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ABSTRACT 
This two-parts paper addresses the design of a U-bend for 

serpentine internal cooling channels optimized for minimal 
pressure loss. The total pressure loss for the flow in a U-bend is 
a critical design parameter as it augments the pressure 
required at the inlet of the cooling system, resulting in a lower 
global efficiency. In this first part of the paper the design 
methodology of the cooling channel is presented. The 
minimization of the total pressure loss is achieved by means of 
a numerical optimization method that uses a metamodel 
assisted differential evolution algorithm in combination with an 
incompressible Navier-Stokes solver. The profiles of the internal 
and external side of the bend are parameterized using piece-
wise Bezier curves. This allows for a wide variety of shapes, 
respecting the manufacturability constraints of the design. The 
pressure loss is computed by the Navier-Stokes solver, which is 
based on a two-equation turbulence model and is available 
from the open source software OpenFOAM. The numerical 
method predicts an improvement of 36% in total pressure drop 
with respect to a circular U-bend, mainly due to the reduction 
of the separated flow region along the internal side of the bend. 
The resulting design is subjected to experimental validation, 
presented in Part II of the paper.  

 
INTRODUCTION 

The thermal efficiency of gas turbines increases 
dramatically with the maximum temperature of the cycle. As a 
result, state-of-the-art gas turbines are designed to operate at 
turbine inlet temperatures that approach 2000 K. Since the 
materials commonly employed for the turbine components 
cannot withstand temperatures above 1350 K, effective cooling 
must be applied along the hot-gas-path in order to guarantee a 
safe functioning. In most cases the coolant is air bled from the 

high pressure compressor, which bypasses the combustor and 
enters the blade through its root, circulating through serpentine 
internal passages. The flow in internal cooling channels is fully 
turbulent and generally free of compressibility effects. The 
geometrical configurations are complex and the velocity field is 
highly three-dimensional. More than 20% of the discharge air 
from the compressor is used to cool the high pressure turbine, 
leading to a severe penalty on the thermodynamic efficiency. 
Therefore, an effective design must be able to maintain the 
metal temperature below acceptable limits with minimal 
coolant mass flow rates and pressure drop penalties. Reviews 
of mechanisms and performances of turbine blade cooling 
techniques were presented, among others, by Han et al. [1] and 
Weigand et al. [2]. 

Among the salient features of the cooling passages, the U-
bends that connect consecutive passages play a key role, as 
they represent regions of strong pressure loss, especially for 
small radius ratio (mean bend radius/duct hydraulic diameter): 
in this case the bend region can be responsible for up to 25% of 
the pressure loss in the entire multi-pass cooling system. 
Consequently this flow configuration has received profound 
attention from the scientific and technical community. 
Numerous experiments investigating the turbulent flow in 180° 
bends have been conducted, both for circular and sharp turns. 
The contributions of Humphrey et al. [3], Chang et al. [4], 
Monson and Seegmiller [5] and Cheah et al. [6] using laser 
Doppler velocimetry (LDV) concern the first type of U-bends. 
The velocity field in sharp corner bends was investigated by 
Liou et al. [7] by LDV, Son et al. [8] by two-dimensional 
particle image velocimetry (PIV) and Schabacker et al. [9] by 
stereoscopic PIV. All studies highlighted the presence of 
secondary flows driven by the imbalance between the 
centrifugal forces and the radial pressure gradient. For 
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sufficiently high curvature (i.e. low radius ratio), separation 
occurs along the inner wall in the second half of the bend. 

U-bend geometries make an excellent test case for 
turbulence models, as the effects of the streamlines curvature 
and the associated secondary flows are typically challenging to 
reproduce in numerical simulations. The broad trends can be 
captured by two-equation eddy-viscosity models, provided that 
the boundary layer is resolved without recurring to wall 
functions, as discussed by Iacovides and Launder [10]. 
Recently, Lucci et al. [11] and Schueler et al. [12], using eddy-
viscosity models, found overall agreement with experiments.  
However two-equation models cannot predict the effect of 
streamline curvature on the turbulence structure due to their 
inability to account for turbulence anisotropy. Calculations 
based on second moment closure were shown to provide more 
accurate predictions, e.g. in the two-pass channels studied by 
Bonhof et al. [13] and Chen et al [14]. Nevertheless, due to 
their reduced computational cost, two-equation models are still 
the standard tool employed in the design process in industrial 
applications. 

The high pressure penalty imposed by the U-bend has 
fostered the interest towards strategies to improve the 
aerodynamic performance, especially in sharp turn 
configurations. Metzger et al. [15] varied the width of the 
passages, the corner radius and the clearance height, finding 
that the latter parameter had a substantial impact, with the 
pressure drop increasing for smaller clearances. The influence 
of the divider wall thickness was explored by Liou and Chen 
[16]. They found that a thicker wall reduces the turbulence 
level and shortens the reattachment length of the recirculating 
cell in the downstream half of the bend. Bonhof et al. [17] 
showed that inserting turning vanes alleviates the pressure loss. 
Schueler et al. [18], while confirming that properly, designed 
vanes which significantly reduce the pressure drop, also 
underlined that poorly designed vanes can actually deteriorate 
the aerodynamic performance. 

All the above-mentioned studies concerned with the 
minimization of the U-bend pressure drop follow a classic trial-
and-error approach: several configurations are generated 
varying a number of geometrical parameters, performances are 
compared and global trends are evaluated. However, given the 
large number of parameters, this type of design process remains 
extremely time-consuming. Moreover, as many of the 
parameters are strongly coupled, the relations between them 
and their effects are difficult to asses. In order to ease and 
speed up the process, so called optimization methods can be 
applied. Most of these techniques exploit natural principles to 
obtain effective solutions, while minimizing the intervention of 
the human designer. A recent example is the study of Zehner et 
al. [19], who optimized the divider wall of a sharp turn U-bend. 
They used the ice-formation technique to generate a starting 
profile of minimum energy dissipation, and further improved 
the performance applying an evolutionary algorithm. 
Namgoong et al. [20] used Design of Experiment and surrogate 
design space model for similar purposes. 

This two-part paper addresses the design of a smooth U-
bend of radius ratio 0.76, optimized for minimal pressure loss. 
In this first part of the paper the design methodology is 
presented. The minimization of the total pressure loss is 
achieved by means of a numerical optimization method that 
uses a metamodel-assisted differential evolution algorithm in 
combination with an incompressible Navier-Stokes solver. The 
profiles of the internal and external side of the bend are 
parameterized using piece-wise Bezier curves. The pressure 
loss is computed by the Navier-Stokes solver, which is based 
on a two-equation turbulence model. The resulting design is 
subjected to experimental validation, presented in Part II of the 
paper [21], where the results of the aerodynamic optimization 
are discussed. 

In the present contribution only the aerodynamic 
performance of the cooling channel geometry is addressed. 
Including the heat transfer performance would imply to tackle a 
multi-objective optimization problem, which is beyond the 
scope of the present work. It is arguable that the accuracy 
achievable by nowadays computational tools in terms of heat 
transfer levels is sufficient for the purpose of the present 
investigation. Higher fidelity simulations are not an option in 
optimization due to the computational cost. On the other hand 
RANS solvers prove to yield reliable predictions of the 
pressure drop. The above considerations support the present 
choice of focusing first on the aerodynamic performance. 

NOMENCLATURE 
Latin 
ANN Artificial neural network 
C user defined constant 
DE Differential Evolution 
DOE Design of Experiments 
E error 
EA Evolutionary Algorithm 
F user defined constant 
FVM Finite Volume Method 
MSE Mean Square Error 
RSM Response Surface Models 
P pressure 
S surface area 
TF activation function 
a,b,c design vectors 
f objective function 
r random variable 
t generation index 
v velocity 
w neuron weight 
x design vector 
y trial vector 
z candidate vector 
Greek 
ε dissipation rate of turbulent kinetic energy 
ρ density 
ω connection weight 

2 Copyright © 2011 by ASME



 3 Copyright © 2010 by ASME 

OPTIMIZATION METHOD 
The optimization method used is the result of more than 

one decade of research conducted at the von Karman Institute 
[22, 23, 24]. The system (Fig. 1) makes use of a Differential 
Evolution algorithm (DE), a metamodel, a database, and a 
Finite Volume Method (FVM) CFD solver. The basic idea 
behind this method is a two-level optimization. A first one uses 
a rapid but less accurate analysis method (the metamodel) to 
evaluate the large number of geometries generated by the DE. 
The optimum geometry, according to the metamodel 
predictions, is then analyzed by the more accurate but much 
more computationally expensive FVM calculations to verify 
the accuracy of the metamodel predictions. The outcome of 
such an optimization cycle is added to the database. It is 
expected that, after a new training on the extended database, 
the metamodel will be more accurate as it is based on more 
information and the outcome of the next DE optimization will 
be closer to the real one. The optimization cycle is repeated 
until the Navier-Stokes results confirm the accuracy of the 
metamodel predictions.  
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Figure 1 Flow chart of the optimization algorithm.  
 
Geometry 
The U-bend under investigation is typical of internal 

cooling channels. The same scaled version for PIV-
measurements in the lab has been considered for the numerical 
optimization. The baseline geometry is show in Fig. 2. It 
consists of a circular U-bend with radius ratio of 0.76, a 
hydraulic diameter of 0.075 meter and an aspect ratio of 1. The 
Reynolds number is 40.000 and the Mach number of 0.05 
allows using an incompressible assumption. The shape of the 
inner and outer curve is allowed to be changed but needs to 
remain inside the bounding box shown in the figure, which 
restricts the height and width of possible changes to account for 
structural limits. The distance between both cooling channels is 
not subject to optimization, as well as the hydraulic diameter. 

 
Parameterization 
The parameterization of both inner and outer curve is 

shown in Figs. 3 and 4. Both curves are composed of 4 Bezier 
curves. The 180 degree turn is split into 2 Bezier curves, while 
the curves connecting the inlet with the U-bend and the U-bend 
with the outlet are defined by single Bezier curves. Each Bezier 
curve is a third order curve defined by a polynomial of 4 

control points. By changing the coordinates of these control 
points the shape of the curve will change. This allows 
controlling the shape of the U-bend by several well-chosen 
parameters. 
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Figure 2: Baseline geometry, definition of area in which 
the shape is allowed to change. 

 
The 4 curves defining the outer curve of the U-bend are 

parameterized by a total of 12 degrees of freedom, shown by 
arrows in Fig. 3. Several control points are only allowed to 
change in one direction while their other direction is controlled 
by the position of a neighboring control point to guarantee G1 
continuity. The 3rd control point of curve 2 is for instance only 
allowed to move in the horizontal direction while it follows the 
vertical movement of the 4th control point of that curve such 
that the curve remains horizontal in its endpoint. In the last 
control point of the first curve 3 degrees of freedom are 
specified: the horizontal and vertical movement of the control 
point and the curvature in that location. The curvature defines 
the vertical distance between the last and before last control 
point of curve 1 and the distance between the first and second 
control point of curve 2. The use of a curvature parameter 
guarantees a G2 continuity at the junction between curve 1 and 
2, which is considered necessary after some preliminary 
studies. However, at the symmetrical control point between 
curve 3 and 4, no curvature specification is needed. As a result, 
the before last control point of curve 3 and the second control 
point of curve 4 have a vertical degree of freedom. 

The parameterization of the inner curve is similar to the 
one of the outer curve, although for some control points the 
definition is based on the position of the control points of the 
outer curve. The last control point of the first curve is for 
instance positioned in the horizontal direction by a distance D1 
from the same control point of the outer curve. The parameters 
D2 and D3 define their respective control points in a similar 
way. This parameterization introduces parameters closely 
related to the flow physics, compared to a parameterization 
where the x- or y-coordinates would have been specified. This 
allows a more linear and direct relation between parameters and 
objective, as the acceleration of the flow is the result of one 
single parameter and not the difference between two parameters 
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defined at inner and outer curve. This makes the optimization 
problem well-posed. 
The number of parameters defining the inner curve is 14. The 
total number of parameters for the entire U-bend is 26, which is 
a trade-off between a large freedom in shape and the need for 
an effective optimization. For each parameter suitable ranges 
are defined.  
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Figure 3: Parameterization of the outer curve. 
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Figure 4: Parameterization of the inner curve. 

 
Grid generation 
A structured gird with 342x50x50 (855,000) cells has been 

used. The mesh is generated by an automated Gambit [25] 
script and allows for local refinement in regions of high 
curvature. In Fig. 5 a typical 2D view of the grid is shown. The 
boundary layer has been refined in accordance to the necessity 
of the Launder-Sharma low-Reynolds ε−k  turbulence 
model. The maximum y+ value does not exceed 2.2.  

The k-ε model “is arguably the simplest complete 
turbulence model” (Pope [26]), is implemented in most 
commercial software and is one of the most broadly employed 
at industrial level. Its performance is reasonably satisfactory in 

shear flows with small effects of streamwise pressure gradients 
and streamline curvatures, but far from these assumptions, it 
can fail badly. However it has been selected for the present 
application due to its large diffusion: given that the proposed 
methodology is apt for industrial problems, it was the intention 
of the authors to demonstrate its potential in conditions that are 
representative of real-life design practice. 

 
 

 
Figure 5: Zoom on the grid in the U-bend. 

 
Performance evaluation 
The simpleFoam solver from OpenFoam [27] is used to 

evaluate the incompressible Navier-Stokes equations. At the 
inlet a fully developed velocity profile is imposed, together 
with values of k and ε  for the turbulence model. Both are 
computed based on a turbulence intensity of 5% measured in 
the lab. At the outlet the static pressure is imposed. A 
convergence criteria of 5.10-6 for the residuals is imposed. The 
computations are run in parallel on 5 cores, requiring an 
average of 2 hours per calculation. 

The U-bend optimization is driven by the minimization of 
the pressure drop introduced by the U-bend. The objective 
function is formulated as: 

 
outlet

total
inlet

total PPxf −=)(min r
   (1) 

 
where xr  is the design vector containing the 26 parameters 

describing the geometry (see Figs. 2 and 3). The total pressure 
is computed as the mass flow averaged quantity at the inlet 
respectively outlet of the domain, positioned 8 hydraulic 
diameters away from the U-bend.  
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 Single-objective Differential Evolution 
Evolutionary Algorithms (EA) have been developed in the 

late sixties by J. Holland [28] and I. Rechenberg [29]. They are 
based on Darwinian evolution, whereby populations of 
individuals evolve over a search space and adapt to the 
environment by the use of different mechanisms such as 
mutation, crossover and selection. Individuals with a higher 
fitness have more chance to survive and/or get reproduced. 

When applied to design optimization problems, EAs have 
certain advantages above gradient based methods. They do not 
require the objective function to be continuous and are noise 
tolerant. In the presence of local minima, they are capable of 
finding global optima and avoid to get trapped in a local 
minimum. Moreover, these methods can efficiently use 
distributed and parallel computing resources since multiple 
evaluations can be performed independently. The evaluation 
itself does not necessary need to be made parallel. 
Disadvantages of EAs are mainly related to the large number of 
function evaluations needed. 

Differential Evolution (DE) is a relatively new 
evolutionary method developed by Price and Storn [30]. It is 
easily programmable, does only require a few user defined 
parameters and performs well for a wide variety of these 
parameters. A determination of optimal user defined parameters 
is very often unnecessary. 

Differential evolution, like all EAs, is population based 
and requires at each iteration the evaluation of an entire 
population of designs. The nomenclature resembles the one of 
evolutionary processes. A design vector xr  is called an 
individual; the collection of individuals at one given iteration is 
called a population, and the evolution of a population happens 
within generations, i.e. the children of the current population 
form the next generation. 

The purpose of the algorithm is to find the individual xr  
which minimizes an objective function ( )xf . To describe one 
version of the single-objective DE [30], the t-th generation 
containing T individuals is considered. Each individual txr  
contains n parameters. 

( )nt xxxx ,...,, 21=
r

    (3) 

To evolve the parameter vector txr , three other parameter 

vectors tar , tb
r

 and tcr  are randomly picked such that 

tttt xcba rrrr
≠≠≠ . A trial vector tyr  is defined as 

( ) nicbFay iiii ..1, =−⋅+=  (4) 

where F is a user defined constant ( ] [2,0∈F ) which 

controls the amplification of the differential variation ( )ii cb − . 
This procedure is usually called the mutation. The candidate 
vector tzr  is obtained by a recombination operator involving 

the vectors txr  and tyr , and is defined as 

ni
Crifx
Crify

z
ii

ii
i ..1=

⎩
⎨
⎧

>
≤

=   (5) 

where ir  is a uniformly distributed random variable 

( 10 <≤ ir ) and C is a user defined constant ( ] [1,0∈C ). This 
procedure is usually called the crossover, in analogy with 
Genetic Algorithms (GA). 

The final step in the evolution of txr  involves the selection 
process and, for the minimization of the objective function 
( )txf , is given by 

ni
xfzfifx
xfzfifz

x
ttt

ttt
t ..1

)()(
)()(

1 =
⎩
⎨
⎧

>
≤

=+  (6) 

 
The selection process involves a simple replacement of the 

original parameter vector with the candidate vector if the 
objective function decreases by such an action. 

Repeating the previous defined operations on each 
individual of the t-th generation will lead to a next generation 
(the t+1 th) with individuals with at least the same performance 
of the parent population due to Eqn. (6). Generation after 
generation individuals generated by random mutation will 
replace their ancestors when they perform better. The closer the 
population approaches the optimum of the objective function f, 
the smaller the mutations (Eqn. (4)) will become, which results 
in a more local search towards the optimum. 

 
Metamodel assisted Differential Evolution 
The major drawback of evolutionary algorithms such as 

DE is the total number of evaluations of the objective function 
needed. In general, more than thousand evaluations are 
commonly needed, and depending on the complexity of the 
optimization problem (both number of parameters and 
complexity of the objective function), this number can 
drastically increase. 

One way of reducing the unrealistic number of evaluations 
can be obtained by replacing the expensive evaluations 
(involving FVM) by a computationally cheaper method. This 
could be achieved by using a metamodel, which is a sort of 
interpolation tool using the already analyzed individuals by the 
FVM analysis. 

The metamodel performs the same task as the high fidelity 
FVM analysis, but at a very low computational cost. However, 
it is less accurate, especially for an evaluation far away from 
the already analyzed points in the design space. 

The implementation of the metamodel into the 
optimization system depends on how the system deals with the 
inaccuracy of the model. The technique used in the present 
work uses the metamodel as an evaluation tool during the entire 
evolutionary process [31]. After several generations the 
evolution is stopped and the best individual is analyzed by the 
expensive analysis tool. This technique is referred to as the 
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“offline trained metamodel”. The difference between the 
predicted value of the metamodel and the high fidelity tool is a 
direct measure for the accuracy of the metamodel. Usually at 
the start this difference is rather large. The newly evaluated 
individual is added to the database used for the interpolation 
and the metamodel will be more accurate in the region where 
previously the evolutionary algorithm was predicting a 
minimum. This feedback is the most essential part of the 
algorithm as it makes the system self-learning. It mimics the 
human designer which learns from his mistakes on previous 
designs. 

Two different metamodels, an Artificial Neural Network 
(ANN) and Kriging, have been used in the present study and 
their performance has been compared. Both have N input 
values and M output values. 

 
Artificial Neural Network (ANN) 
An ANN, schematically shown in Fig. 6, is composed of 

several elementary processing units called neurons. These 
neurons are arranged in layers and joined by connections of 
different intensity, called connection weights. The network 
used by the present optimization has three layers: The input 
layer consists of the n design variables, the hidden layer has K 
neurons an the output layer has m neurons.  
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Figure 6: Artificial Neural network (ANN) layout. 
 
The input to output relation for each hidden neuron j is 

given by Eqn. (7), where xi denotes the input, n the number of 
input connections to the neuron, wi,j the weight given to the 
connection between the i-th input neuron and the j-th hidden 
neuron, bj is a bias value and outj  the output. A similar relation 
is used to define the output in function of the hidden layer 
neurons. 

 

⎟
⎠
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⎜
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⎛
+⋅= ∑

=

n

i

hidden
ji

hidden
jij bxTFout

1
,ω   (7) 

The non-linear activation function TF is a sigmoid (Eqn. 
(8)). 

 

( )
)exp(1

1
x

xTF
−+

=    (8) 

 
Several techniques exist to train the ANN i.e. to determine 

the values of the weights wi,j and the bias bi for each neuron i. 
In the present work, the standard back propagation technique 
and training by the use of differential evolution have been used. 

 
Kriging 
Kriging was initially developed by geologists to estimate 

mineral concentrations based only on scarce data available at 
some places of an area [32]; about the same time it was also 
introduced in the field of statistics to include the correlations 
that exist between residuals of a linear estimator [33]. The 
theory behind interpolation and extrapolation by kriging was 
developed by the mathematician G. Matheron based on the 
Master’s thesis of D. G. Krige [34] on the use of the statistical 
techniques to predict the gold grades at the Witwatersrand reef 
complex in South Africa. 

There are many texts in geostatistics [35, 36] and in spatial 
statistics [37-39] that provide many details on the development 
and use of kriging models in their respective disciplines. 
Recently, kriging became of interest to approximate 
deterministic computer models due to its capability of not only 
predicting a value, but also to give the uncertainty of the 
prediction. Several authors can be found that use kriging 
methods for accelerating an optimization process [40- 45]. 

Kriging belongs to the family of linear least squares 
algorithms, such as polynomial response surface models 
(RSM), however it is reproducing the observed data exactly. 
The mathematical form of a kriging model has two parts as 
shown in Eqn. (9). The first part is a linear regression with an 
arbitrary number k of regression functions gj, that tries to catch 
the main trend of the response. An RSM model can be used for 
this purpose, however many authors (e.g. [41,45]) use a 
constant value for this part and rely on the second part of the 
model to pull the response surface through the observed data 
[42]. 

 

( ) ( ) ( )∑
=

+=
k

j
jj xZxgxf

1

~ rrr β    (9) 

 
The second part, Z(x), is a model of a Gaussian and 

stationary random process with zero mean. An assumption is 
made on the mathematical form of the covariance of Z(x), 
which is usually a Gaussian function [45]. The parameters jβ  

and the function Z(x) are determined such that ( )xf r~
 is the 

best linear unbiased predictor. A linear estimator means that 
( )xf r~

 can be written as a linear combination of the observation 
samples: 
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( ) ( ) ( )∑
=

=
N

i
ii xfxxf

1

~ rrr ω    (10) 

 
The unbiasedness constraint means that the mean error of 

the approximation is zero: 
 

( )[ ] 0)(~
=− xfxfE rr

   (11) 
 
The best linear unbiased predictor is considered the 

predictor with minimal mean square error (MSE) of the 
predictions, 

 

( ) ( )( ) ⎥⎦⎤⎢⎣
⎡ −=

2
xfxfEMSE rrt

  (12) 

 
One big advantage of kriging above other metamodels is 

its ability to not only predict the value of the objective function, 
but also the uncertainty on the prediction (see Fig. 7). The 
details of constructing kriging models have been thoroughly 
described in [46, 47, 41, 48, 49, 39]. 
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Figure 7: Prediction of mean value and confidence 
intervals by kriging. 

 
The database 
The accuracy of the metamodel predictions strongly 

depends on the information contained in the database. The 
Design Of Experiments (DOE) method is used to create the 
initial database. This maximizes the amount of information 
contained in it for a limited number of geometries [50]. 

Each design variable can take two values fixed at 25% and 
75% of the maximum design range. A 2k-p factorial design is 
used. k is the total number of design parameters (26) while p 
defines the number of lower order parameter combinations that 
are not analyzed. p is chosen such that in total 26=64 samples 
are generated for the initial database. An additional sample with 
all parameters at 50% of their range is added, resulting in a 
total of 65 initial geometries to be analyzed. 

 
 

Optimization of test functions 
The performance of optimization systems is difficult to 

assess in typical engineering problems requiring FVM 
computations because the global optimum is not known in most 
cases. One possibility is to compare the optimum proposed by 
different optimization algorithms, as is done in the present 
study. The same evaluation tool must be used (same physical 
model, discretization and accuracy), because only the 
difference in optimization performance is of interest. Another 
method consists of making a systematic sweep over the entire 
design space and evaluate each design. The global minimum 
can then be found, and the behavior of the optimizer can be 
understood. 

However, this method becomes unfeasible for more than 
two design parameters due to the vast number of designs that 
need to be analyzed. As a consequence, the performance of an 
optimization system is usually determined by its ability to 
minimize analytical test functions, for which the solution is 
known. Moreover, the evaluation of analytical functions 
requires few computational resources (less than 1 ms as 
opposed to several hours for FVM), which allows an extensive 
evaluation of the different settings of the optimization system. 

Numerous test functions exist for a variety of specific test 
purposes. Most of them have been developed to test 
evolutionary algorithms. In this section only the results for the 
De Jong test function is presented, although a systematic 
analysis of different test functions and metamodels have been 
performed [24]. 

The De Jong F1 test function is a global optimization test 
function and is given for a n-dimensional space by: 

 

12.512.5,)(
1

2 ≤≤−=∑
=

i

n

i
i xxxf r

 (13) 

 
The optimum is located at 0=ix . In what follows the 

results of the optimization of a 20 dimensional De Jong 
function are described. 

In Figs. 8 and 9 the convergence history of the 
optimization process for respectively a DE with ANN and 
Kriging are shown. It shows the comparison between the 
metamodel predictions of the objective function and the 
validation by the exact formula (Eqn. (13)) after each 
optimization performed by the DE algorithm. The setting for 
the optimization are C=0.6, F=0.4, population size T=50, 
number of generations 1000 and an intitial database counting 
65 samples. In the optimization assisted by the kriging 
metamodel (Fig. 9) a learning behavior is observed.  At the first 
iterations a relatively large difference between the metamodel 
prediction and the real function value is present. After adding 
this sample to the database and retraining the kriging 
metamodel, this difference gradually reduces till the 12th 
iteration where the difference is minimal. Hereafter the 
difference increases again but remains smaller than 0.001, 
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which is acceptable. For the ANN assisted optimization, the 
difference between ANN predictions and reevaluation by the 
exact function remains large. Moreover, the smallest function 
value found by the ANN is approximately 9, which is several 
orders of magnitude larger than the best candidate from the 
kriging assisted optimization (note the different scales used). 
One can conclude that for this particular test function the ANN 
is to be avoided. 
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Figure 8: Optimization result of De Jong F1 test function using 
an Artificial Neural Network (ANN) 
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Figure 9: Optimization result of De Jong F1 test function using 

kriging 
 

 
In Fig. 10 the same test function has been minimized by 

the DE algorithm without the assistance of a metamodel. In the 
abscissa the number of generations is plotted. The number of 
function evaluations per generation equals the population size 
(50). After 40 generations, or a total of 2000 evaluations of the 
objective function, the best individual has an objective function 
value of 0.1, which is still 2 orders of magnitude higher than 

the best optimum of the kriging assisted optimization. 
However, in the kriging assisted optimization, only 20 
evaluations of the objective function were performed during the 
optimization process, and 65 function evaluations were 
performed prior to the optimization to create the initial 
database. This shows clearly the advantage of the usage of a 
metamodel to reduce drastically the number of function 
evaluations, which is certainly of interest in the case the 
function evaluation requires an expensive 3D CFD 
computation. However, not all optimization problems have a 
simple behavior similar to the De Jong F1 test function with 
only one well-defined minimum.  
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Figure 10: Optimization result using differential evolution 

without metamodel. 
 
Several other tests performed with other test functions and 

different dimensions of the design space show similar trends as 
the case presented here. 

 
RESULTS 

In Figs. 11 and 12 the results of the ANN respectively 
Kriging assisted optimizations are shown. The same behavior 
of the optimization algorithm as for the De Jong F1 test 
function is observed, although the difference between the ANN 
prediction and CFD analysis is less dramatic. The best 
performing geometry is obtained with the kriging assisted 
optimization although with the ANN very similar geometries 
with a slightly higher pressure drop are obtained. The optimal 
geometry is shown in Fig 13. It has 37.6% reduction in total 
pressure drop with respect to the standard u-bend. A detailed 
description for the lower pressure drop within this geometry 
will be discussed in the second part of this paper, as well as a 
comparison with measurements. 

After the optimization one can analyze the influence of 
each individual parameter on the objective. In the following 
discussion the influence of four different parameters on the 
pressure losses will be investigated. 
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Figure 11: Optimization result using the Artificial Neural 

Network 
 

 
Figure 12: Optimization result using kriging. 

 
In Fig. 14 the influence of the inlet width D1 (see Fig. 4) 

on the pressure losses is presented. The red circular symbols 
represent the 65 initial database samples generated prior to the 
optimization. The squared black symbols represent the samples 
generated during the ANN optimization, while the diamond 
black samples represent the samples of the kriging 
optimization. From the initial database samples alone it is clear 
that in average a higher D1 results in a lower pressure drop. 
This trend is followed by the optimizer and most designs have a 
high D1 value. However, from the samples generated during 
the optimization it is clear that the maximal value for D1 does 
not result in the lowest pressure drop. A quadratic regression of 
all samples is given in Fig. 14.  The value of the optimal shape 
is corresponding closely to the minimum of the quadratic 
regression, located slightly below the hydraulic diameter of 
0.075. This indicates that at the inlet of the 180 turn the flow is 

not accelerated or decelerated. An acceleration would result in 
larger centrifugal forces in the bend, while a deceleration 
would result in a boundary layer that is more sensitive to 
separation. Both would increase the losses.  

 

 
Figure 13: Optimal shape of the U-bend. 
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Figure 14: D1 parameter versus pressure drop [Pa] for initial 

database (circle), ANN (square) and kriging (diamond) samples 
 
In Fig 15 the influence of D2 (see Fig. 4) on the pressure 

drop is presented. Also here an optimal value is found in 
between the boundaries of the parameter. An approximately 
10% higher value than the hydraulic diameter is the optimal 
value. It allows for a small diffusion in the middle of the U-
bend.  
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In Fig. 16 the influence of D3 (see Fig. 4) on the pressure 
drop is shown. A slightly higher value than for D2 is optimal, 
which includes a small diffusion from 90 degrees towards 180 
degrees of the U-bend. For the ANN several geometries are 
found with a higher value, however resulting in higher pressure 
losses. 

In Fig. 17 the influence of the y-coordinate of the 3rd 
control point of the 3rd exterior curve (see Fig. 3) on the 
pressure drop is shown. A clear trend towards the highest 
possible value is visible. This results in a high curvature in the 
3rd exterior curve as seen in Fig. 13. The physical explanation 
for this large curvature is given in the second part of this paper. 
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Figure 15: D2 parameter versus pressure drop [Pa] for initial 

database (circle), ANN (square) and kriging (diamond) samples 
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Figure 16: D3 parameter versus pressure drop [Pa] for initial 

database (circle), ANN (square) and kriging (diamond) samples 
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Figure 17: y coordinate of the third control point of the third 

outer curve versus pressure drop [Pa] for initial database 
(circle), ANN (square) and kriging (diamond) samples 

 

CONCLUSIONS 
This first part of the paper describes an optimization 

method applied to the design of a U-bend. It uses an automated 
design procedure involving a Navier-Stokes solver, a 
metamodel, a database and an evolutionary algorithm. The 
optimization method is validated by its ability to minimize 
typical analytical test functions. It is subsequently used to 
reduce the pressure losses within a U-bend.  

Two different metamodels have been used. It is concluded 
that for the present application with 26 degrees of freedom the 
kriging metamodel obtains a better performance.  

A reduction of 37.6% of the total pressure loss is obtained 
with respect to the original circular bend. Analysis of the 
geometries generated during the optimization process allows to 
reveal important parameters that play a key role in the 
reduction of the pressure losses. In the second part of this paper 
the physical interpretation of the flow physics confirms these 
results. 

It shows that the applied method is cost effective and 
allows to obtain significant improvements within a limited 
timeframe.  
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