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ABSTRACT 

In recent papers, orifice models have been developed to 

calculate the amount of ingestion, or ingress, that occurs 

through gas-turbine rim seals. These theoretical models can be 

used for externally-induced (EI) ingress, where the pressure 

differences in the main gas path are dominant, and for 

rotationally-induced (RI) ingress, where the effects of rotation 

in the wheel-space are dominant. Explicit ‘effectiveness 

equations’, derived from the orifice models, are used to express 

the flow rate of sealing air in terms of the sealing effectiveness. 

These equations contain two unknown terms: Φmin, a sealing 

flow parameter, and Гc, the ratio of the discharge coefficients 

for ingress and egress. The two unknowns can be determined 

from concentration measurements in experimental rigs.  

In this paper, maximum likelihood estimation is used to fit 

the effectiveness equations to experimental data and to 

determine the optimum values of Φmin and Гc. The statistical 

model is validated numerically using noisy data generated from 

the effectiveness equations, and the simulated tests show the 

dangers of drawing conclusions from sparse data points. Using 

the statistical model, good agreement between the theoretical 

curves and several sets of previously-published effectiveness 

data is achieved for both EI and RI ingress. The statistical and 

theoretical models have also been used to analyse previously-

unpublished experimental data, the results of which are 

included in separate papers. It is the ultimate aim of this 

research to apply the effectiveness data obtained at rig 

conditions to engine-operating conditions. 

 

NOMENCLATURE 

A area  
b radius of seal  
Cd,e,Cd,i discharge coefficients for egress, ingress 

Cw nondimensional flow rate (=ṁ/µb) 

Cw,e,Cw,i  values of Cw for egress, ingress 

Cw,o nondimensional sealing flow rate 

Cw,min minimum value of Cw,o to prevent ingress 

ej jth
 measured value of ε 

Gc seal-clearance ratio (=sc/b) 

l log likelihood function 

m number of repeated tests 

ṁ mass flow rate 

n number of data points 

N normal distribution  
p absolute static pressure 

r radius 

Reφ rotational Reynolds number (=ρΩb2/µ) 

sc seal clearance  

U  bulk mean velocity of sealing flow (=ṁo/2πρbsc) 

Vr,Vφ radial and tangential components of velocity 

z axial distance in seal clearance 

δ error 

∆Cp nondimensional pressure difference 

ηt sealing flow parameter (= 0.5Gc Reφ
0.2Φο)  

γ Гc

-1
 

Гc ratio of discharge coefficients (=Cd,i /Cd,e) 

Г̂c estimated value of Гc 

Г‾c ensemble average of Гc 

ε sealing effectiveness (=1-Cw,i /Cw,e) 

λ parameter for calculation of confidence interval 

µ dynamic viscosity 

ρ density 

θ generic parameter vector 

σ standard deviation 

φj jth 
value of Φο  

Φ sealing flow parameter (=Cw /2πGcReφ) 

Φe   value of Φ when Cw=Cw,e (=Cw,e /2πGcReφ) 

Φi value of Φ when Cw=Cw,i (=Cw,i /2πGcReφ) 

Φmin value of Φo when Cw,o=Cw,min (=Cw,min /2πGcReφ) 

Φ  ̂
min estimated value of Φmin 

Φ‾ min ensemble average of Φ  ̂
min 
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Φo value of Φ when Cw=Cw,o (=Cw,o/2πGcReφ) 

Ω angular velocity of rotating disc 

 

Subscripts 
e egress 

EI externally-induced ingress 

i ingress 

j jth
 data point 

max maximum   

min minimum 

o sealing flow  

RI rotationally-induced ingress 

Г relating to Гc 

Φ relating to Φmin  

1,2 locations in wheel-space and annulus 

* value when Cw,o=0 

 
1. INTRODUCTION 

 
 

Fig. 1  Typical rim seal for high-pressure gas-turbine stage 

 

Fig. 1 illustrates a typical high-pressure gas-turbine stage 

showing the rim seal and the wheel-space between the stator 

and the rotating turbine disc. The flow past the stationary vanes 

and rotating blades in the turbine annulus creates an unsteady 

3D variation of pressure radially outward of the rim seal. 

Ingress and egress occur through those parts of the seal 

clearance where the external pressure is higher and lower, 

respectively, than that in the wheel-space. This non-

axisymmetric type of ingestion is referred to here as externally-
induced (EI) ingress.  

Even when the external flow is axisymmetric, so that there 

is no circumferential variation of external pressure, ingress can 

still occur. The reason for this is that the rotating fluid in the 

wheel-space creates a radial gradient of pressure, so that the 

pressure inside the wheel-space can drop below that outside. 

The so-called ‘disc-pumping effect’ causes a radial outflow of 

fluid, or egress, near the rotating disc, and the low pressure in 

the wheel-space causes ingress of external fluid through the rim 

seal into the wheel-space. This axisymmetric type of ingestion 

is referred to here as rotationally-induced (RI) ingress, and Fig. 

2 shows a simplified diagram of ingress and egress through an 

axial-clearance rim seal. 

 

 
Fig. 2  Simplified diagram of ingress and egress 

 

Although the sealing air can reduce ingress, too much air 

reduces the engine efficiency and too little can cause serious 

overheating, resulting in damage to the turbine rim and blade 

roots. The engine designer needs to know the value of Cw,min, 

the nondimensional sealing flow rate necessary to prevent 

ingress.  If Cw,o, the nondimensional sealing flow rate, is less 

than Cw,min, the designer wants to know how much ingress 

occurs and how does the ingested fluid affect the temperatures 

in the wheel-space.  

Owen and his co-workers [1-4] have developed orifice 

models for EI and RI ingress to calculate the effectiveness of 

gas-turbine rim seals. In principle, and within the limits of 

dimensional similitude, the models could be used to extrapolate 

measurements of sealing effectiveness made on an 

experimental rig at one set of operating conditions to an engine 

operating at another set of conditions.  

Experimenters often use concentration measurements to 

determine the variation of ε, the sealing effectiveness, with Cw,o. 

It is the principal objective of this paper to show how statistical 

techniques can be used to fit the theoretical ‘effectiveness 

equations’, derived from the EI and RI orifice models, to the 

data obtained from experimental rigs. Using the parameters 

obtained from the fitted curves, the models should then be able 

to estimate the effectiveness at engine conditions. 

As ingress has been reviewed in many recent papers, 

including references [1-4], only a brief review of the papers that 

are relevant to this study is included in Section 2. Section 3 

explains the statistical fitting technique, Section 4 describes 

some numerical tests carried out on the technique, Section 5 

shows how the technique can be applied to experimental data, 

and the principal conclusions are summarized in Section 6.  
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2. BRIEF REVIEW OF PREVIOUS WORK 

Only a brief review of the ingress literature, including the 

papers that are used to validate the statistical and theoretical 

models described in this paper, is given here. More extensive 

reviews are given in [1-4]. 

 

2.1 RI and EI ingress 

For RI ingress, Bayley and Owen [5] presented 

experimental results for a simple rotor-stator system with an 

axial-clearance rim seal in which there was a superposed radial 

flow of air that discharged through the seal into the atmosphere; 

there was no external annulus on the rig. Owing to the sub-

atmospheric pressure created by the rotating flow in the system, 

external (atmospheric) air could be drawn into the wheel-space. 

Increasing the superposed flow rate increased the relative 

pressure inside the wheel-space and consequently reduced the 

amount of ingested air. At sufficiently high superposed flow 

rates, where Cw,o≥Cw,min, ingress did not occur. Bayley and 

Owen used their measured pressures for Gc= 0.0033 and 

0.0067, and for Reφ ≤ 4×106, to provide the correlation: 

Cw,min=0.61Gc Reφ   (2.1) 

Graber et al. [6] reported extensive concentration 

measurements in a rotating-disc rig, which was used to 

determine the effects of seal geometry, rotational Reynolds 

numbers and the level of swirl in the external annulus on ε, the 

sealing effectiveness. Their measurements, which showed that 

the external swirl had no systematic effect on the effectiveness, 

were used in [1] to validate the orifice model for RI ingress. 

Phadke and Owen [7-9] conducted experiments for RI and 

EI ingress in a rotating-disc rig with a number of different rim-

seal geometries. They showed that EI ingress was controlled by 

the peak-to-trough pressure difference in the annulus and that 

there was a transition from RI to EI ingress as the pressure 

difference was increased. This transition, in which the effects of 

rotation and external pressure difference are both significant, 

was referred to by Owen et al. [4], as combined ingress. They 

also showed that the orifice models could be used for this 

transitional form of ingestion. 

For EI ingress, Johnson et al. [10] used an orifice model to 

obtain good estimates of the effectiveness measurements in the 

turbine rig of Bohn et al. [11]. They used the values obtained 

from 2D time-dependent CFD to determine the external 

circumferential pressure distribution used in their model, which 

allowed the effects of the vanes and blades to be taken into 

account. A modified version of their orifice model was also 

applied by Johnson et al. [12] to the ingress measurements 

made on a turbine rig in Arizona State University.   

 

2.2 Orifice model for EI and RI ingress 
The mathematical model for the orifice equations derived 

in [1] is based on an orifice ring, as shown in Fig. 3 for an 

axial-clearance seal, where ingress and egress simultaneously 

cross different parts of an imaginary ring. (The orifice ring can 

be thought of as a thin circular membrane with the same 

dimensions as the seal clearance.) Egress flows through a 

stream tube in the wheel-space where the static pressure is p1 

and, after crossing the ring through a small orifice with an area 

δAe, emerges in the external annulus where the static pressure is 

p2; conversely, ingress originates in the annulus and, after 

crossing the ring through an orifice with an area δAi, emerges in 

the wheel-space.  

It is assumed that there is continuity of mass and energy 

inside the separate stream tubes for egress and ingress but there 

is a discontinuity in the pressure across the sealing ring. In 

addition, angular momentum is conserved, so that free-vortex 

flow occurs and rVφ is constant. The principal ‘orifice 

assumptions’ are that (r2-r1)/r1<<1 and that Vr,1

2
<<Vr,2

2 
for 

egress and vice versa for ingress. Although the equations are 

derived for inviscid incompressible flow, discharge coefficients, 

analogous to those used for the standard orifice equations, are 

introduced to account for losses. In general, different discharge 

coefficients (Cd,i and Cd,e) are needed for ingress and egress, 

and these have to be determined empirically. 

 
Fig. 3  Schematic of orifice model [1] 

 For rotationally-induced (RI) ingress, the flow is assumed 

to be axisymmetric: swirl of the flow in the wheel-space is 

included but external pressure asymmetries are ignored. For EI 

ingress, the circumferential variation of pressure in the annulus 

is included but swirl in the wheel-space is ignored. To obtain 

analytical solutions for EI ingress, the circumferential variation 

of pressure in the annulus was approximated in [2] by a linear 

saw-tooth model.  

 
Fig. 4  Effect of Гc on variation of ε with Φo predicted by 

orifice models [2]. 

Solid line, EI ingress; dashed line, RI ingress.  
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Implicit relationships between the sealing effectiveness ε 

and the sealing flow parameter Φo were derived in [1, 2]. More 

convenient explicit relationships, referred to as the 

effectiveness equations, were derived for both EI and RI ingress 

and applied to experimental data by Sangan et al [13, 14]. The 

sealing flow parameter, which is useful for both EI and RI 

ingress, is usually defined as 

 

φπ
Φ

ReG

C

c

o,w
o

2
=     (2.2) 

As Reφ and Cw,o include viscous terms, which cancel in eq (2.2), 

the above definition might give the misleading impression that 

viscosity has a role to play.  An alternative definition is 

 
b

U
o

Ω
Φ =     (2.3) 

where U is the bulk mean radial velocity of sealing air through 

the seal clearance, so that 

 

c

o

bs

m
U

πρ2

ɺ
=     (2.4) 

Eq (2.3), apart from being simpler, clearly shows that Φo is an 

inertial parameter. Φmin is the value of Φo when the system is 

sealed, so that Cw,o=Cw,min. 

 For RI ingress, the effectiveness equation for Φo ≤ Φmin,RI is 

 
21221 1111 /

c
/

RImin,

o

)](][)([ εΓε

ε

Φ

Φ

−+−+
=

−
 (2.5) 

where Гc is the ratio of the discharge coefficients for ingress 

and egress, and ε=1 for Φo > Φmin,RI. The designer is also 

interested in calculating the flow rate of ingested fluid that 

occurs when Φo < Φmin,RI. As  

 11 −= −ε
Φ

Φ

o

RI,i     (2.6) 

then it follows that 
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and  
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where Φi,RI is the nondimensional ingested flow rate and Φi,RI* 

is the value of Φi,RI when Φo=0. Φi,RI* represents the maximum 

value of the nondimensional ingested flow rate. 

 For EI ingress, the effectiveness equation for Φo ≤ Φmin,EI 

is:  

 
233232
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o
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ε

Φ
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−
  (2.9) 

and ε=1 for Φo > Φmin,EI. As 

 11 −= −ε
Φ

Φ

o

EI,i     (2.10) 

then the ingested flow rate can be calculated from 
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 Fig. 4, which was adapted from [2], shows the effect of Гc 

on the variation of ε with Φo/Φmin for EI and RI ingress. It can 

be seen that Гc affects the shape of the curves and, for a given 

value of Φo, the effectiveness decreases as Гc increases (that is, 

as Cd,i increases). For the designer, Φmin (which determines how 

much sealing air is required to prevent ingress) is more 

important than Гc. The statistical model described below allows 

the effectiveness equations to be fitted to experimental data in 

order to find the best estimates of Φmin and Гc. 

 

3. FITTING STATISTICAL MODEL TO DATA 

3.1 Maximum likelihood estimation 

 For simplicity, the subscripts EI and RI are not used in this 

section. 

 Different values of the parameters Гc and Φmin in the 

effectiveness equations (2.5) and (2.9) lead to different curves. 

The aim of statistical model estimation is to find the values, or 

a range of values, of Гc and Φmin that lead to curves that best 

match empirical data on how ε varies with Φo. We will do this 

by maximum likelihood estimation. This is the standard method 

which, due to its favourable properties and wide applicability, is 

preferred by statisticians. Wood [15] gives an introduction to 

the method, and more details are given by Silvey [16] and by 

Davison [17].  

 Consider a set of measurements of ε as Φo is varied 

experimentally. Let ej denote the measured value of ε, 

corresponding to the jth
 value of Φo, which is denoted by φj. 

Furthermore let ε(Гc ,Φmin ,φj) denote the model predicted value 

of ε corresponding to φj, when the parameter values are Гc and 

Φmin. For any given Гc ,Φmin ,φj values, ε can always be obtained 

from eqs (2.5) or (2.9) by numerical root finding (see e.g. [18]).  

 To obtain a statistical model we suppose that the 

measurements ej can be modelled as noisy observations of ε. 

Specifically, we assume that ej is normally distributed around a 

mean ε(Гc ,Φmin ,φj) with variance, σ2
. That is, 

.,,Φ,Γ∼ ))(( 2

min σφε jcj Ne  
 We further assume that the ej are statistically 

independent (i.e. knowing the value of e1 provides no more 

information about e2 than we already had from knowing φ2). 

Under these assumptions we can write down the joint 
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probability density function f for the whole vector e of ej values, 

given the φj and the parameter values, namely 

f(e)=(2π σ2)
-n/2

exp{–Σ[ej –ε( Гc ,Φmin, φj)]
2/2 σ2}  

(3.1) 

where n is the number of observations or data points. 

The key idea of maximum likelihood estimation is that the 

values of the parameters (here Гc ,Φmin and σ) most likely to be 

correct are those that maximize the probability of the data 

according to eq (3.1). The method proceeds by putting the 

observed values of ej and φj into the right-hand-side of eq (3.1), 

and treating the resulting expression as a function of the 

parameters Гc ,Φmin and σ. This function is known as the 

likelihood function of the parameters.  

For practical and theoretical convenience it is better to 

work with the log of the likelihood function, denoted by l. In 

this case,  

l(Гc ,Φmin, σ)=-n/2log(2π)–nlog(σ)–Σ[ej –ε( Гc ,Φmin, φj)]
2/(2 σ2) 

(3.2) 

l measures the consistency of the experimental data and the 

model curves generated by particular parameter values; note the 

link with least squares here. The values of the parameters which 

maximize l are the maximum likelihood estimates of the 

parameters, denoted by Г̂c, Φ̂min and σ̂. These can be obtained 

numerically by variants of Newton’s method or Downhill 

Simplex (see e.g. Nocedal and Wright [19]) .  

 Let θ denote a generic parameter vector (here (Гc ,Φmin, 
σ)T

), with log likelihood l. It can be shown (see e.g. [15, 16])  

that in the limit n → ∞,  

   θ̂ ~ N(θ, –(∂
2
l/∂θ∂θ

T
)

-1
)            (3.3) 

That is, with a large number of repeated tests, each with a large 

number of data points, the maximum likelihood estimates 

(MLEs) would have a multivariate normal distribution, with a 

mean given by the true values of the parameters and a 

covariance matrix given by the inverse of the negative of the 

Hessian of the log-likelihood with respect to the parameters. 

 It can be shown (see [16]) that the covariance matrix is 

actually the ‘smallest’ one possible. This large-sample limiting 

result is usually a good approximation at finite sample sizes, 

but it is only valid under some not very restrictive assumptions. 

The two most important assumptions are: the MLEs must not 

be at the limit of their possible values; the likelihood must have 

bounded third derivatives. 

 

3.2 Confidence intervals 

 Eq (3.3) is easily used to produce confidence intervals 

(CIs) for parameters, based on the MLEs. For example, suppose 

that we want an approximate 95% CI for the kth
 parameter, with 

MLE θ̂k. Let σθ
^
k
 denote the square root of the kth

 element on the 

leading diagonal of –(∂
2
l/∂θ∂θ

T
)

-1
, then the required 95% CI is 

θ̂k ± 1.96σθ̂k
. Note that the required Hessian can be obtained 

analytically or by finite differencing.  

 A general advantage of the method of maximum likelihood 

is that the MLEs are invariant under reparameterization of the 

model. For example, whether we choose to work in terms of Гc 

or a new parameter γ = Гc

-1
, our estimate of Гc will be 

unchanged. This leaves complete freedom to reparameterize for 

numerical convenience, without modifying statistical 

conclusions about the most likely parameter values. 

Unfortunately this invariance need not be shared by the 

confidence intervals just discussed.  

 An intuitively unappealing consequence of this lack of 

invariance is that our confidence intervals can include some 

parameter values with a lower likelihood than some parameter 

values outside the confidence intervals. For this reason it could 

be better to use as confidence intervals those ranges of 

parameter values that yield highest likelihood. 

 This can be obtained as follows. Suppose that we wanted to 

test the hypothesis that θk=θ0, where θ0 is a particular value. 

Now estimate θ by maximizing the likelihood under the 

restriction θk=θ0. Denote the resulting restricted MLE θ̂0, and 

let θ̂ denote the MLE obtained without restriction. It turns out 

that if the hypothesis is true then the probability distribution of 

the difference in maximized log likelihoods, with and without 

restriction, is known.  

 Let λ be defined as twice the difference in the log 

likelihoods with and without the restriction, such that 

λ=2{l( θ̂ )–l( θ̂ 0)}                            (3.4) 

If the restriction θk=θ0 is actually the true state of nature then, 

in the large-sample limit, λ ~ χ2 

1 . That is, λ has a χ
2
distribution 

with one degree of freedom (see [15]). In statistical terms we 

would accept the hypothesis θk=θ0 at the 5% level if λ was 

within the smallest 95% of χ
2 

1  random variables, i.e. if λ <3.84. 

Otherwise we would reject as the observed λ would appear to 

be too large to have come from the distribution that should 

apply if the hypothesis were correct. 

 Finding a 95% CI is now very simple, conceptually: we 

simply search for the range of θ0 values that would be accepted 

in this hypothesis test. Computationally this search is slightly 

more complicated than the intervals based on eq (3.3), but the 

resulting intervals are always invariant. 

 In the work described below, the log likelihood for each 

model was coded up in the R statistical language (see [20]). The 

numerical root-finding required for this was done using the R 

function uniroot. The log likelihoods were maximized using R 

function optim to find the MLEs together with the Hessian of 

the log likelihood and the log likelihood of the MLE. Both 

types of confidence interval were also computed in R, with a 

simple search algorithm used for the invariant intervals. Only 

the CI calculated by the latter method is shown in the following 

sections. 
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4. NUMERICAL VALIDATION OF STATISTICAL 

APPROACH 

 In this section, numerical simulation of experimental data 

is used to examine the characteristics of the statistical 

estimates.  The theoretical curve (referred to below as the ‘true 

curve’) for the variation of ε with Φo was calculated from eq 

(2.9) for EI ingress, from which n discrete data points (φj,ej) 

were determined. A normally-distributed error, δj, was added to 

ej, and the variance of the distribution was σ2
. For the ‘tests’ 

reported here, σ = 0.01 and 0.02, and the values of Φmin and Гc 

(referred to as the ‘true values’) were 0.25 and 0.5 respectively; 

these are typical values for EI ingress. As for Section 3, the EI 

subscript has been omitted for simplicity. 

 An initial set of n = 32 data points was generated and the 

MLEs (maximum likelihood estimates) of Φ̂ min, Г̂ c, were 

calculated together with their upper and lower bounds, which 

were determined from the confidence intervals. The errors δΦ 
and δГ were defined as the percentage differences between the 

estimated and true values of Φmin and Гc.  

 Removing alternate data points, the process was repeated 

for n =16, 8 and 4.  For each value of n, the simulated tests 

were repeated m times and the ensemble averages, Φ‾ min, Г‾ c, 

were calculated together with the respective standard 

deviations, σΦ, σГ, between the individual estimates and the 

ensemble averages. 

 

 
Fig. 5  Variation of Φ‾ min, Г‾c and their standard deviations 

with n for m = 1000. (Error bars show standard deviations 

between individual estimates and ensemble averages.) 

 

 Fig. 5 shows the variation of Φ‾ min, Г‾c and σΦ, σГ with n for 

m = 1000. It can be seen that Φ‾ min, Г‾c tend to their true values as 
n increases, but at the smaller values of n there is a bias in the 

average values. The bias is attributed to the fact that the 

effectiveness equations are nonlinear: although the errors in ε 

are normally distributed about the mean, the errors in Φ‾ min,   Г‾c 

are not. 

 It can also be seen from Fig. 5 that the standard deviations, 

which are relatively large (particularly for Гc) at the smaller 

values of n, decrease as n increases. A large standard deviation 

implies high variability between the values obtained from 

individual tests. It is therefore possible that, for some tests, the 

estimated value for a single test for n = 4 could, by chance, be 

more accurate than one for n = 32; but one could never know 

that this was the case and on average the reverse would be true. 

 Table 1 shows the results for three particular tests selected 

from 1000 individual tests with σ=0.01. Table 1(a) shows 

typical results where the accuracy of Φ̂min, Г̂ c increase as n 

increases. Table 1(b) shows atypical results where the accuracy 

for the n = 4 test is better than that for n = 32. Table 1(c) shows 

another atypical case where only the confidence intervals for 

the n = 32 test capture the true values.   

 For m = 1000 tests, the confidence intervals for n = 4, 8, 16 

and 32 did not capture the true value 22.9, 10.8, 8.0 and 6.6% 

of the tests respectively. If the confidence intervals had been 

working perfectly then they should have failed to capture the 

truth on 5% of occasions. The rapidly improving performance 

as n increases illustrates the rapid improvement with increasing 

sample size of the large-sample approximations, eqs (3.3) and 

(3.4), on which the confidence intervals are based. However the 

results illustrate that insufficient numbers of data points not 

only produce a significant proportion of inaccurate estimates 

but also that they could produce confidence intervals that fail to 

capture the true value. The unwary experimenter would be 

living in a fool’s paradise! 

 

 

n Φ̂min  Φ̂min

–
 Φ̂min

+
 δΦ Г̂c Г̂c

–
 Г̂c

+
 δГ 

4 0.264 0.245 0.287 5.6% 0.44 0.36 0.53 13% 

8 0.254 0.241 0.269 1.8% 0.48 0.41 0.55 4.9% 

16 0.252 0.243 0.263 1.0% 0.48 0.44 0.53 3.5% 

32 0.249 0.242 0.256 0.5% 0.50 0.46 0.54 0.3% 

Test (a) 

n Φ̂min  Φ̂min

–
 Φ̂min

+
 δΦ Г̂c Г̂c

–
 Г̂c

+
 δГ 

4 0.254 0.228 0.288 1.5% 0.50 0.36 0.67 1.0% 

8 0.253 0.239 0.269 1.3% 0.51 0.44 0.60 2.3% 

16 0.247 0.238 0.258 1.0% 0.54 0.48 0.60 7.8% 

32 0.244 0.237 0.252 2.3% 0.54 0.50 0.59 8.6% 

Test (b)  

n Φ̂min  Φ̂min

–
 Φ̂min

+
 δΦ Г̂c Г̂c

–
 Г̂c

+
 δГ 

4 0.222 0.210 0.235 11% 0.73 0.61 0.87 46% 

8 0.232 0.220 0.245 7.1% 0.61 0.53 0.72 23% 

16 0.237 0.227 0.248 5.3% 0.58 0.52 0.66 16% 

32 0.243 0.233 0.255 2.7% 0.55 0.48 0.61 9% 

Test (c)  

Table 1. Some estimated values for Φmin=0.25, Γc=0.5, σ=0.01 
(+/- denote upper/lower bounds of 95% confidence intervals.) 
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(a) n = 4 

 
(b) n = 32 

Fig. 6  Variation of ε with Φo for test (c) in Table 1 

Black circles – simulated data; black solid line – fitted 

curve; red dashed line – true curve. 

 
 The danger of drawing conclusions from insufficient data 

points is illustrated by Fig. 6, which shows the variation of ε 

with Φo for test (c) in Table 1. For n = 4, the fitted curve passes 

through most of the data points, which could create the belief 

that the data were good and that the estimated values of Φ̂min, Г̂c 

and their confidence intervals were reasonably accurate. 

However, as revealed by the true curve and by the results in 

Table 1(c), this conclusion would be wide of the mark! By 

contrast, the fitted curve for n = 32 in Fig. 6 is much closer to 

the true curve, and the data in Table 1(c) are much closer to the 

true values. 

 In this section, the simulated estimates were compared with 

theoretical curves, and the theoretical model was implicitly 

assumed to provide the true answers. In practice, the true 

answers are unknown and the theoretical model is just that: a 

model. In the next section, the theoretical and statistical models 

are applied to real experimental data, and the interpretation of 

the results will be tempered by the caveats revealed by the 

above simulations. 

  

5. FITTING THEORETICAL CURVES TO 

EXPERIMENTAL  DATA 

 In Section 4, the statistical model was tested using noisy 

data generated from the EI effectiveness curve. The 

experimental data used in this section provides tests for both 

the statistical and the theoretical model. 

. 

5.1 Rotationally-induced (RI) ingress 

 In [1], Owen validated the orifice model for RI ingress 

using the experimental data of Graber et al. [6]. Graber et al. 
used concentration measurements to determine the sealing 

effectiveness ε for several rim-seal geometries in a rig in which 

the axial velocity in the annulus was very small (< 33 cm/s) and 

the swirl ratio in the mainstream flow in the external annulus 

(Vφ,2/Ωb) could be varied. Graber et al. plotted their measured 

values of ε versus ηt, a sealing flow parameter where 

o
2.0

ct ReG5.0 Φ=η φ
  (5.1) 

 For ease of correlation with the theoretical curves, the 

experimental data shown in Figs 7-9 were obtained by 

replotting the data shown in [6] versus Φo; the data for Φi,RI - 

which were not included in [6] - were obtained using eq (2.6). 

It should be pointed out that the data for Fig. 8 were obtained 

from two separate figures in [6], corresponding to the two 

different values of Gc, and the data for Fig. 9 were obtained 

from separate figures in [6] for the two values of Reφ . (Instead 

of having to use separate correlations for the effects of Gc and 

Reφ on ε, Φo combines Cw,o , Gc and Reφ into a single flow 

parameter.) 

 For the cases discussed here, the statistical model described 

above was used to determine the optimum values of Φmin,RI and 

Гc. By contrast, Owen assumed values for these two 

parameters: for Φmin,RI, he used the Bayley-Owen correlation 

given in eq (2.1), which is equivalent to Φmin,RI =0.097, and for 

simplicity he assumed that Гc=1. The theoretical curves for ε, 

based on these two assumed values, are also shown in Fig. 7 - 

Fig. 9; no theoretical curves for Φi,RI were shown by Owen.  

 Table 2 includes the values of Гc, Φmin,RI (together with 

their upper and lower bounds) and Φi,RI* obtained from the 

correlations. Owing to the relatively large uncertainty in the 

experimental data, the confidence intervals are also relatively 

large. Φi,RI* was calculated from eq (2.7); it is the maximum 

value of Φi,RI, which occurs when Φo = 0; this theoretical value 

cannot be readily determined from concentration 

measurements. 

 Fig. 7 shows a comparison between the theoretical curves 

and the experimental data for the case of an axial-clearance seal 

with a clearance ratio of Gc=0.00476 and a rotational Reynolds 

number of Reφ =5.1×10
6
. A thumb-nail sketch of the seal 

configuration is shown on this and the following two figures, 

and it should be noted that the external flow is from right to left 

(i.e. from the rotor towards the stator). Two levels of external 

swirl were used in the experiment: Vφ,2/Ω b=1 and 2. 

 It can be seen from Fig. 7 that there is no systematic effect 

of external swirl on the effectiveness and that the theoretical 
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correlation for ε is only marginally better than Owen’s curve. 

Table 2 shows that Φmin,RI = 0.105, which is reasonably close to 

the Bayley-Owen value of 0.097. Table 2 also shows that, 

owing to the relatively large values of σ, the confidence 

intervals in Φmin,RI are relatively large. (The reasonable 

agreement between the Graber et al. and the Bayley and Owen 

values of Φmin,RI may be fortuitous as the Bayley-Owen 

correlation was based on pressure measurements!) 

 Fig. 8 shows the correlations for a radial-clearance seal for 

two clearance ratios. For this case, the fitted curve for ε  is 

significantly better than Owen’s curve; Table 2 shows that the 

optimum value of Φmin,RI = 0.122, which is higher than the 

Bayley-Owen value of 0.097. (As pointed out in [1], it is 

surprising that – unlike the RI data of Phadke and Owen [7] - 

Φmin,RI for the radial-clearance seals is larger than that for the 

axial-clearance seal. However, it should be noted that the 

radial-clearance seals of Graber et al. corresponded to those in 

the aft wheel-space, downstream of the turbine blades.) 

 Fig. 9 shows the correlations for a radial-clearance seal for 

two rotational Reynolds numbers. Once again, the fitted curve 

for ε is significantly better than Owen’s curve. Table 2 shows 

that Φmin,RI =0.157, but again the confidence interval for Φmin,RI 

is relatively large.  

 Φ̂min  Φ̂min

–
 Φ̂min

+
 Φi,RI* Г̂c Г̂c

–
 Г̂c

+
 σ 

Fig.7 0.105 0.085 0.142 0.0283 0.64 0.37 1.28 0.049 

Fig.8 0.122 0.094 0.183 0.0227 0.4 0.22 0.70 0.032 

Fig.9 0.157 0.13 0.206 0.0272 0.37 0.25 0.5 0.036 

Table 2: Values of estimated parameters corresponding to 

Fig. 7 to 9 for RI ingress. (+/- denote upper/lower bounds of 

95% confidence intervals.) 

 
Fig. 7   Comparison between theoretical curves and 

experimental data of Graber et al. [6] for axial-clearance 

seal: Gc = 0.00476, Reφφφφ= 5.1 × 10
6
. (Open symbols are ε data; 

closed symbols are Φi,RI /Φmin,RI  data; solid lines are 

theoretical curves; broken line is theoretical curve of Owen 

[1].)  

 

 

 
 

Fig. 8  Comparison between theoretical curves and 

experimental data of Graber et al. [6] for radial-clearance 

seals: Gc = 0.00238 and 0.00476, Reφφφφ= 2.6 × 10
6
. (Open 

symbols are ε data; closed symbols are Φi,RI /Φmin,RI data; 

solid lines are theoretical curves; broken line is theoretical 

curve of Owen [1].) 

 

 

 

 
Fig. 9  Comparison between theoretical curves and 

experimental data of Graber et al. [6] for radial-clearance 

seal: Gc = 0.00476, Reφφφφ= 2.6 × 10
6
 and 5.2 × 10

6
 (Open 

symbols are ε data; closed symbols are Φi,RI /Φmin,RI data; 

solid lines are theoretical curves; broken line is theoretical 

curve of Owen [1].) 
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5.2 Externally-induced (EI) ingress 

 The effectiveness data used for the correlations in Fig. 10 

and 11 were respectively based on the CFD (computational 

fluid dynamics) data given by Owen et al.[3] and on the 

concentration measurements presented by Johnson et al. [12]. 

The Φi,EI data - which were not determined in either of these 

papers - were calculated here using eq (2.10). Table 3 includes 

the values of Гc, Φmin,EI (together with their upper and lower 

bounds); Φi,EI* was calculated from eq (2.12). (Φi,EI*is the 

maximum value of Φi,EI, which occurs when Φo=0; this 

theoretical value cannot be readily determined from 

concentration measurements.) Owing to the sparseness of the 

data, the confidence intervals are relatively large. 

 The CFD effectiveness data in [3] were obtained using a 

steady 3D code for an axial-clearance seal in which there were 

stationary vanes in the annulus upstream of the seal but no 

rotating blades downstream. In [3], the ε-data were fitted using 

a least-squares method, from which Гc and Φmin,EI were 

determined.  

 In Fig. 10, the method described in Section 3 is used to fit 

the effectiveness equation. Although eqs (2.9) and (2.11) 

provide a very good fit to the CFD data, Table 3 shows that, 

owing to the limited number of data points, the confidence 

interval for Φmin,EI is relatively large. Despite this, the values of 

Гc and Φmin,EI in Table 3 agree with those found in [3]. 

 Fig. 11 shows very good agreement between the theoretical 

curves, eqs (2.9) and (2.11), and the experimental data of 

Johnson et al. The latter authors used an orifice model, which 

they solved numerically for different values of Cd,e and Cd,i. 

They achieved the best fit to their effectiveness data with Cd,e = 

0.27 and Cd,i = 0.20, corresponding to Гc = 0.74; this value is 

well within the confidence interval of the estimated value of  Гc 

= 0.69 in Table 3. It should be noted however that, as n = 7, 

there is a question about the accuracy of these values and of the 

estimated value of Φi,EI. 

 
Fig. 10  Comparison between theoretical curves and CFD 

data of Owen et al. [3] for axial-clearance seal: Gc = 0.01, 

Reφφφφ= 1.03 × 10
6
. (Open symbols are ε data; closed symbols 

are Φi,EI /Φmin,EI data; solid lines are theoretical curves.) 

 Φ̂min  Φ̂min

–
 Φ̂min

+
 Φi,RI* Г̂c Г̂c

–
 Г̂c

+
 σ 

Fig.10 0.335 0.282 0.415 0.064 0.35 0.23 0.51 0.016 

Fig.11 0.170 0.152 0.195 0.049 0.69 0.48 0.96 0.012 

Table 3: Values of estimated parameters corresponding to 

Fig. 10 and 11 for EI ingress. (+/- denote upper/lower bounds 

of 95% confidence intervals.) 

  
Fig. 11  Comparison between theoretical curves and 

experimental data of Johnson et al. [9] for single-overlap 

seal: Gc=0.01, Reφφφφ= 0.59 × 10
6
. (Open symbols are ε data; 

closed symbols are Φi,EI /Φmin,EI data; solid lines are 

theoretical curves.)  

 
6.CONCLUSIONS  

The statistical method of maximum likelihood estimation 

was used to fit the effectiveness equations for EI and RI ingress 

to previously-published experimental data and to determine the 

optimum values of the two empirical constants, Φmin and Гc.  

The statistical method was validated using simulated noisy 

data generated from the EI effectiveness equation. Using 

repeated tests, it was shown that the accuracy of individual 

estimates of Φmin and Гc increased and the variability decreased 

as n (the number of data points in each test) increased. For n 
≥16 the simulations showed that the estimated values of Φmin 

and Гc were in acceptably close agreement with the ‘true 

values’, and the confidence intervals captured the true values in 

over 90% of the test cases. For n ≤ 8, there was increased 

variability, reduced accuracy and the estimated confidence 

intervals were less reliable.  

For RI ingress, maximum likelihood estimation was used 

in conjunction with the effectiveness equations to fit the 

experimental data of Graber et al [6]. The agreement between 

the effectiveness equation and the data was significantly better 

than that obtained by Owen [1], who assumed values for Гc and 

Φmin. However, owing to the relatively large experimental 

uncertainties, the confidence intervals for the estimated values 

of Гc and Φmin were relatively large. The theoretical distribution 

of Φi, the nondimensional ingested flow rate, agreed closely 

with the values derived from the experimental data. 
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For EI ingress, the methods were used to fit the 

effectiveness curve to the computational data of Owen et al [3] 

and the experimental data of Johnson et al [12]. In both cases, 

the agreement between the fitted curves and the data was very 

good. However, owing to the limited number of data points, 

there is no guaranty that the confidence intervals captured the 

true values. 

Sangan et al [13, 14] have recently obtained very good 

agreement between the statistical and theoretical models 

described here and data obtained from a new experimental rig 

at the University of Bath. It is the ultimate aim of this research 

to determine the relative performance of different seal 

geometries and to apply the effectiveness data obtained at rig 

conditions to engine-operating conditions. 
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