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ABSTRACT 
This paper presents the preliminary results of using 

artificial neural networks in the prediction of gas side 
convective heat transfer coefficients on a high pressure turbine 
blade. The artificial neural network approach which has three 
hidden layers was developed and trained by nine inputs and it 
generates one output. Input and output data were taken from 
an experimental research program performed at the von 
Karman Institute for Fluid Dynamics by Camci and Arts [5,6] 
and Camci [7].  Inlet total pressure, inlet total temperature, 
inlet turbulence intensity, inlet and exit Mach numbers, blade 
wall temperature, incidence angle, specific location of 
measurement and suction/pressure side specification of the 
blade were used as input parameters and calculated heat 
transfer coefficient around a rotor blade used as output. After 
the network is trained with experimental data, heat transfer 
coefficients are interpolated for similar experimental 
conditions and compared with both experimental 
measurements and CFD solutions. CFD analysis was carried 
out to validate the algorithm and to determine heat transfer 
coefficients for a closely related test case. Good agreement was 
obtained between CFD results and neural network predictions. 

NOMENCLATURE 
i,j - Neuron Number 
n,k - Number of Neurons at a Layer 
l - Intermediate Layer 
L - Last Layer 
t - Iteration Number 

f’( )  - Derivative of a Function 
ai       -  ith  Input to a Neuron 
xj  - Sum Function of jth Neuron 
wi,j  - Weight from ith Neuron to jth Neuron 
EL

i(t) - Error of ith Neuron at Iteration t at Layer L 
dL

i(t) - Desired Output of ith Neuron at Iteration t at     
                Layer L 
yj  - Output of jth Neuron 
μ - Learning Rate 
s - Curve Length [mm] 
c - Chord Length [mm] 
Tu∞ - Free Stream Turbulence Intensity [%] 
Ma,i - Inlet Mach Number 
Ma,e - Exit Mach Number 
i - Incidence Angle [deg.] 
Twall - Blade Wall Temperature [K] 
Po,∞ - Inlet Total Pressure [kPa] 
To,∞ - Inlet Total Temperature [K] 
h - Heat Transfer Coefficient [W/m2K] 
 
 
INTRODUCTION 

Modern high-pressure turbines are increasingly 
challenged by high inlet temperatures and stage pressure ratios 
in order to improve the engine efficiency. Since temperature in 
high-pressure turbines exceeds the melting point of blade 
material, efficient turbine cooling is most often required to 
ensure acceptable lifetimes. Turbine cooling designs depend on 
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accurate determination of gas path boundary conditions such 
as pressures, temperatures, heat transfer coefficients, and film 
effectiveness [1]. 

 
Computational Fluid Dynamics (CFD) is increasingly 

being relied upon in the design and analysis of gas turbine 
components. The need to predict heat transfer along with 
aerodynamics during the design of turbine blades greatly 
complicates these analyses. Thus, the heat transfer predictive 
capability of CFD currently lags that of aerodynamics [2]. CFD 
techniques based on Reynolds-averaged Navier-Stokes (RANS) 
equations are routinely used to predict the pressure loadings 
and flow distributions of multi-stage blade rows. Although 
applications of CFD to predicting turbine heat transfer have 
achieved only limited success, Medic et al. [3] showed that 
physical and mathematical modifications on solution 
techniques made the CFD results more reliable. Typically the 
external heat transfer coefficients on turbine vanes and blades 
are obtained from the empirical correlations or boundary layer 
codes rather than directly from RANS analyses. This is 
especially true when there is laminar-to-turbulent boundary 
layer transition [4]. Heat transfer data is therefore needed both 
to assess the effects of various flow parameters and to improve 
CFD analyses so that these effects can be accurately predicted. 

 
In this study, heat transfer coefficients around a turbine 

rotor blade are predicted using artificial neural network (ANN) 
from nine input variables. The ANN is trained using the 
experimental data of Camci and Arts [5,6]. 
 
ARTIFICIAL NEURAL NETWORKS (ANN) 

Artificial Neural Network, which is an emulation of 
biological neural system, is a collection of simple processors 
connected together. Artificial Neural Network is also called as 
Neural Network or simply ANN. ANNs are applied in many 
fields as a function approximation tool including time series 
prediction, regression analysis, interpolation, and 
extrapolation; as a classification tool including fault detection, 
pattern recognition; as a data processing tool including 
filtering and clustering. 

 
ANNs can handle noisy data and can be implemented to 

any application. Once a network is trained, parameters are 
fixed and any case can be executed within a seconds without 
need for reprogramming and remodeling. Although there are 
advantages of ANNs, large nets require high processing time 
and need more information from real life applications. Since 
ANNs are not based upon conventional computing, they tell or 
predict what they are trained for [8]. 

 
Structure of a network consists of three layers. An input 

layer including input neuron(s). Hidden layer(s) including 
hidden layer neuron(s) where the calculations are 
implemented. An output layer including output neuron(s). 

Neurons of a network are interconnected to each other with 
weights which can be considered as synapses of a biological 
neural network. While teaching a network training examples 
(inputs) are presented to the network first. Then how closely 
the actual output of the network matches to the desired output 
is determined. Finally weight of each connection is changed so 
the network produces a better approximation of the desired 
output at the next iteration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Structure of a Network with Two Hidden Layers 
 
In this study a Feed Forward Network, where signals 

travel in one direction from input layer to output layer, with 
Back Propagation Algorithm is used. Back Propagation 
Algorithm propagates the error backwards in order to adjust 
weights to decrease error. In the Feed Forward Network output 
of a single neuron is calculated with S-type non-linear 
activation function Sigmoid [9]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Calculation of Output for a Single Neuron 
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Derivative of sigmoid activation function is given as: 
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Error of ith neuron of last layer (L) at iteration t is 
calculated as: 
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Error of ith neuron of intermediate layer(s) (l) at iteration t 

is calculated as: 
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Where f’(y) is the derivative of sigmoid activation. 

Weights are adjusted according to the formula: 
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μ is learning rate which varies between 0 and 1 is used to 

speed up or slow down the  learning process. For stable 
learning and better generalization it is found that lower 
learning values such as 0.1 are more suitable [10]. 
 
 Stopping criteria based on total error. Absolute value of the 
error for each neuron is added and if the total error is smaller 
than the target error, learning is stopped. Last calculated 
weights are the final weights of the network [11]. 
 
 
PREDICTION OF HEAT TRANSFER COEFFICIENTS 
BY ANN 

ANNs are non-conventional statistical tools. In this work 
ANN can be considered as a multiple non-linear regression 
model. Heat transfer coefficient along a high pressure turbine 
blade surface is aimed to fit to an equation with multiple 
inputs. In contrast to other function approximation techniques 
like curve fitting and regression ANN do not give a simple 
equation between input and output variables. It works as a 
black box but eliminates the restriction of user to specify an 

equation to fit a model between input and output variables 
where specifying an equation is a must in conventional 
statistical tools. 
 
Heat transfer coefficients of an uncooled turbine blade were 
obtained from short duration heat transfer experiments that 
were performed during 1980’s. Heat transfer coefficients under 
well simulated gas turbine conditions were obtained for many 
turbulence intensities and incidence angles. A 9-8-12-8-1 type 
network was trained to fit 108 data points to an equation. Nine 
input variables of the network are inlet total pressure, inlet 
total temperature, blade wall temperature, inlet Mach number, 
exit Mach number, turbulence intensity, incidence angle, 
specific location of measurement and the measurement 
location is suction side or pressure side of the turbine blade. 
Output parameter of the network is the predicted heat transfer 
coefficient. 
 
 
 

Table 1: Notation for the Algorithm and Equations 

Notation Meaning 

i,j Neuron Number 

n,k Number of Neurons at a Layer 

l Intermediate Layer 

L Last Layer 

t Iteration Number 

f’( ) Derivative of a Function 

ai ith  Input to a Neuron 

xj Sum Function of jth Neuron 

wi,j Weight from ith Neuron to jth Neuron 

EL
i(t) Error of ith Neuron at Iteration t at Layer L 

dL
i(t) Desired Output of ith Neuron at Iteration t 

at Layer L 

yj Output of jth Neuron 

μ Learning Rate 
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Table 2: Structure of the Network 

Inputs 

9 

Network 

8-12-8 

Output 

1 

- Inlet Total Pressure 

- Inlet Total Temperature 

- Blade Wall Temperature 

- Inlet Mach Number 

- Exit Mach Number 

- Turbulence Intensity 

- Incidence Angle 

- s/c 

- Suction Side or Pressure Side 

Three 

Hidden 

Layers 

 

Heat Transfer 

Coefficient 

 

 
Here s denotes the curve length of the portion up to the 

measurement point and c denotes the chord length of the 
blade. Six different experimental conditions are given below. 
 
 
 

Table 3: Six Different Experimental Conditions 

Case 
Po,∞ 

[kPa] 

To,∞ 

[K] 

Twall 

[K] 
Ma,i Ma,e 

Tu 

[%] 

i 

[Deg.] 

1 291.5 410 301.7 0.24 0.901 5.2 0 

2 305 417.9 295 0.263 0.945 0.8 -10 

3 305 417.2 292 0.271 0.952 0.8 0 

4 304 417.8 297.8 0.31 0.948 0.8 10 

5 304.5 417.6 299 0.316 0.951 0.8 15 

6 333 409.2 294.2 0.251 0.923 5.2 0 

 
In training process all data except the experiment number 

4 are used. The network model fitted to the data and 
experiment number 4 is used for testing. In the below figures 
fitted data are given. 
 
 Test data and ANN interpolation for case 4 are generally 
close to each other (Figure 5). Differences may be caused from 
limited data for other cases. 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Fitted Data for Case 1 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 4: Fitted Data for Case 3 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 5: Predicted Data for Case 4 by ANN 
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 In this study ANN is trained from one experimental data 
set. Input parameters are chosen to include especially flow 
parameters. If a network is thought to be trained with data 
from other sources like Arts et al. [12], input variables must be 
extended to include geometrical parameters such as chord 
length, profile thickness distribution, stagger angle, flow 
turning etc. 

NUMERICAL METHOD 
One of the objectives of this study is to compare the 

experimental data with predictions from a CFD analysis in 
order to validate ANN predictions. An experimental dataset is 
selected for this purpose based on the work of Camci and Arts 
[5,6]. 

 
The blade chord length of the VKI rotor equals 80 mm, 

with pitch-to-chord ratio equal to 0.67. The inflow angle is 
30°. The specific dimensions of the VKI rotor and more 
detailed description of the geometry can be found in Camci 
and Arts [5,6]. Short duration experiments were conducted in a 
linear cascade consisting of five blades. The uncertainty for the 
heat transfer coefficient was estimated between +/- 5%. Camci 
[7] also examined incidence effects on the test blade. 

 
Steady state simulations were obtained with FLUENT and 

all simulations were conducted with the Spalart-Allmaras 
turbulence model. Turbulent flows are significantly affected by 
the presence of walls. Obviously, the mean velocity field is 
affected through the no-slip condition that has to be satisfied at 
the wall. 

 
The near-wall modeling significantly impacts the fidelity 

of numerical solutions, since walls are the main source of 
mean vorticity and turbulence. After all, it is in the near-wall 
region that the solution variables have large gradients, and the 
momentum and other scalar transports occur most vigorously. 
Therefore, accurate representation of the flow in the near-wall 
region determines successful predictions of wall-bounded 
turbulent flows. 

 
As a result, the 2D simulation was performed with an 

unstructured quadrilateral mesh. y+ values are taken into 
account for the mesh in the near-wall region. The total grid 
size is 66349 cells. The near solid surface region of the blade 
was meshed such that y+ ~ 10 along the surfaces.  

 
Table 4 summarizes the geometrical and boundary 

conditions used for the numerical analysis. 
 
 
 
 
 

Table 4: Geometrical and Boundary Conditions 
 

Pitch to Chord Ratio 0.67 

Chord Length 80 mm 

Inlet Mach Number 0.316 

Inlet Re Number 8.5x105 

Inlet Temperature 417.6 K 

Inlet Flow Angle 30° 

Stagger Angle 38.5° 

Inlet Turbulence Intensity 0.8% 

Exit Mach Number 0.951 

Blade Surface Temperature 299 K 

 
 
Figure 6 shows the comparison of experimental data with 

CFD result for Tu∞ = 0.8%, i=15°. It can be seen from the 
figure that CFD result represents the experimental trend. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Comparison of Experimental Data (Case 5) with 
CFD Result for Tu∞ = 0.8%, i=15° 

 
 

Additionally a CFD analysis is carried out for a different 
case bounded by the experimental conditions in order to 
compare ANN predictions with CFD results. The test case 7 
which is test case 2 with incidence angle i = 5° is executed by 
ANN and CFD. The gathered results show that ANN can 
generalize successfully the trends in the range of trained data. 
It should be reminded that since ANN does not concern with 
the physics of flow, extrapolation for the out of training region 
may not be as successful as predictions for the learning 
boundary. 
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Figure 7: Comparison of ANN Prediction with CFD Result for 
Case 7 

 

CONCLUSION 
An artificial neural network code was developed to predict 

the convective heat transfer coefficient around a high pressure 
turbine blade. The code was trained by experimental input and 
output data of Arts and Camci [5,6]. The results of the code for 
heat transfer coefficient were in good agreement with 
experimental results. For test case 2 with an incidence angle of 
5 degree CFD analysis was carried out to find the heat transfer 
coefficients. Results obtained from CFD analysis were 
compared to neural network code results for the same case and 
it was seen that the neural network code has a capability for 
generalization to estimate heat transfer coefficient around the 
blade, especially for pressure side of the blade. Since the 
network is trained with data from one experiment and include 
flow parameters as inputs, this work should be considered as 
an introductory approach for application of artificial neural 
networks to gas turbine heat transfer studies. More robust 
networks can be generated from distinct sources and different 
geometries including both flow and geometrical parameters as 
inputs. 

 
For suction side, investigation of the turbulence models 

which best suit for the case and required modifications of the 
model can be assessed as a future work on this study. Also it is 
aimed to train the neural network for different experiment 
conditions and different geometries with more input variables 
and extend the approach for film cooling cases as a future 
work. 
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