.

Introduction

Past research on high-Reynolds-number turbulent boundary
layers has revealed the existence of large-scale turbsiernt-
tures in the logarithmic region, consisting of flow regiortsane

the instantaneous velocity is spatially coherent in thenfoff
uniform momentum zones, which are either below or above the
mean velocity [4, 13, 8]. The coherence is evidenced by their
significant lifetimes in the streamwise direction (up tos2@nd
organization in the spanwise and wall-normal directior] [
ongoing éfort at the University of Melbourne is to actively con-
trol these large-scale structures. The motive for doingriglies

on the fact that large-scale structures modulate the amdgliof
near-wall velocity fluctuations [9, 12]. Henceforth, if warc
efficiently target and reduce the high-speed structures, it-is e
visioned that near-wall shear-stress fluctuations, anchéan,

will be reduced.

For non-intrusive, practical purposes, an array of skictitm
sensors was flush-mounted to the wall and formed our detec-
tion plant. The skin-friction footprint is generated byusttures
throughout the entire boundary layer, but, by implementng
real-time temporal filter, the large-scale footprint isrimted
(see Hutchingt al. [10] and others). As a first step, feedfor-
ward control is anticipated, and hence, a real-time implaee
tion of this form of control requires a finite streamwise sepa
tion distance between the locationagtectionand the location
where subsequent contr@attionis executed. This follows from
an accumulation of constraints imposed by real-time filigri
control decision making, mechanical delays and the phlysica
inclination of large-scale structures. Since feedforwadtrol
relies on an estimate of thaction imprint, a suitable estima-
tion procedure, with th@etectionimprint taken as the input,
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has to be embraced foffeient control. In this work, two skin-
friction arrays (positioned at locations of detection antiam;
visualized in figure 1) are employed to assess various estima
tion procedures. Here, we focus on thBatent usage of these
techniques for real-time control, and so, the current werén
initial step towards implementation of feedforward cohiinan
efficient manner.

Figure 1. Schematic of two spanwise arrays & Xz or X3 & xg) of
shear-stress sensors; an actuation array of wall-nortsakjpositioned
at x; during real-time control studies.

Applicable estimation procedures will condense to staitas
estimation, which has been widely applied in coherent turbu
lent flows. As a first-principal case, we will explore the esti
mate from a uniform convection velocity (Taylor's hypotiss
Then, first-order stochastic estimation techniques, duithfe-

ear Stochastic Estimation (LSE) [1] are explored by apglyin
single-time LSE €.g.Cole and Glauser [6]). Additionally, data
were decomposed in the spanwise direction using Proper Or-
thogonal Decomposition (POD) [11] and Fourier analysisito i
vestigate the spanwise periodicity of the footprint. Suebain-
positions also allow us to perform an estimate of each indii
mode. Here, a simple single-time estimate is performed and w
refer to Bonnetet al. [5] for a more comprehensive approach
by which low-dimensional estimates can be performed by com-
bining LSE and POD; see also the overview provided by Baars
and Tinney [2].

Experimental Arrangement

Experiments were conducted in the high Reynolds number
boundary layer wind tunnel at the University of Melbourne at
a friction Reynolds number dRe = U;6/v = 14,400 U =

20 mys); wheres = 0.367 m is the boundary layer thickness,
U, = 0.64 nys is the friction velocity, and is the kinematic vis-
cosity. Each spanwise array of shear-stress sensors tsghsfs
nine flush-mounted Dantec 55R47 glue on type hot-films, with
an equidistant spacing afy/s = 0.071 and a span dfy/s =
0.567 (figure 1). The hot-films were operated in CTA mode,
with an overheat ratio of 1.05, and were synchronously aedui

at a rate offs = 5 kHz using AA labs AN 1003 anemometers.
The sensors were calibrated such that the friction veldaity
m/s was obtained [10]. Two streamwise separation distances
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Figure 2. (a) Contour of fluctuating friction velocity &, (b) reconstructed field using Fourier moafe= 0, 1 & 2. Contour levels correspond to:
U,(xl,y,Ax)/( \/XO’T); whereo is the standard deviation of the signal ake: 1 for (a) andA = 0.727 for (b).

of Xo — X1 = 1.645 and x3 — x; = 3.275 were considered. The
former represents a typical spacing between detectionetnd j
actuation as encountered during real-time control, sineeex
quire a temporal interval on the order @6 — x;) /U¢ ~ 43 ms.
The convective spedd; =219 was found from two-point cor-
relations. After signal acquisition, a 1D Gaussian filteswan-
volved with each signal to retrieve the large-scale fluotunst
the standard deviation of the filtered fieldas = 0.0507 mjs.
The Gaussian filter of 6~ in length spanned.&fs6/U; = 131
samples. In the remainder of this work, wall-imprints are-pr
sented in terms of spatial coordinates. As an example, the
Gaussian-filtered field at;, denoted a$J: (x1,Y,t), is visual-
ized in figure 2a in terms df); (x1,y,Ax), whereAx = —tUc.
Finally, data corresponding ©U.. /6 = 8.6- 10° boundary layer
turn-over times were used to obtain converged statisticsge
wavelengths.

Spanwise Homogeneity and Periodicity of Footprint

A low-dimensional analysis of the friction velocity fieldiew
conducted. The significance of doing this is to allow theasari
tion in the spanwise direction to be described by a reduced se
of time-dependent cdicients, since one can omit the spatial
modes that possess insignificant amounts of energy, orrdisca
modes that are incoherent in the streamwise directiont Wa's
consider a Fourier decomposition at one particular looatjo
note thatx; is omitted in further expressions for convenience.
The friction velocity fieldU (y,t) is decomposed according to

4
Ur (1) = > cm(®e™", €

m=0
where length P= 9/8Ly and cm(t) € C are the Fourier cds-
cients. Equation (1) can be recast as a real-valued sefesew
real codficientscCyy (t) € R contribute as evemt > 1) and odd
modes (7 < —1); &(t) remains similar and equals the time-
varying spanwise mean. As opposed to Fourier decomposition
POD [11, 3] does not assume mode-shapesiori. Generally,
orthogonal spatial modes are deduced directly from an ensem
ble of coherent data, while time-dependentfficents charac-
terize the temporal dynamics of each mode. The classical for
of the POD, applied in the spanwise direction results in

9
Ur () = > an(®(y). 2
n=1

The mode-shapes™ (y) are obtained by solving the following
integral eigenvalue problem:

f RY.y) 6™ (y)dy = A0 y). 3)

whereR(y,y’) = (U (y,t) U (Y, 1)) is the two-point correlation
matrix. POD coéicients are obtained through the mapping

an(t) = f U: (1,56 (y) dy. @)

and their variance is equal to the associated eigenval{fes
Hence, the total resolved energy (TRE) is given by

4 9
A= AT = N0 = 952,
DI

- n=1

Q)

where A™M is the variance of Fourier céiicient &y (t). The
aforementioned techniques can be implemented in real-time
provided an initialization is performed to obtain the PODdes
offline (solving equation 3).

Let us now elucidate the modal energy distributions. Pre-
multiplied energy spectra of the mode fugents are shown

in figure 3a. The area covered by one spectrum is proportional
to the fraction of energy in the corresponding mode. Figure 4
complements this by visualizing the fraction of eneagy 1/A

per mode. Before discussing the spectral content it is itapor
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Figure 3. (a) Pre-multiplied energy spectra of time-vagyicodti-

cientscyy (t) andan(t). (b) Two-dimensional energy spectrum of stream-
wisg'spanwise friction-velocity fluctuations.

to comment on the mode-shapes, which are not shown in this
condensed paper. POD modes 1 & 2 resemble a spanwise
variation that is equal to the first odd and even Fourier modes
m = -1 & 1, respectively; they also posses near-identical en-
ergy fractions. Furthermore, POD modes 1 & 2 have non-
zero means, which suggests a coherent phase relation loetwee
Fourier modesy =0 & m’ = —1,1; however, this is beyond
the scope of this paper. Nonetheless, the field is homogeneou



in y and a Fourier decomposition is justified. Fourier modes
with higher rankm comprise smaller spanwise wavelengths and
their discrete values can be deduced from the ordinate of fig-
ure 3b, where the 2D energy spectrum is shown. Evidence of
the expected peak aroundx(dy)/é = (6,0.7) is there despite
the sparse resolution ity.

To illustrate the strength of a low-dimensional represtma
the Gaussian filtered field in figure 2a is reconstructed by pre
serving Fourier modem= 0, 1 & 2 (figure 2b). Essentially, the
field is filtered iny by discarding the least energetic modes. Ad-
ditionally, the phase angle between odd and even Fourieemod
can be utilized to identify high-speed and low-speed sseak
The streaks corresponding to maale= 1 are identified on the
graph, which, by visual inspection identify the regions fth
(=) and low (- -) skin-friction velocity reasonably well.
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Figure 4. Energy fractions per mode:= 1/A.

Streamwise Estimation of Footprint

A first logical step in examining the evolution of the footgri

is to consider its convective speélt. Figure 5 presents the
convective speed (abscissa) obtained from the maximurrein th
two-point correlation (ordinate). First, this is perfordnéor

the Gaussian-filtered signals in a one-to-one fashion. Then
POD codficients of the same rank are correlated;(xy,t)
with an(xi,t)li=2,3, and similarly for the Fourier cdgcients:

Cry (X1, t) with €y (X, t)li=2,3. For all casesU¢ is higher for

an increasing separation distance-¢ o), which is simply the
consequence of larger scales remaining more coherent. The
convective speeds are disparate for modes wiffeidint span-
wise wavelengths. For example, the convective speed ofdroul
modem = 2 is ~» 5% smaller than its equivalent for modes
m=0 & 1. This implicitly shows the hierarchy of structures
throughout the boundary layer, since wider and longer strt
tures reside further from the wall, and hence, convect faste

Since our aim during goff-control is to exclusively target high-
speed structures, we quantify the similarity between thie es
mate and direct measured fieldsatas follows. The fraction
of time that the estimated field-(Xx2,y,t) > 0, given the mea-
sured fieldU;(xp,y.t) > 0, is defined ag, i.e. in terms of set
theory: U: > 0)n(U; > 0); note that in the case of randomr
firing B = 50 %, whileg = 100 % for an ideal scenario. Fur-
thermore, during all instances of misfiring, not all skirefion
events have equal and opposite amplitude compared to the -
stances of successful targeting. Therefore, the mean dathe
geted events, relative to the mean of the positive skiridiric
events atxp, is used to quantify the amplitude of the targeted
events:¢ = [U; | U; > 0]/[U5 | U > 0]. In the remainder we
refer tog as the ‘timing &iciency’ and/ as the ‘targeting fi-
ciency’.
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Figure 5. Two-point correlation maximanax With associated convec-
tive speeds for raw signals, POD- and Fourierfioients (both separa-
tion distancesg — X1 : O & X3 —Xp : O).

As a first principal estimate we apply a uniform convection ve
locity (Taylor's hypothesis) to the field at (input) to obtain
the wall print (output) aky. This scenario is case A in table 1.

case| Ui[m/s]  B%] ¢[%] U;[U;>0
A 21.3 68.3 51.8 0.79
B 21.3 72.6 64.5 0.81
C 21.7/21.6/20.7 2.7 64.6 0.81

Table 1. Similarity between estimate and direct measurétidtelown-
stream location,.

Next, we only consider Fourier modes that remain coherest ov
the streamwise distance considered (see figure 5). The field
at x; is reconstructed using Fourier mode= 0,1 & 2 and
shifted to locationx, according to its mean convective speed
(Ud =213). For illustrative purposes, the estimated and mea-
sured field atxp are shown in figures 6a and 6c, respectively,
alongside their binary maps of targeting instances. Thetitna

of overlap of the gray portions of figures 6b and 6d (for alliava
able data) is equal 6 = 72.6 %; the similarity parameters are
listed in table 1, case B. As a logical consequence of a deerea
in misfiring, the targetingféiciency is increased = 64.5 %.
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Figure 6. (a,c) Visualization of the reconstructed estaddteld at lo-
cation xz (based on input at;) and measured field ab, by omitting

streamwise incoherent Fourier modas- 3 & 4, with alongside (c,d)
the associated binary maps of firing instances in grey.
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Finally, the attempt is made to increase the accuracy ofshe e
timate in case B by considering the convective speed atedcia
with each distinct mode. The individual convective speads a
listed for case C in table 1. It is clear that the improvement i
the estimate is negligible, which can be easily explainede T
difference in convective speeds, and the associated shiftefor t
estimate, is relatively small compared to the length of éngd-
scale structures, and so, the improvement will only be migre s
nificant when larger streamwise distances are considereid. T
however, comes at the expense of a decrease in coherence.
is important to realize that a perfect estimge=(¢ = 100 %)

is practically impossible. First of all, structures disdip and
have a limited lifetime, and secondly, structures mightegop
from outside the domain. Nonetheless, we believe that ar ove
all efficiency taken ag = 2/ (/3‘1 +§‘1) =684 % (case B or C)
should result in anféective form of control.

Meandering and Spanwise Inclination

In order to investigate the spanwise inclination and drift o
structures we reside to the phase angle of paired Fourieespod
as was used in figure 2b to identify low- and high-speed streak
The footprint atx; is conditioned on events where the spanwise
inclination angle of Fourier mode = 1 obeys byp(x;) > 15°;
here we take the midpoint of a structure and the result is show
in figure 7a. Skin-friction fields at downstream locatiogs
and x3 are conditionally averaged using the same condition
¢(x1) > 15° in order to reveal how the inclined structures ap-
pear downstream (figures 7b and 7c). The inclined structures
are shown to relax downstream since they become less idcline
and less pronounced in amplitude. Furthermore, the steictu
remains centered &t= 0, which shows that the inclined struc-
tures do not drift in a preferred spanwise direction, on ager
The implication of this is that corrections for spanwiseftdri

the estimate have to be more novel than being based on an in-

stantaneous spanwise inclination of the structure.

A% | ¢(xg) > 15)
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Figure 7. (a) Skin-friction velocity footprint at; conditioned on span-
wise inclination angles(x;) > 15°, and associated conditioned foot-
prints (shifted byUd = 21.3) at locationxz (b) andxz (c); the white
lines indicate a 15spanwise inclination.

Conclusions

Estimates of the time-dependent spanwise skin-frictidnore
ity footprint under a high-Reynolds-number turbulent baary
layer were performed. The estimation-input was acquirea at
detectionlocation, where after the estimated field at a down-
stream distance aof, — x; = 1.64 § was compared with a di-
rect measurement. When only considering the spanwisedfouri
modes being coherent over this distance, the instanceglof hi
speed events were targeted 72.7 % accurate. An ongéing e
at the University of Melbourne is to control high-speed &rg
scale structures, and so, an array of wall-normal jets &ilbb-
sitioned at the downstream location to perform conaaiion

More accuratestreamwise evolutiowan be accounted for in
future work using the implementation of multi-time (spetkr
LSE per mode if time-constraints of the real-time controhge
allow for this. Variation in the spanwise drift, or meanaegyiof
the structures, is more fiicult to account for, as it was shown
that on average, spanwise inclined structures do not mavein
spanwise direction. Henceforth, a possible scheme to atcou
for spanwise drifis not trivial to implement. Finally, the mode
decomposition generates a wide variety of control stratetiat

Itwill be explored.
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