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Abstract

For the first time modes representative of the linear dynamic
(Koopman) and associated nonlinear error (stochasticrieova
ance) are calculated for a periodically forced adversespres
gradient flow. The Koopman and stochastic covariance modes
are determined from the solution of two separate eigenvalue
problems, both constructed from a series of time resolved ob
servations. The specific flow configuration is a NACA-0015
aerofoil with a periodic zero-net-mass-flux slot jet fogiat

the leading edge. The aerofoil is at an angle of attack 6f 18
with a chord based Reynolds number ok30*. Modes are
calculated from high repetition rate particle image vetoei

try measurements. Modes constructed from fluctuationstabou
the time averaged baseflow are dominated by modes of tem-
poral and spatial scale similar to that of the forcing. Modes
constructed from fluctuations about the phase averaged base
flow describe interactions between the forcing and the ahtur
variability, and oscillations in the leading edge sheaetay

Introduction

Many engineering systems operate in the presence of adverse

pressure gradients, including: aircraft wings, wind toebi
blades, and any form of turbomachinery. Flow separatiomyn a

of these scenarios can lead to drastic reductions in pegfioce

and at worst catastrophic consequences. The study of separa
tion will enable us to further understand the pertinent lataum
layer physical processes, and to develop practical passiyi®r
active flow control devices.

The specific configuration studied within is a leading edge se
arated NACA 0015 aerofoil at an angle of attack of 18ith a
chord based Reynolds numberRé= u,c/v = 3 x 104, where

v is the kinematic viscosityc the chord length, and. the
freestream velocity. All parameters and results presemttiin

are non-dimensionalised lyandu.. The system is periodi-
cally forced by a two-dimensional zero-net-mass-flux (ZNMF
slot jet at the leading edge of frequenfy= 1.22 and a mo-
mentum blowing coefficient o, = uirmsh = 0.0014, where
Ujrms is the root-mean-square jet velocity ahds the jet slot
width. This jet actively controls the flow, which delays sepa
tion and enhances the lift force. The experiments are caaduc
in a horizontal water tunnel using high repetition rate ighat
image velocimetry (HR-PIV) to measure the time-resolvea-tw
component, two-dimensional velocity fields at the mid-span
In the absence of forcing, laminar flow separation occurs at
the leading edge as shown in figure 1(a). In the presence of
the above specified forcing a time-averaged reattachmeheof
flow is achieved, as illustrated in figure 1(b). A detailedaigs
tion of the experiments is presented in [1, 10], and a largky ed
simulation of the unforced baseflow is discussed in [6].

The focus of the present paper is to study the stability prop-
erties of the controlled aerofoil flow in the temporally et
ically forced environment. Using a proper orthogonal decom
position (POD) projection method outlined within [5, 2], we
construct a stochastic linear model representing the ggalu

of the discretely sampled (truncated) system, from the -time
resolved HR-PIV measurements of [1], with a time between
velocity field snapshots dft = 0.0067. We present the eigen-
vectors of the linear operator (Koopman modes) represgntin
the linear dynamics, and also the eigenvectors of the covari
ance matrix of the stochastic force representing the flticios

not governed by the linear operator. The general matheahatic
approach for computing the modes is outlined in the follow-
ing section. Koopman and stochastic covariance modes kre ca
culated for fluctuations about both the time averaged bageflo
and the phase averaged baseflow. Physical interpretatiads m
from the spatial and temporal characteristics of these sade
provided.

@

ZNMF excitation

(b)

Figure 1: Dye flow visualisation [10] of a NACA-0015 aerofoil
ata = 18 andRe= 3 x 10*: (a) unforced case; (b) ZNMF jet
forcing at the leading edge with a forcing frequencygf 1.22
and momentum blowing coefficient of = 0.0014.



Koopman Mode Theory

Koopman modes [7] were introduced to geophysical fluid me-
chanics in [4] (termed principal oscillation patterns)tiwa de-
tailed review presented in [11]. Further detailed discussin

the Koopman operator in the field of engineering fluid mechan-
ics is presented in [8, 9]. Here we follow the derivation df [3
The approach uses observations of a general nonlineamsyste
to construct a linear operator that best represents thetéwol

of the system, with the eigenvectors of the linear operatar a
error covariance matrix the modes of interest. Howeverlithe
ear operator becomes prohibitively large for data setsmvihy
spatial points. In the present study we alleviate this gnobby
projecting the eigenvalue problems onto a set of POD modes as
outlined in [5]. The following discussion, however, willdos

on the Koopman mode theory.

To facilitate the discussion we define the state veatoy that
contains the streamwisei)(and vertical ) velocity compo-
nents at all points in space at time It is decomposed into a
potentially time varying baseflow)(©)(t) and the fluctuations
about this baseflow/(t). Results are presented fat%(t)
equal to both the time and phase averaged baseflow.

In the Koopman mode decomposition a non-linear system is ap-
proximated by

u'(t) Mu’(t) +f(t) , (1)

whereM is a time invariant linear operator, afid) represents
the nonlinear interactions not governedMy The estimate of
M that minimises the variance 6éft) is given by Gauss’ theo-
rem of least squares to be

M = i[(u’(t+At)u'T(t))(u’(t)u’T(t)Yl*

I, )

where the angular brackets denote time averaging, and vee hav
approximated the state time derivative as

W) ~ u’(t+A2—u’(t)’ 3)

with At the time between discretely sampled snapshots. The
Koopman modes are given by the solution of the eigenvalue
problem

—_ioMy Mu )

4)
where for each modg¢ > 0, the complex right eigenvector is
U, and the complex eigenval@) = ol +iQ. The
(i)

imaginary componer®; "’ is the growth rate, and the real com-
For

<0,

ponent is related to the frequenéy!) by ol = onf (),

temporally growing modeﬁi“) > 0, decaying mode@i“)
and marginally stable modeQi“) = 0. The left eigenvectors
(adjoint modes), form a biorthogonal set with the right eige
vectors (direct modes). We use the adjoint modes to determin
the contribution of each direct mode to the individual simas,
from which we determine the amount of fluctuation energy rep-

resented by each modg(()).

In addition for a system in statistical steady state with
(@/0t)(u’(HHu'T(t)) = 0, one can determine the stochastic co-
variance off(t), denoted byF, which is the variance of the
fluctuations not governed by the deterministic linear ofera
M. The variance- is determined from (1) post-multiplied by
u’T (t) added tau’(t) multiplied by the transpose of (1), all time
averaged, such that

{fOUT ) + W' OF (1))
MU' tuT (1) — W OuTOMT

F

()

One can now determinE using the previously calculated .
The eigensolution of the real symmetric matffixs given by

(6)

where for each modg > 0, the real eigenvalue'!) represents

the fluctuation energy in each mode, am@ is the real eigen-
vector capturing any spatial correlation in the error fi€ldhe
modes are in order of decreasing energy. One can consider thi
eigenvalue problem as generating a POD of the fluctuatiohs no
governed by the linear operativt.

oy = ruy,

Modes Representative of the Linearised Dynamics

We now present the temporal and spatial properties of the lin
earised dynamics for fluctuations about both the time andgha
averaged baseflows. The time averaged baseflow of the snap-
shots is calculated and subtracted away from each snapshot,
from which the linear operatdvl is calculated using (2). The
phase used for the phase averaged based flow is that of the peri
odic forcing ¥/ fo = 0.82. This time dependent baseflow is cal-
culated and subtracted away from each snapshot, from which
the linear operatoM is again calculated using (2).

The eigenvalues o for both baseflow cases are illustrated
in figure 2(a). The cross symbols represent the time averaged
case, and the filled circular symbols represent the phage ave

aged case. In both cas@g(,” < 0 for all j. This means that

the fluctuations are either decaying or marginally stablaclv

one would expect for a system in a statistical steady staie. F
systems such as these more insight can be gained by looking at
the energy E())) associated with the frequenc§({)) of each
Koopman mode.

We represent the energy in each mode by a pre-multiplied
(EW £0) versusf (1)) log-linear plot in figure 2(b), as this most
clearly highlights the peaks for a given frequency. For theet
averaged baseflow case, the frequency of the three most ener-
getic Koopman modes line up with the forcing frequerfgy

its first harmonic 2y, and second harmonicfg illustrated in
figure 2(b) by the dashed vertical lines. The reabmponent

of the Koopman mode with a frequency &f is illustrated in
figure 2(c), exhibiting a train of vortex structures. The gna
inary v component has structures of similar scale, but shifted
downstream such that its vortex structures are out of phike w
the real component. The oscillatory behaviour of the forced
dynamics of frequencyy are reconstructed by linear combina-
tions of the real and imaginary components of this mode. The
real v component of the Koopman mode with a frequency of
2fg isiillustrated in figure 2(d), also exhibiting a train of vext
structures, but more densely packed and smaller in sizee-Lik
wise the imaginaryw component is shifted downstream out of
phase. The mode with a frequency dh&ontains even smaller
structures. In summary, the most energetic modes repiegent
the fluctuations about the time averaged baseflow capture the
external forcing applied to the system.

The phase averaged baseflow includes the dynamics with fre-
guencies that are the same as the fordingnd the harmonics

of the forcing. This means the fluctuations about this baseflo
exclude the dominant dynamics discussed above. This is clea
from figure 2(b) with the energy at frequencigs 2fy and 3fg
orders of magnitude less than that observed in the previses c
The remaining modes reflect the interactions between thee for
ing and the natural variability. In the unforced system ttee f
quency of the dominant natural shedding modfis- 0.64 [6].
Nonlinear interaction between the forcing of frequerigyand

the natural shedding of frequendy, would produce fluctua-
tions of frequenciedy — f, = 0.58 andfy + f, = 1.86. In fact
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Figure 2: Deterministic dynamics about the time averagati@rase averaged baseflow. (a) Koopman eigenvalues. (b)aop
energy versus frequency with forcing frequerfgyand harmonics & and 3, labelled. Real component of Koopman modes with
contour levels from-0.005 (blue) to 05 (red) for the time averaged based flow with{c} fo; and (d) f = 2fg; and for the phase

averaged based flow with (€)= fac— fn; and (f) f = fac+ fn.

two of the most energetic modes about the phase averaged mean2) in figure 3(c). Mode 2 has similar spatial structure andesca

have these frequencies, which are both circled in figure. 2(b)
The realv component for the mode of frequenéy— fy, is il-
lustrated in figure 2(e), which illustrates structures darthan
those previously illustrated, consistent with it havingpbader
time scale (¥(fo — fn)). Likewise the real’ component for the
mode with a frequencyg + fy, is illustrated in figure 2(f), and
has a more complex vortex structure.

From figure 2(b) itis clear from the encircled modes, thatehe
are also coincident modes calculated about the time awérage
baseflow. The respective modes also have near identicadispat
forms. This indicates that the subtraction of the time ayeda
baseflow is sufficient to identify modes associated with the e
ternal forcing, and also those associated with the intenast
between the external forcing and the dynamics of the natural
forced system. The advantage of subtracting the phasegecera
baseflow will become evident after considering the stodhast
covariance below.

Modes Representative of the Stochastic Covariance

For the fluctuations about both the time and phase averaged
baseflows, the eigenvalues of the stochastic covariancexmat

F are illustrated in figure 3(a). Itis clear that the eneady of

the time averaged case is larger than that of the phase aderag
case for at least the first 30 modes, after whi¢h of the two
cases converge. This indicates that a linear stochastieimod
based on the fluctuations about the time averaged baseflew, ha
greater uncertainty than a model based on the fluctuatiang ab
the phase averaged baseflow.

This issue becomes more evident after inspecting the associ
ated mode shapes. The most energetic mode (mode 1) for the
time averaged baseflow is illustrated by theelocity compo-

nent in figure 3(b), and for the next most energetic mode (mode

to mode 1 but shifted out of phase downstream. These modes
have very similar spatial properties to the Koopman mode of
frequency 3 illustrated in figure 2(d). This indicates that the
most significant error in the linear model of the evolutiorituf
fluctuations, is that based on the representation of scadesn-
bling the first harmonic. As the mode number increases, and th
energy in each mode decreases, the size of the vortex sgactu

in the associated stochastic covariance modes also desreas

The stochastic covariance modes calculated from the fluctua
tions about the phase averaged baseflow have minimal resem-
blance to the dominant Koopman modes and the external forc-
ing. Mode 1 is illustrated in figure 3(d), and is represenéatif

the incoherent fluctuations distributed throughout the aiom
Modes 2 contains larger yet still incoherent structures.d&4o

3 through to 6 contain coherent structures representatitfeeo
small scale fluctuations centred about the leading edger shea
layer, with mode 5 illustrated in figure 3(e).

Note the Koopman modes have both a coherent spatial form
given by the eigenvectord(l), and a coherent temporal form
given by the frequency and temporal growth rate embedded in
the complex eigenvalu@()). The stochastic covariance modes,
however, only have a coherent spatial form given by the eigen

vectorsU(SD. We know the temporal variance of each of the

modes fromom, from which one could build a stochastic re-
duced order model of the system using the approach outlimed i
[12].

Conclusions

Modes representative of the linear dynamics and stochestic
variance have been calculated from HR-PIV measurements of
a NACA-0015 aerofoil flow forced at the leading edge by a
ZNMF jet. Modes have been presented describing the fluctu-
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Figure 3: Stochastic dynamics about the time averaged amsepdveraged baseflow. (a) Energy versus mode numberv Baalpo-
nent of stochastic covariance modes with contour levela fr®.005 (blue) to 0005 (red) for the time averaged baseflow: (b) mode 1;
and (c) mode 2. For the phase averaged baseflow: (d) mode {eambde 5;

ations about both the time and phase averaged baseflow, where [5] Kitsios, V., Buchmann, N. A., Atkinson, C., Frederik-

the phase was taken to be that of the jet forcing. Stochastic
linear models constructed from fluctuations about the time a
eraged baseflow are dominated by modes with temporal and
spatial scale similar to that of the forcing and its harmenic
Models developed from fluctuations about the phase averaged
baseflow yield dominant Koopman modes describing the in-
teractions between the forcing and the natural variabitityd
dominant stochastic covariance modes representing soadd s
fluctuations in the leading edge shear layer.
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