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ABSTRACT 
Brush seals play an increasing role in turbomachinery due 

to their improved behavior towards leakage and their capability 
to compensate for gap variations caused by thermal expansion 
and rotor excursions. The flexible bristles of brush seals are 
able to endure short-term reductions in gap width without 
severe damage. Consequently the necessary gap between the 
rotor and brush seal can virtually be reduced to zero, leading to 
a considerable reduction in air leakage of up to 80 percent. 
However the reduced gap height increases the probability of 
rubbing between the bristle package and the rotor surface. The 
friction forces generated can cause an unwanted heat load on 
the rotor, bristles and leakage air. In addition, the surfaces 
involved are exposed to abrasion effects. Especially in the thin 
and lightweight rotor structures of aircraft engines, the 
additional heat impact can lead to a problematic level of 
material stress. To study these effects and to give reliable 
quantitative design rules, a versatile test rig for brush seals was 
designed and built. The simulation of seal behavior under 
relevant engine conditions is the main emphasis of this rig, 
including high pressure drop, leakage flow and high surface 
speed. The key feature is the possibility to vary the axis 
symmetric radial gap width during the test rig operation by up 
to a 0.5 mm overlap. The so caused rubbing induces a transient 
rotor temperature rise which is measured via a set of 12 
thermocouples embedded in the rotor. These temperature 
readings can be used to calculate the brush seal heat impact on 
the rotor structure. Preliminary results with moderate 
differential pressure and rotor speed proved the functionality of 
the test rig and confirmed the global approach of the project. 

 
 

INTRODUCTION 
Undesired leakage flows in turbo machines greatly 

contribute to the overall efficiency losses. Hence improving the 
seal performance enables higher engine performance in terms 
of decreased specific fuel consumption and higher thrust [1]. 
Therefore, the efficient use of secondary air whilst reducing 
leakage flow is a crucial point in today’s, and future, engine 
generation. Currently used seals, such as labyrinth seals, have 
reached their limits due to the inherent gap between the sealing 
fins and the stator surface. This gap cannot be reduced further 
for reasons of thermal expansion, rotor eccentricity and - in 
aero engines - maneuver forces. 

NOMENCLATURE 
Δp   Differential pressure 
u   Rotational speed  
Δs   Rotor – seal overlap  
Δt1   Time span from start to steady-state 
Δt2   Time span of brush seal rubbing 
Δt3   Time span of rotor cool-down 
B   Bristle package width 
d   Single bristle diameter 
TC 1 … TC 6 Thermocouple No. 1 – No. 6 
Φ   Bristle inclination angle 

Benefits of brush seals  
Amongst other alternatives to labyrinth seals, brush seals 

have already proven their great potential to dramatically reduce 
leakage [2][3]. Their development and design has been 
thoroughly discussed in the literature, e.g. [4][5][6][7][8]. As 
can be seen in Fig. 1, the seal consists of a compliant bristle 
structure, mounted between a backing plate and a front plate. 
Depending on the supplier, the bristles are connected to the 
casing by either welding, bracing or clamping. The flexible 
bristle structure can cope with short-term rotor interference 
without being irreversibly damaged. Hence it is possible to 
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the bristles. During the rubbing, the changing upstream air 
pressure affected the leakage. After the rubbing was finished, 
the leakage recovers with a slightly higher value. This could be 
interpreted as a hang up effect of the bristles, which was 
already widely discussed in literature, e.g. [16][22]. 
 

Fig. 13 shows the rising air temperature downstream of the 
brush seal, which shows a maximum soon after the brush seal 
rubbing is finished. Finally, Fig. 14 gives the most interesting 
part of the measurements, which are the transient temperature 
readings from the rotor. The rotor is equipped with 2 x 6 
thermocouples, the two instrumented regions are displaced 
180° circumferentially for reasons of thermocouple redundancy 
and rotor balancing. As the readings from both instrumented 
regions are identical, only 6 thermocouple readings from one of 
the two instrumented regions are shown in Fig. 14. 
 

It can be seen from the temperature distribution in Fig. 14 
that the initial thermal condition of the rotor does not seem to 
be completely isothermal, but stationary. This is most probably 
due to windage heating around the slave brush seal. The closest 
thermocouples to the slave seal are thermocouple TC 5 and TC 
6, which would explain why these two readings start at a 
slightly higher temperature level than the other readings. After 
the rubbing process started, the temperature readings increased 
with differing delays, depending on the distance from the heat 
impact position. Thermocouples 3 + 4 are directly underneath 
the rubbing position, and faced the fastest and strongest 
temperature increase, followed by thermocouples 2 + 5, while 
the readings from thermocouples 1 + 6 show a delayed and 
smaller temperature increase. After the brush seal was traversed 
back to its initial position, the temperature decreased, 
depending on the thermocouple position with no or slight delay 
time. 

CONCLUSIONS 
A newly designed and built versatile test rig for brush seal 

behavior, particularly for rubbing conditions, was presented in 
this paper. The main focus of the new rig at the ITS was on the 
frictional heat generation of brush seals during rotor-seal 
contact, which is measured in-situ through a thermocouple 
instrumented rotor disc. The rig allows the combination of 
engine-like operation conditions with the possibility to vary the 
radial gap between the brush seal and the rotor. Preliminary 
experimental results proved the functionality of the complex 
design, which will be used in future to test different brush seals 
in a variety of operating conditions. The determination of the 
brush seal heat impact on the rotor will be carried out with an 
inverse approach by comparing experimental temperature 
readings with a finite elements model. The boundary conditions 
for this model have to be carefully assigned; a sensitivity 
analysis of the various boundary conditions will follow. The 
test rig eases this task as the rotor design offers the possibility 
to insert insulation material inside the rotor disc. The data 
obtained from the future brush seal research in Karlsruhe will 
be used to setup correlations and mathematical models to 

thoroughly understand the tribology and heat generation of 
brush seals 
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