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ABSTRACT
In this paper, a nonlinear fault detection and isolation (FDI)

scheme that is based on the concept of multiple model (MM)
approach is proposed for jet engines. A modular and a hierar-
chical architecture is proposed which enables the detection and
isolation of both single as well as concurrent permanent faults in
the engine. A set of nonlinear models of the jet engine in which
compressor and turbine maps are used for performance calcu-
lations corresponding to various operating modes of the engine
(namely, healthy and different fault modes) is obtained. Using
the multiple model approach the probabilities corresponding to
the engine modes of operation are first generated. The current
operating mode of the system is then detected based on evalu-
ating the maximum probability criteria. The performance of our
proposed multiple model FDI scheme is evaluated by implement-
ing both the Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF). Simulation results presented demonstrate
the effectiveness of our proposed multiple model FDI algorithm
for both structural and actuator faults in the jet engine.
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C Compressor
CC Combustion chamber
d Intake
f Fuel
M Mixer
mech Mechanical
n Nozzle
T Turbine
Variables
β Bypass ratio
ṁ Mass flow rate, Kg

s
η Efficiency
γ Heat capacity ratio
cp Specific heat at constant pressure, J

Kg.K

cv Specific heat at constant volume, J
Kg.K

Hu Fuel specific heat, J
Kg

J Rotor moment of inertia, Kg.m2

M Mach
N Rotational Speed, RPM
P Pressure, Pascal
P0 Pressure at sea level at Standard Day
R Gas Constant, J

Kg.K
T Temperature, K
T0 Temperature at sea level at Standard Day
V Volume, m3

1 Introduction
The increasing complexity of aerospace vehicles and their

systems such as engines, and the cost reduction measures that
have affected aircraft and engine manufacturers and maintenance
operators are increasingly driving the need for more intelligence
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and autonomous capabilities and functionalities for diagnosis,
prognosis, and health management (DPHM) of these safety crit-
ical systems. The objective of an aircraft engine DPHM sys-
tem is to provide monitoring, predictive trend analysis, detection
and diagnosis of faults in the complex engine system. Increased
design complexity, strict security and safety requirements, and
the need for reduction of the life cycle cost make it necessary to
move forward from conventional simple statistical trend analysis
and monitoring practices towards an integrated DPHM system
that can both autonomously and in real-time interact with human
experts to address the above-mentioned issues.

The functionality of a health management system (DPHM)
depends to a large extent on the reliability of its corresponding
fault detection and isolation (FDI) scheme, issues that have re-
ceived considerable attraction in the literature. Some excellent
surveys ( [1] and [2]) have been published that summerize the
extensive literature on FDI. One of the FDI approaches that have
been proposed , and applied to a few areas is the Multiple-Model
Based approach ( [3], [4], [5], [6] and [7]). The term ”Multiple-
Model” covers a wide range of approaches in which the common
goal is to propose an architecture (or hierarchy) for a bank of
estimators for isolation and identification of faults. The differ-
ences arise due to application domain, configurations used and
the estimator types invoked.

The FDI problem for linear systems has received consider-
able attention in the literature, although many industrial appli-
cations are governed by nonlinear characteristics which do ne-
cessitate the development of nonlinear FDI schemes. Certain
approaches that are developed for FDI of linear systems can be
extended to nonlinear systems. Among the natural extensions of
linear approaches to the nonlinear schemes is to use observer-
based schemes given that nonlinear observer design strategies
have been established in the literature. A survey of such ap-
proaches can be found in [8]. Recent advanced techniques based
on geometric approach ( [9]) and adaptive estimation approach
( [10]) have also been investigated in the literature that provide
alternative treatments toward the nonlinear FDI problem. How-
ever, the problem of fault diagnosis for nonlinear systems is still
an open area of research since the above proposed approaches
impose certian restrictions on the nonlinearities of the system to
be diagnosed.

Since the early interest and research on FDI, jet engines have
been one of the application fields that has been a popular domain
for verification, validation, and demonstration of novel method-
ologies. For example, Patton et al have implemented their robust
FDI method on jet engines ( [11], [12]). The main theme of re-
search in jet engine FDI is based on Gas Path Analysis (GPA)
in which by measurement and estimation of lumped parameters
of the system such as temperature and pressure at each stage,
one attempts to isolate and identify actuator, sensor, or compo-
nent faults. This approach has mainly been developed by Urban
( [13]) and Volponi ( [14]). Based on the GPA, various FDI al-

gorithms have been developed with the application of a bank of
estimators as proposed by Merrill et al ( [15]). A multiple model
approach that has utilized linear Kalman filters as estimators is
also investigated by Kobayashi et al ( [16]). The application of
both linear and nonlinear Kalman filters is a common methodoly
in jet engine fault diagnosis as reported by Simon ( [17]) which
has compared the performance of Linear Kalman Filter (LKF),
Extended Kalman Filter (EKF), and Unscented Kalman Filter
(UKF) for this application. Simon ( [17]) has concluded that both
the EKF and the UKF outperforms the LKF, however, there was
no considerable difference reported between the performance of
the EKF and the UKF. In this work we have shown that through
the utilization of our proposed multiple model framework the
UKF filters do indeed outperform the EKF filters as discussed
below.

In this paper, a multiple model (MM)-based scheme that em-
ploys nonlinear Kalman filters as state estimators (detection fil-
ters) is developed and implemented for the first time in the litera-
ture for fault diagnosis of jet engines. This is a natural extension
of our previous work ( [18]) in which we have proposed a MM-
based approach that employed LKF as state estimators (detec-
tion filters). This is partially motivated by the limitations of the
MM-based approach that uses LKF in its structure that makes it
incapable of fully coping with the variations in the ambient con-
ditions and power settings.

Our proposed MM-based fault diagnosis approach assumes
that the dynamics of the engine is adequately represented by a
nonlinear model that is parameterized by a fault vector. It is fur-
ther assumed that the fault vector can take only M discrete values
corresponding to the normal and various failure modes in the en-
gine. The nonlinear model corresponding to each fault vector
is obtained from the fully nonlinear model of the system, and
a bank of nonlinear Kalman filters is then designed where each
nonlinear Kalman filter corresponds to and is associated with a
specific value of the fault vector. The conditional probabilities
of each discrete parameter value being the correct one, given
the measurement history, are calculated iteratively by using the
Baye’s law. The current operating mode of the engine is then de-
termined based on the maximum probability criteria. Moreover,
a hierarchical approach is proposed where multiple levels of the
detection filters are designed that according to the current engine
status and operating mode (that is healthy or faulty), only an ap-
propriate set of the bank of filters becomes and is active at any
given time. This hierarchical architecture enables the detection
and isolation of the engine concurrent faults without imposing
any additional computational load on the FDI scheme as com-
pared to the single fault detection and isolation case.

Simulation results presented for a single spool jet engine
demonstrate the effectiveness and capabilities of our proposed
fault diagnosis framework and algorithm. In order to simulate
the transient response of the jet engine, a modular SIMULINK
model of the nonlinear dynamics of the jet engine is devel-
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oped. Moreover, for accurate calculations of the jet engine per-
formance, the engine components are modeled by correspond-
ing performance maps [19, 20]. These maps are adopted from a
commercial software GSP [21]. We have investigated the perfor-
mance of both the Extended Kalman Filter (EKF) and the Un-
scented Kalman Filter (UKF) as state estimators (detection fil-
ters) in our proposed MM-based architecture. Simulation results
convincingly verify that indeed considerable improvements are
obtained in the performance of the UKF over that of the EKF
schemes in terms of the fault detection time and functionality
with different sets of measurements. Moreover, the UKF FDI
scheme is significantly more robust to the sensor noise.

The remainder of this paper is organized as follows. In Sec-
tion 2, a brief overview of the multiple model (MM) approach is
presented. A nonlinear mathematical model of a jet engine that
is considered for design and testing of our proposed fault detec-
tion and isolation (FDI) multiple model approach is developed in
Section 3. In Section 4, the MM-based FDI algorithm is formally
proposed and developed for a jet engine. In Section 5, simulation
results corresponding to different fault scenarios in the jet engine
are presented, and comparisons between the EKF and the UKF
schemes in terms of their sensitivity to external noise levels and
availability of the measurements are conducted. Conclusions and
future work are presented in Section 6.

2 MM-based FDI Algorithm
In this section, a brief overview of the multiple model (MM)-

based fault detection and isolation (FDI) scheme is presented [3].
Let a denote the vector of fault parameters in a given dynamical
system where it can take on only one of the M representative
values ai, i= 1, ...,M. The model corresponding to ai is described
by the following nonlinear discrete-time system

x(k+1) = fi(x(k),u(k))+ξi(k)

z(k) = hi(x(k))+ηi(k)
(1)

where x(k) is the state of the system, z(k) is the measurement
vector, and u(k) is the control input vector. The fault parame-
ter ai may correspond to the actuator, the sensor or the struc-
tural faults in the system. For instance, in the single-spool jet
engine model that is considered in this paper we have the fol-
lowing specific definitions, namely x = [PCC,N,TCC,PT ]

T , z =
[TC,PC,N,TT ,PT ]

T , and u is the power level angle (PLA) (refer
to the nomenclature section for the physical meaning and defini-
tions of these variables). The process and the measurement noise
vectors ξi and ηi are mutually independent white Gaussian noise
of zero mean and covariance Qi and Ri, respectively.

Remark 1. For sake of illustration and as shown subsequently
in Section 4, for the jet engine considered in this work we take

The Prediction Step

x̂−i (k) = fi(x̂i(k−1),ui(k−1))

P−
i (k) = Ai(k)Pi(k−1)AT

i (k)+Qi

The Update Step

vi(k) = zi(k)−hi(x̂−i (k))

Si(k) =Ci(k)P−
i (k)CT

i (k)+Ri

Ki(k) = P−
i (k)CT

i (k)S
−1
i (k)

x̂i(k) = x̂−i (k)+Ki(k)[yi(k)−hi(x̂−i (k))]

Pi(k) = (I −Ki(k)Ci(k))P−
i (k)

Notation

Ai(k) =
∂ fi
∂x |x̂i(k−1),ui(k−1)

Ci(k) =
∂hi
∂x |x̂−i (k)

Table 1. The Extended Kalman Filter Algorithm

M = 6 , where the parameter a1 corresponds to the healthy mode
of the engine, the parameters a2, ...,a5 correspond to the common
jet engine component faults, and the parameter a6 denotes the
fuel flow valve fault.

Let the hypothesis conditional probability pi(k) be defined as the
probability that a assumes the value ai (for i = 1, ...,M), condi-
tioned on the observed measurement history up to time k, that
is

pi(k) = Pr[a = ai|Z (k) = Zk] (2)

where the measurement history random vector Z (k) is made up
of the partitions z(1), ...,z(k) that represent the available mea-
surements up to the kth sample time and similarly, the realization
Zk of the measurement history vector has partitions z1, ...,zk [3].
It can be shown that pi(k) can be evaluated recursively for all i
via the iteration

pi(k) =
Fz(k)|a,Z (k−1)(zi|ai,Zk−1)pi(k−1)

∑M
j=1 Fz(k)|a,Z (k−1)(zi|a j,Zk−1)p j(k−1)

(3)

in terms of the previous values of p1(k− 1), ..., pM(k− 1), and
conditional probability densities for the current measurement
z(k) (denoted by Fz(k)|a,Z (k−1)(zi|ai,Zk−1)).

The MM-based FDI scheme is now composed of a bank of
M individual and separate nonlinear Kalman filters, each based
on a particular value of ai, i = 1, ...,M. The innovation vector
vi(k) is used to compute p1(k), ..., pM(k) via equation (3) with a
Gaussian density function that is given by

Fz(k)|m,Z (k−1)(zi|ai,Zk−1) = ζi(k)e−(1/2)v′i(k)S
−1
i (k)vi(k) (4)

where ζi(k) = 1
(2π)m/2|Si(k)|1/2 and m is the measurement dimen-

sion. The innovation vi(k) and the innovation covariance matrix
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The Prediction Step

Augmentation

xa
i (k−1) =

[
x̂T

i (k−1) E[ξT
i (k)]

]T

Pa
i (k−1) =

 Pi(k−1) 0

0 Qi


Sigma Points

χ0
i (k−1) = xa

i (k−1)

χ j
i (k−1) = xa

i (k−1)+
(√

(L+λ)Pa
i (k−1)

)
j

j = 1...L

χ j
i (k−1) = xa

i (k−1)−
(√

(L+λ)Pa
i (k−1)

)
j

j = L+1...2L

Time Update

χ j−
i (k) = f (χ j

i (k−1),ui(k−1))

x̂−i (k) =
2L

∑
j=0

W j
mχ j−

i (k)

P−
i (k) =

2L

∑
j=0

W j
c

[
χ j−

i (k)− x̂−i (k)
][

χ j−
i (k)− x̂−i (k)

]T

The Update Step

Augmentation

x−
a

i (k) =
[

x̂−
T

i (k) E[ηT
i (k)]

]T

P−a
i (k) =

 P−
i (k) 0

0 Ri


Sigma Points

χ0−
i (k) = x−

a
i (k)

χ j−
i (k) = x−

a
i (k+

(√
(L+λ)P−

i (k)
)

j
j = 1...L

χi−
i (k) = x−

a
i (k−

(√
(L+λ)P−

i (k)
)

j
j = L+1...2L

Measurement Update

Y j
i (k) = h(χ j−

i ) j = 1...2L

ŷi(k) =
2L

∑
j=0

W j
mY j

i (k)

vi(k) = zi(k)− ŷi(k)

Si(k)≡ Pŷŷi (k) =
2L

∑
j=0

W j
c

[
Y j

i (k)− ŷi(k)
][

Y j
i (k)− ŷi(k)

]T

Px̂ŷi (k) =
2L

∑
j=0

W j
c

[
χ j−

i (k)− x̂−i (k)
][

Y j
i (k)− ŷi(k)

]T

Ki(k) = Px̂ŷi (k)P
−1
ŷŷi

(k)

x̂i(k) = x̂−i (k)+Ki(k) [yi(k)− ŷi(k)]

Pi(k) = P−
i (k)−Ki(k)Pŷŷi (k)K

T
i (k)

Notation and Parametrization

(
√

A) j denotes the jth row of
√

A

L is the dimension of the augmented state

W 0
m = λ

L+λ

W 0
c = λ

L+λ +(1−α2 +β)

W j
m =W j

c = 1
2(L+λ)

λ = α2(L+κ)−L

α = 0.001;κ = 0;β = 2

Table 2. The Unscented Kalman Filter Algorithm

Si(k) are computed by using the standard equations of the Ex-
tended Kalman Filter (EKF) and the Unscented Kalman Filter
(UKF) as given in Tables 1 and 2 ( [17], [22]), respectively.

Figure 1. General architecture of our proposed MM-based FDI scheme.

Let us assume that the actual value of the fault parameter a
is given by ai. Then, it is expected that a mean squared value
of the residual generated by the nonlinear Kalman filter based
on ai is in consonance with the residual covariance matrix Si(k)
over time, while mismatched filters generate larger residuals than
those predicted by the their own residual covariance matrices.
Hence, the MM-based algorithm will most heavily weight the
nonlinear Kalman filter that corresponds to ai. The problem of
fault detection and isolation (FDI), or equivalently the status of
the current operating mode of the system at the time instant k
can therefore be stated as and simplified to that of evaluating the
quantity argmaxi pi(k) for the desired solution. Figure 1 shows
the schematic of the general architecture of our proposed MM-
based FDI approach.

Remark 2. It follows from equation (3) that if any pi is ever
computed to be zero at any given time k, this probability will be
locked to zero for all time there after. In order to prevent this
lock out [3], an artificially small lower bound was considered
for all pi’s. Moreover, it was shown in [23] that the leading
coefficient ζi(k) in (4) does not provide any useful information
for fault identification and even may cause incorrect fault iden-
tification. Therefore, the term ζi(k) is usually removed from the
equation (4). It should be noted that since the denominator of
(3) is the summation of all the numerators, even by removing the
term ζi(k), the sum of the computed probabilities remains one.

3 The Jet Engine Mathematical Model
Based on the available literature on modeling a nonlinear

dynamics of a jet engine ( [24] and [25]), a SIMULINK model
for a single spool engine is first developed. In order to obtain this
nonlinear dynamics, rotor and volume dynamics are both consid-
ered. Heat transfer dynamics also contributes to this nonlinear
behavior particularly when there exist considerable differences
between the temperatures of the air stream and the components
due to a large power excursion, e.g. during the takeoff or rapid
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maneuvers of an agile aircraft ( [26]). Nevertheless, the above ef-
fect has been neglected since in this paper we are concerned with
a commercial single spool jet engine at normal operating con-
ditions. We have used the commercial software GSP 10 ( [21])
for the purposes of obtaining the required data such as the com-
pressor map as well as conducting model validation studies. A
more detailed description of the model can be found in [24], [25]
and [27].

3.1 Governing nonlinear equations of the motion
In this section, a set of nonlinear equations corresponding

to a single spool jet engine is provided. In the engine intakes,
by assuming adiabatic process, the pressure and the temperature
behavior are evaluated. For the compressor, the pressure ratio
πC is calculated from the volume dynamics of the combustion
chamber. The rotational speed (N) is obtained from the solution
of the energy balance for the spool that is connecting the
compressor to the turbine. Once the pressure ratio and the
rotational speed are computed, the corrected mass flow and the
efficiency behaviors are obtained from the performance map, so
that the temperature rise can be obtained. Finally, the pressure
ratio of the turbine is obtained from the volume dynamics of the
nozzle.

The above process and dynamics can be formally summa-
rized according to the nonlinear set of governing equations of
motion for a single spool jet engine as follows

ṪCC =
1

cvmCC
[(cpTCṁC +ηCCHuṁ f − cpTCCṁT )−

cvTCC(ṁC + ṁ f − ṁT )]

Ṅ =
ηmechṁT cp(TCC −TT )− ṁCcp(TC −Td)

JN( π
30 )

2

ṖT =
RTM

VM
(ṁT +

β
1+β

ṁC − ṁn)

ṖCC =
PCC

TCC
ṪCC +

γRTCC

VCC
(ṁC + ṁ f − ṁT )

(5)

where ηmech denotes the mechanical efficiency and J denotes the
inertia of the shaft connecting the compressor to the turbine. Fur-
thermore, using [24] the following dynamics for the fuel mass
flow rate are considered

τ
dṁ f

dt
+ ṁ f = Gu f d (6)

where τ is the time constant, G is the gain associated with fuel
valve and u f d denotes the fuel demand which is computed by
using a feedback from the rotational speed as described in [24].

Figure 2. Information flow diagram in a modular modeling of the jet en-
gine dynamics.

A modular Simulink model is developed to simulate the above
jet engine nonlinear dynamics as described by equations (5) and
(6). Figure 2 shows the information flow process in our Simulink
model of the engine.

3.2 Validation of the mathematical model
Figure 3 shows the series of steady states that are obtained

from our nonlinear model and the GSP [21] at PLAs ranging
from 0.4 to 1. At each point, the initial condition of the PLA is
set equal to 0.3 followed by a transient to reach to the steady
state corresponding to the desired PLA. Since the steady state
corresponding to each PLA is independent of the path taken
during the transient (unless the compressor surges), it provides a
suitable basis for comparison.

As can be observed from Figure 3 the responses correspond-
ing to our model and the GSP match each other within an accept-
able error tolerance(below 5%). The difference between the two
representations is manifested in terms of the complexity of the
mathematical model used where our form is simpler as compared
to the the more complicated representation of the GSP ( [21]).
Moreover, transient responses that are obtained from our model
for different scenarios are in good agreement with the GSP re-
sults. For instance, Figure 4 shows a comparison of the transient
responses of our model and the GSP to an input profile. The
above observations do indeed demonstrate our model is valid for
simulation of the nonlinear dynamics of a jet engine.

4 MM-based Fault Diagnosis Design
In this section, a fault detection and isolation (FDI) strat-

egy for a single spool jet engine that is based on the MM-based
approach is developed. Towards this end, first the nonlinear
Kalman filters corresponding to each operating mode (healthy
and faulty) is derived. The MM-based nonlinear filters are then
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Figure 4. Transient responses of our Simulink Model and the GSP [21]
to an input profile.

designed according to the procedure that is described in Section
2. As pointed out after equation (1), the output measurements, z,
or the available sensors are taken as the pressure and the temper-
ature after the compressor (PC and TC), the pressure and the tem-
perature after the turbine (PT and TT ), and the rotational speed
(N).

4.1 Fault Modeling and Detection Filter Design
In this paper, both component anomalies as well as an ac-

tuator anomaly are considered as sources of jet engine faults.
Common component faults [14] are modeled as changes in the
component efficiency and flow capacity. Four component faults
are investigated in this work as shown in Table 3. Moreover, a
fault in the fuel valve is considered as an actuator fault. Hence,

Component Description Mode

Fault Label

∆FCC Decrease in the compressor flow capacity P2

∆ηC Decrease in the compressor efficiency P3

∆FCT Decrease in the turbine flow capacity P4

∆ηT Decrease in the turbine efficiency P5

Table 3. The definition and description of the considered component
faults.

the total number of operating modes is six (as stated in Remark
1) where mode #1 (P1) corresponds to the healthy jet engine,
modes #2 to #5 (P2 to P5) correspond to the component faults as
specified in Table 3, and mode #6 (P6) corresponds to the loss of
effectiveness fault in the fuel valve actuator (equation(6)). Faults
that are considered here are multiplicative e.g. the fault compres-
sor efficiency is defined as ∆ηC ×ηC.

Faulty models corresponding to the component faults in Ta-
ble 3 are obtained by considering a 2% decrease in the efficiency
or the flow capacity with respect to the normal (healthy) mode.
For instance, for obtaining the nonlinear model associated with
the operating mode #2, the compressor efficiency is decreased by
2% [28, 29]. Moreover, the nonlinear model associated with the
operating mode #6 (actuator fault mode) is obtained by consid-
ering a 5% loss of effectiveness or gain fault in the fuel actuator
valve.

In our proposed hierarchical approach, it is assumed that the
engine starts from the healthy condition when the “first level” of
filters are active and the proposed algorithm observes the engine
for occurrence of one of the five faults that are specified above.
Normally, when the engine is operating healthy, the mode prob-
ability corresponding to the first mode (#1) is maximum. Once
a fault has occurred, the mode probability corresponding to the
healthy mode decreases, and the mode probability correspond-
ing to the occurred fault increases until it takes the maximum
value among all the modes. The maximum value of the mode
probability that is reached by the active mode is 1, and the cor-
responding probabilities of other modes become 0. Therefore,
the fault detection logic is simply a comparison among the mode
probabilities by which the corresponding fault is detected and
isolated.

For detection and isolation of two concurrent faults in the
engine, a hierarchical approach is proposed [3] as illustrated in
Table 4. Once the first fault is detected and isolated according
to the maximum probability criteria, the FDI algorithm will ac-
tivate the “second level” of filters (as shown in Table 4) for de-
tection and isolation of the second concurrent fault in the engine.
It should be noted that in our proposed hierarchical architecture,
it is assumed that faults do not occur simultaneously and there
exists at least a non-zero time interval (dwell time) between the
occurrence of faults in the engine. In other words, we are con-
sidering and allowing the occurrence of concurrent faults. Table

6 Copyright c⃝ 2011 by ASME



Levels Operating Modes

# 1 # 2 # 3 # 4 # 5 # 6

First Healthy P2 P3 P4 P5 P6

(2%) (2%) (2%) (2%) (2%)

Second

P2 P2 P2 P2 P2 P2

(5%) P3 P4 P5 P6

P3 P3 P3 P3 P3 P3

P2 (5%) P4 P5 P6

P4 P4 P4 P4 P4 P4

P2 P3 (5%) P5 P6

P5 P5 P5 P5 P5 P5

P2 P3 P4 (5%) P6

P6 P6 P6 P6 P6 P6

P2 P3 P4 P5 (5%)

Table 4. The operating modes corresponding to various possible two
concurrent faults scenarios.

4 depicts details on all the possible configurations for the second
bank of filters. For example, if the first fault is detected as a 2%
change in the compressor flow capacity (P2), then the first filter
in the second level corresponds to the detected fault scenario (P2)
(that is ∆FCC = 2%), the second filter corresponds to a further
decrease of (3%) in the compressor flow capacity resulting in a
total of 5% decrease in the capacity (that is ∆FCC = 5%), the
third filter corresponds to the concurrent decrease of 2% in the
compressor flow capacity and a decrease of 2% in the compressor
efficiency (P2 and P3) (that is ∆FCC = 2% and ∆ηC = 2%), etc.
Note that this procedure can be similarly extended to the third
and higher levels that correspond to the occurrence of multiple
(three and higher) concurrent faults.

It should be emphasized again that when the new bank of
filters is activated in the second level, there is no need to further
operate the first bank of filters and our FDI strategy basically
deactivates this bank of filters to save computational resources.
In other words, the hierarchical architecture enables one to detect
and isolate the occurrence of the second fault without adding any
extra computational burden since at any given time, only 6 filters
are operating on-line.

Remark 3. Note that in the above hierarchical fault diagnosis
architecture, only two levels of fault severities, namely 2% and
5% are considered for the sake of illustration only. It should be
emphasized that more fault severities can equally and easily be
considered by correspondingly increasing the number of models
that are considered in this architecture.

5 Simulation Results
In this section, simulation results and performance evalua-

tions of our proposed diagnostic system corresponding to vari-
ous fault scenarios are presented. We have implemented both the

N PC TC PT TT

0.051 0.164 0.230 0.164 0.097

Table 5. The noise standard deviations (as % of the nominal noise at
cruising conditions) [29].

EKF and the UKF in our MM-based scheme and have provided
comparative results. It should be noted that all the faults are actu-
ally applied to and injected in the fully nonlinear model of the jet
engine as governed by equations (5) and (6). The measurement
noise levels that are considered are shown in Table 5, where the
standard deviations are given as percentage of the nominal val-
ues at typical cruise conditions [29]. It is also assumed that the
PLA=0.9 and the ambient conditions are set to standard condi-
tions and the Mach number is set to 0.74.

5.1 Single Fault Scenarios
Figures 5 and 6 depict the mode probabilities and the output

measurements corresponding to the injected 2% decrease in the
compressor efficiency that is applied at t = 5 seconds (Mode #3),
respectively. In Figure 5 (a), for all t < 10.2 seconds the quan-
tity argmaxi pi(k) = p1, which corresponds to classifying and
identifying the healthy operation of the engine. However, for
all t >= 10.2, we have argmaxi pi(k) = p3, which classifies and
identifies that the mode P3 is active in the engine. Therefore, the
fault in the compressor efficiency is perfectly detected and iso-
lated at t = 10.2 seconds. As shown in Figure 5, the MM-scheme
in which the UKF is used detects the fault at time t = 10.2 sec-
onds, whereas the MM-scheme with the EKF detects the fault at
time t = 13.2 seconds.

Since in real applications there is no guarantee that a fault
occurs abruptly or matches exactly the predefined fault severity
level, one requires to investigate the performance of the MM-
based approach under these realistic circumstances. Figure 7
shows the mode probabilities corresponding to the injection of
a 3% fault in the turbine efficiency (Mode #5) corresponding to
both the EKF and the UKF detection filters in the MM-based
scheme. This figure shows that the algorithm is capable of de-
tecting and isolating a fault whose severity lies within the already
designed severities of 2% and 5% and does not have to match
the mode definition exactly. The average detection times for all
the fault modes (P2 to P6) that are applied at t = 5 seconds as
a function of the fault severity levels are given in Table 6. Fig-
ure 9 shows the detection time as a function of the fault severity
for each mode separately. It can be observed from the Table 6
that the higher the fault severity the earlier the detection times
specially for faults where the detection filters are specifically de-
signed for.

In next simulation result we evaluate the performance of the
fault diagnostic system to a gradually built fault severity level.
Specifically, the fault severity is increased from 0 to 3% (the
turbine efficiency (Mode #5)) over an interval of 10 seconds.
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Figure 5. The mode probabilities corresponding to the injected 2% de-
crease in the compressor efficiency that is applied at t = 5 seconds
(Mode #3) (a) the UKF is used in the MM-based FDI scheme, and (b)
the EKF is used in the MM-based FDI scheme.
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Figure 6. The output measurements corresponding to the injected 2%
decrease in the compressor efficiency that is applied at t = 5 seconds
(Mode #3).

The detection performance of both the EKF and the UKF fil-
ters in the MM-based scheme for detecting fault is shown in Fig-
ure 8. Although the system is capable of detecting and isolating
the fault, however the performance of the diagnostic scheme in
terms of detection time is delayed as compared to the case where
an abrupt fault is applied (Figure 7). To summarize, as can be
observed from the results that are shown in Table 6, the UKF
scheme has consistently outperformed the EKF scheme in terms
of the delay in the fault detection times.
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Figure 7. The mode probabilities corresponding to the injected 3% de-
crease in the turbine efficiency that is applied at t = 5 seconds (Mode
#5) (a) the UKF is used in the MM-based FDI scheme, and (b) the EKF is
used in the MM-based FDI scheme.
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Figure 8. The mode probabilities corresponding to the gradual injection
of a 3% decrease in the turbine efficiency that starts at t = 5 and linearly
ends at t = 15 seconds (Mode #5) (a) the UKF is used in the MM-based
FDI scheme, and (b) the EKF is used in the MM-based FDI scheme.

5.2 Concurrent Fault Scenarios
In this section, we investigate concurrent faults scenarios

where a 2% decrease in the compressor efficiency (P3) is injected
at t = 5 seconds and a 2% decrease in the compressor mass flow
rate (P2) is injected at t = 30 seconds. Based on the hierarchical
multiple model architecture that was described in Section 4, our
proposed algorithm first uses the bank of filters that corresponds
to the first level (no fault has yet been detected). Figures 10 (a)
and (b) depict the mode probabilities that are generated by the
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Fault severity 2% 3% 4% 5% 6%

level

UKF Scheme 9.6 10.3 9.5 8.7 9.1

EKF Scheme 11.3 12.9 10.6 10.1 10.4

Table 6. The average detection times for all the fault modes (P2 to P6)
that are applied at t = 5 seconds as a function of the fault severity levels.
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Figure 9. The detection time for each mode of fault that is applied at
t = 5 seconds as a function of the fault severity (a) the UKF is used in the
MM-based FDI scheme, and (b) the EKF is used in the MM-based FDI
scheme.

first level filters. As shown in the figures, the first fault in the
compressor efficiency is detected and isolated at t = 10.0 sec-
onds corresponding to the UKF detection filters and at t = 12.1
seconds corresponding to the EKF detection filters.

Once this fault is detected, the second level bank of filters
is initiated to operate where these filters are designed accord-
ing to Table 4. Specifically, the filter #1 in this bank of filters
corresponds to the detected fault P3, filter #2 corresponds to the
concurrent occurrence of the detected fault P2 and the fault P3,
filter #3 corresponds to the further degradation of the compressor
efficiency P3 by 3% (resulting in the total decrease of 5%), and
similarly for all the other filters they correspond to the concurrent
occurrence of the detected fault P2 and the other faults (namely
P4 to P6). It should be emphasized again that when a new bank
of filters is initiated to run there is no need to further operate the
previous level bank of filters so that our proposed FDI algorithm
deactivates the previous set of bank of filters. This is done in
order to minimize the overall computational resources of the di-
agnostics system. In other words, at any given time only one set
or level of bank of filters is active and running. Figure 10 (c)
and (d) depict the mode probabilities that are generated by the
second level bank of filters. The second fault in the compressor
mass flow rate is detected and isolated at t = 41.4 seconds cor-

5 10 15 20
0

0.2

0.4

0.6

0.8

1

time (second)

P
i

(a) First level of UKF filters in the MM

 

 
P1
P2
P3
P4
P5

30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
(c) Second level of UKF filters in the MM

time (second)

P
i

5 10 15 20
0

0.2

0.4

0.6

0.8

1

time (second)
P

i

(b) First level of EKF filters in the MM

 

 
P1
P2
P3
P4
P5

30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
(d) Second level of EKF filters in the MM

time (second)

P
i

Figure 10. The mode probabilities corresponding to the injected 2%
decrease in the compressor efficiency that is applied at t = 5 seconds
(Mode #3) followed by an injection of a 2% decrease in the compressor
mass flow rate (Mode #2 in the second level) that is applied at t = 30
seconds. (a) The fault detection and isolation by the first level of filters
using the UKF in the MM-based scheme, (b) The fault detection and iso-
lation by the first level of filters using the EKF in the MM-based scheme,
(c) The fault detection and isolation by the second level of filters using the
UKF in the MM-based scheme, and (d) The fault detection and isolation
by the second level of filters using the EKF in the MM-based scheme.
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Figure 11. The output measurements corresponding to the injected 2%
decrease in the compressor efficiency that is applied at t = 5 seconds
(Mode #3) followed by an injection of a 2% decrease in the compressor
mass flow rate (Mode #2 in the second level) that is applied at t = 30
seconds.
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responding to the UKF detection filters and at t = 43.4 seconds
corresponding to the EKF detection filters. As in the previous
subsection, one can again conclude that the UKF outperforms the
EKF in terms of the delay in the fault detection times. Figure 11
depicts the output measurements that are observed corresponding
to the above concurrent faults scenario.

5.3 Operational Condition Variations
When a linear detection filter is used in the MM-based

scheme [18], one of the major concerns that arise is due to the
validity of the implemented filters subject to the variations of the
operating point such as the Mach number, the PLA setting and
the ambient conditions. In case of large variations, the diagnos-
tic algorithm may generate false alarms. In order to cope with
this drawback, a strategy should be devised to accurately follow
the engine operating point variations, and activate the appropriate
linear detection filters. However, by implementing our proposed
nonlinear detection filters the operating condition variations are
automatically taken into account by the nonlinear detection fil-
ters. To demonstrate and substantiate this advantage, in the next
set of simulations the ambient temperature is linearly varied from
from 15◦ to 5◦ over an interval of 20 seconds while a 2% fault in
the turbine mass flow rate is injected (Mode #4) at time t = 5 sec-
onds. Figures 12 and 13 show the results obtained. It follows that
while the ambient temperature is varying, the MM-based FDI
scheme is capable of detecting and isolating the fault and indeed
the operating variations do not affect the FDI performance. In
another set of simulations, in addition to the injection of a fault
(i.e. a 2% fault in the turbine mass flow rate (Mode #4) applied
at t = 5 seconds), the PLA is smoothly varied from 0.9 to 1.1,
as shown in Figure 15. Our goal here is to investigate the effects
of the variation of the Mach number on the performance of the
diagnostic scheme. The Mach number is linearly increased from
0.74 to 0.84 in 20 seconds while the fault that is a 2% fault in
the turbine mass flow rate (Mode #4) is injected at t = 5 sec-
onds. The results of the simulations are shown in Figures 14 and
16 which again confirm and demonstrate the capability of our
proposed approach in dealing with the challenging problem of
operating condition variations.

5.4 A Comparison Between the Performance of the
UKF and the EKF Detection Filters

In this section, we investigate the performance of the the
UKF and the EKF detection filters in the MM-based scheme. An
important figure of merit that is of interest in many applications
is robustness to sensor and measurement noise. In the previous
simulations, we have applied a noise level that is given in Table
5 for the measurements. In this subsection, we have increased
the noise levels proportionally by a factor (noise power factor),
and have examined if the UKF or the EKF detection filters in
the MM-based scheme are capable of detecting and isolating all

5 10 15 20
0

0.2

0.4

0.6

0.8

1

P
i

(a) The UKF Filters in the MM FDI Scheme

 

 
P1
P2
P3
P4
P5

5 10 15 20
0

0.2

0.4

0.6

0.8

1

time (second)

P
i

(b) The EKF Filters in the MM FDI Scheme

 

 
P1
P2
P3
P4
P5

Figure 12. The mode probabilities corresponding to the injected 2% de-
crease in the turbine mass flow rate that is applied at t = 5 seconds
(Mode #4) while the ambient temperature is varying (a) the UKF is used
in the MM-based FDI scheme, and (b) the EKF is used in the MM-based
FDI scheme.
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Figure 13. The output measurements corresponding to the injected 2%
decrease in the turbine mass flow rate that is applied at t = 5 seconds
(Mode #4) while the ambient temperature is varying.

fault modes as described in Table 3. The detection time for each
fault mode as a function of the noise power factor is shown in
Figure 17. The results are summarized in Table 7 in which nu-
merical values indicate the average fault detection times for all
the modes (P2 to P6) when the fault is applied at t = 5 seconds.
A bullet mark (•) indicates an unsuccessful detection or isola-
tion of at least one fault mode. As expected, the UKF scheme
demonstrates a superior performance over the EKF scheme when
a higher level of noise is applied.
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Figure 14. The mode probabilities corresponding to the injected 2% de-
crease in the turbine mass flow rate that is applied at t = 5 seconds
(Mode #4) while the PLA is varying (a) the UKF is used in the MM-based
FDI scheme, and (b) the EKF is used in the MM-based FDI scheme.
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Figure 15. The output measurements corresponding to the injected 2%
decrease in the turbine mass flow rate that is applied at t = 5 seconds
(Mode #4) while the PLA is varying.

In another set of simulations, we have investigated the ef-
fects of the availability of a certain number of measurements on
the performance of the detection filters. This case is different
from the sensor fault scenario since in the presence of a sensor
fault the diagnostic or control module will continue to use the
faulty sensor data unless a separate strategy for sensor fault de-
tection is employed and considered. In this subsection, we are
interested in determining the minimum number of measurements
that is required by the detection filters in order to perform the
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Figure 16. The mode probabilities corresponding to the injected 2% de-
crease in the turbine mass flow rate that is applied at t = 5 seconds
(Mode #4) while the Mach number is varying (a) the UKF is used in the
MM-based FDI scheme, and (b) the EKF is used in the MM-based FDI
scheme.

Noise 1 1.1 1.3 1.5 1.8 2

power factor

UKF Scheme 9.6 9.8 10.0 9.9 10.1 10.1

EKF Scheme 11.3 15.6 19.2 • • •

Table 7. The average detection times for all the modes of faults (P2 to
P6) that are applied at t = 5 seconds as a function of the noise power
factor.
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Figure 17. The detection time for each mode of fault that is applied
at t = 5 seconds as a function of the noise power factor. The empty
places indicates the unsuccessful detection or isolation of the correspond-
ing fault. (a) the UKF is used in the MM-based FDI scheme, and (b) the
EKF is used in the MM-based FDI scheme.
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Number of 5 4 3 2

measurements/sensors used

UKF Scheme 9.6 11.7 12.0 •

EKF Scheme 11.3 13.5 14.1 •

Table 8. The average detection times for all the fault modes (P2 to P6)
that are applied at t = 5 seconds as a function of the number of the
measurements or sensors that are employed.
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Figure 18. The detection time for each mode of fault that is applied at t =
5 seconds as a function of the number of the measurements or sensors
that are employed. (a) the UKF is used in the MM-based FDI scheme,
and (b) the EKF is used in the MM-based FDI scheme.

FDI task properly. The detection time for each fault mode as a
function of the number of the measurements or sensors is shown
in Figure 18. Table 8 summarizes the results. In this table the
average fault detection times numerical values for all the modes
(P2 to P6) are provided corresponding to a fault that is applied
at t = 5 seconds. A bullet mark (•) indicates either an unsuc-
cessful detection or isolation of at least one fault mode. It can be
concluded that both the UKF and the EKF detection filters have
the same performance capability in terms of functionality with
various sets of measurements and sensors, however, the UKF de-
tection filters perform superior over the EKF detection filters in
terms of the fault detection times.

Computational requirements is also an important merit of
performance which one requires to consider for comparison and
evaluation purposes. The UKF scheme in general runs slower
than the EKF scheme due to the multiple nonlinear computa-
tions that are required at each time step. This factor makes the
UKF scheme less suitable for real-time applications. On the
other hand, one of the advantages of the UKF scheme over the
EKF scheme is that it does not require the Jacobian matrix of
the system at each time step, which by itself is a computation-

ally costly operation. Especially, when one uses performance
maps for modeling the nonlinear dynamics of the jet engine, the
task of computing the Jacobian matrix at each operating point is
computationally expensive and complex and can be performed
only numerically. However, in our application the linearization
approximation performed by the EKF scheme at each time step
takes less CPU time than the multiple nonlinear computations
that are performed by the UKF scheme.

Based on the above simulations and discussions, it can be
concluded in the final analysis that the UKF detection filters do
indeed outperform the EKF detection filters in this application.

6 Conclusions
In this paper, a nonlinear multiple model (MM-based) fault

detection and isolation scheme for health monitoring of jet en-
gines is proposed and developed. Starting from the nonlinear
dynamics of a jet engine, a bank of nonlinear detection filters is
designed where each filter corresponds to a specific faulty mode
of the engine. A hierarchical fault detection and isolation ar-
chitecture is proposed corresponding to both single and concur-
rent faults in the engine. By taking into account the fault oc-
currence history, only a minimal set of detection and isolation
filters is activated so that the same number of filters are always
operating at any given point in time. In other words, the com-
plexity of our proposed fault detection and isolation (FDI) algo-
rithm does not increase as more novel faults are concurrently in-
jected to the engine. We have implemented both the EKF and the
UKF detection filters in the MM-based FDI architectures. Simu-
lation results demonstrate that considerable improvements exist
on the performance of the UKF scheme over the EKF scheme
in terms of the fault detection times and functionality with re-
spect to different number of measurements and sensors. More-
over, the UKF scheme is significantly more robust to the large
sensor noise. In this work, we have assumed existence of a set of
predefined severity fault levels for construction of the supposed
UKF and EKF detection filters from the corresponding nonlinear
model of the jet engine. Therefore, one natural direction for fu-
ture research will be to develop a robust fault diagnosis scheme
in which the fault severity levels are estimated through parameter
estimation techniques.
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