
ABSTRACT
It has become important for operators to determine opera-

tional strategies of energy supply plants appropriately corre-
sponding to energy demands varying with season and time
from the viewpoints of economics, energy saving, and recently
reduction in CO2 emission.  Especially, cogeneration plants
produce heat and power simultaneously, which increases alter-
natives for operational strategies.  This makes it more impor-
tant for operators to determine operational strategies of cogen-
eration plants appropriately.  In this paper, for the purpose of
assisting operators or operating plants automatically, an opti-
mal operational planning method based on the mixed-integer
linear programming is developed to determine the operational
strategy of equipment so as to minimize the operational cost, in
consideration of equipment minimum up and down times for
each piece of equipment to be operated with appropriate num-
bers of startups and shutdowns.  In the numerical study, the
proposed method is applied to the daily operational planning of
a gas turbine cogeneration plant for district energy supply.  It is
clarified how the constraints for minimum up and down times
affect the operational strategy and cost.  Through the study, the
validity and effectiveness of the proposed method is ascer-
tained.

NOMENCLATURE 
a : slope for input-output relationship of equipment

[MWh/m3]
b : intercept for input-output relationship of equipment 

[MWh/h]
E : electric power  [MWh/h]
F : natural gas flow rate  [m3/h]

f : hourly operational cost  [yen/h]
h : constraint function vector
J : objective function, or daily operational cost  [yen/d]
K : number of sampling time intervals
k : index for sampling time intervals
N : number of binary variables
P : degree with which minimum up or down time is not 

satisfied
Q : heat flow rate  [MWh/h]

p, q, r, s : continuous variables for replacement  [h]
T : operation period [h]
t : continuous up or down time  [h]

∆t : sampling time interval  [h]
x : continuous variable vector for energy flow rates 

[MWh/h, t/h, m3/h]
Y : initial values for continuous variable vector y [h]
y : continuous variable vector for continuous up and 

down times  [h]
Z : initial values for binary variable vector z
z : binary variable vector for on/off status of equipment
δ : on/off status of equipment
ϕ : unit cost for energy charge of input energy 

[yen/kWh, yen/m3]
ψ : unit cost for penalty  [yen/h]

: lower limit
: upper limit
: upper bound

Subscripts
down : continuous down time

elec : electricity
gas : natural gas

( )
( )
( )
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k : index for sampling time intervals
m : index for pieces of equipment

up : continuous up time
water : feedwater

Superscripts
a : auxiliary machinery
e : exhaust heat

Abbreviations for Equipment (Subscripts)
AR : steam absorption refrigerator
CT : cooling tower
GB : gas-fired auxiliary boiler
GT : gas turbine generator

P : pump for supplying cold water
TR : electric compression refrigerator

WB : waste heat recovery boiler

INTRODUCTION
As one of the technologies for efficient energy utilization,

cogeneration plants have the potential of high economic and
energy saving characteristics, and have been extensively
installed into districts and buildings.  In order to utilize this
potential, not only installation but also design and operation are
considered to be important issues.  It has become important for
operators to determine operational strategies of energy supply
plants appropriately corresponding to energy demands varying
with season and time from the viewpoints of economics, ener-
gy saving, and recently reduction in CO2 emission.  Especially,
cogeneration plants produce heat and power simultaneously,
which increases alternatives for operational strategies.  This
makes it more important for operators to determine operational
strategies of cogeneration plants appropriately.

For the operational planning of cogeneration plants, a
method based on the mixed-integer linear programming
(MILP) has been proposed to operate the plants rationally so
that they attain the minimum operational cost for heat and
power supply, and its effectiveness has been ascertained by
comparing this cost-minimizing strategy with conventional
electric-/thermal-following ones [1].  In this method, however,
dynamic characteristics of equipment, by which states such as
mass flow rates, pressures, and temperatures of equipment
change transiently, are neglected, and the operational strategy
of equipment is determined statically and independently at each
sampling time interval which is set to take account of varia-
tions in energy demands.  Namely, it is not considered that
energy inputs of equipment at a sampling time interval affect
not only energy outputs at the same one but also energy outputs
at subsequent ones, and that there is a coupling of operational
strategy at different sampling time intervals.  Therefore, the
strategy obtained by this method does not necessarily mean the
optimal one for a longer period if dynamic characteristics of
equipment are taken into account.  Moreover, the method tends

to make transition of on/off status of equipment sensitive even
to small variations in energy demands, which is one of the
problems to be solved for implementing the method into a real-
time operational advisory system.  This is also an important
problem from the viewpoints of deterioration and life as well as
their relevant costs of equipment [2].  However, it is very diffi-
cult to take account of dynamic characteristics of equipment,
because it makes the optimal operational planning problem
excessively complex and large-scale.  

To cope with the aforementioned drawbacks of the conven-
tional optimal operational planning method, an alternative one
has been proposed by incorporating equipment startup/shut-
down cost as part of the operational cost to be minimized.
When a piece of equipment is started or shut down, extra ener-
gy is consumed until it attains a steady state.  The equipment
startup/shutdown cost is due to this extra energy consumption.
Although this method also neglects dynamic characteristics of
equipment, it considers a coupling of operational strategy at all
the sampling time intervals over a period considered, and
makes transition of on/off status of equipment less sensitive.
Therefore, the method is considered one of the simple and
effective approaches for a real-time operational advisory sys-
tem.  However, the corresponding optimal operational planning
problem is formulated as a large-scale MILP one, and it gener-
ally takes excessive computation time to solve it.  To solve it
efficiently, a solution method has been proposed, where the
number of candidates for on/off status of equipment is reduced
using information on upper and lower bounds for the optimal
value of operational cost [3].  However, the information is
derived only from local sampling time intervals, and this may
limit the effectiveness of the method.  Another solution method
based on the dynamic programming and MILP has been pro-
posed, and has been applied to the determination of the opera-
tional strategy of a gas turbine cogeneration plant [4].  In this
method, to solve the problem more efficiently, the number of
candidates for on/off status of equipment is reduced using glob-
al information on upper and lower bounds for the optimal value
of operational cost over a period obtained by the dynamic pro-
gramming.  

To cope with the aforementioned drawbacks of the conven-
tional optimal operational planning method, another one can
also be considered by incorporating equipment minimum up
and down times in place of equipment startup/shutdown cost.
This method makes each piece of equipment be operational and
stopping continuously during the times longer or equal to the
specified minimum up and down times, respectively.  The
method is widely employed for unit commitment of power gen-
eration units [5].  Although constraints for minimum up and
down times can be formulated explicitly as quadratic equations
[6], they are often treated implicitly.  For example, although a
solution method based on the Lagrange relaxation and dynamic
programming has been proposed, it needs a relatively complex
solution procedure and leads only to a feasible solution due to a
duality gap, which means that there exists a difference between
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upper and lower bounds for the objective function [7].  
In this paper, an optimal operational planning method is

developed in consideration of equipment minimum up and
down times for each piece of equipment to be operated with
appropriate numbers of startups and shutdowns.  The con-
straints for minimum up and down times are treated as quadrat-
ic equations explicitly, and are transformed into linear equa-
tions by adding new variables and constraints, which leads to
the optimal solution by the MILP.  In addition, a penalty
method is also introduced so that the constraints for minimum
up and down times are relaxed in case that they are not perfect-
ly satisfied even by any combinations of on/off status of equip-
ment.

First, a summary of the optimal operational planning prob-
lem is described.  Then, a formulation of the equipment mini-
mum up and down times is presented, which is followed by a
solution method and an extension.  Finally, the method is
applied to the daily operational planning of a gas turbine
cogeneration plant for district energy supply, and it is investi-
gated how the consideration of the equipment minimum up and
down times affects the operational strategy and cost.

OPTIMAL OPERATIONAL PLANNING

Basic Formulation
The optimal operational planning problem for an energy

supply plant considered in this paper is such that the opera-
tional strategy of constituent equipment is determined so as to
minimize the operational cost and to satisfy energy demands
estimated over the period T.  The current time is considered as
the initial time, at which the operational status of equipment is
assumed to be known.  The time after T from the initial time is
considered as the terminal time, at which the operational status
is assumed to be without any constraints.  In applying this
method to a real-time operational advisory system, the energy
demand prediction and operational planning should be repeated
as time passes.

To formulate the optimal operational planning problem, the
period T is discretized into the K identical sampling time inter-
vals of ∆t, i.e.,

In the following formulation, a quantity at the kth sampling
time interval is designated by the argument k (k = 0, 1, , K).
A quantity at the initial time is designated by k = 0.

As the operational strategy, continuous and binary variable
vectors, and , are used to express energy flow rates
and on/off status of equipment, respectively.  By using these
variables, performance characteristics of equipment and energy
balance relationships are expressed as follows:

where is the constraint function vector.  Performance char-
acteristics of equipment are expressed approximately by linear
equations with respect to and , and becomes a
linear function with respect to and .  The hourly
operational cost can be expressed by a linear equation with
respect only to as .  For concrete forms of 
and , refer to the previous paper [1] and the appendix.  

Formulation for Minimum Up and Down Times
For a piece of equipment, the continuous up time at

the sampling time interval k is calculated as 

where δ(k) is the binary variable for on/off status of equipment.
This equation means that if δ(k) = 1, then the continuous up
time at the sampling time interval k is calculated by
adding the sampling time interval ∆t to the continuous up time

at the previous sampling time interval k–1, and that
else if δ(k) = 0, then the continuous up time at the sam-
pling time interval k is reset at zero.  By using this continuous
up time, the constraint for the minimum up time is expressed as 

where is the minimum up time.  This equation means that
the piece of equipment can be shut down, or δ(k–1) = 1 and
δ(k) = 0 only if .  

Similarly, for a piece of equipment, the continuous down
time at the sampling time interval k is calculated as

This equation means that if δ(k) = 0, then the continuous down
time at the sampling time interval k is calculated by
adding the sampling time interval ∆t to the continuous down
time at the previous sampling time interval k–1, and
that else if δ(k) = 1, then the continuous down time at
the sampling time interval k is reset at zero.  By using this con-
tinuous down time, the constraint for the minimum down time
is expressed as 

where is the minimum down time.  This equation means
that the piece of equipment can be started up, or δ(k–1) = 0 and
δ(k) = 1 only if .  

These constraints for minimum up and down times are
used with the initial values of δ(k), , and , or δ(0),

, and .  
Equations (3) to (6) are applied to the pieces of equipment

whose minimum up and down times are considered, and are

tdown(0)tup(0)
tdown(k)tup(k)

tdown(k–1) ≥ t down

 t down

{tdown(k–1) – t down}{δ(k–1) – δ(k)} ≤ 0   (k = 1, 2, , K) (6)

tdown(k)
tdown(k–1)

tdown(k)

tdown(k) = {tdown(k–1) + ∆ t}{1 – δ(k)}   (k = 1, 2, , K) (5)

tdown(k)

tup(k–1) ≥ t up

t up

{tup(k–1) – t up}{δ(k–1) – δ(k)} ≥ 0   (k = 1, 2, , K) (4)

tup(k)
tup(k–1)

tup(k)

tup(k) = {tup(k–1) + ∆ t}δ(k)   (k = 1, 2, , K) (3)

tup(k)

hk

fk fk(x (k)) x(k)

z(k)x(k)
hkz(k)x(k)

hk

hk(x (k), z (k)) = 0  (k = 1, 2, , K) (2)

z(k)x(k)

∆ t = T / K (1)
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added to the basic constraints of Eq. (2).  As a result, all the
constraints are expressed as follows:

where is the continuous variable vector composed of
and of the pieces of equipment whose minimum

up and down times are considered, and is the renewed con-
straint function vector, and is a nonlinear or quadratic function
with respect to , , and . 

Solution Method
The above formulation of the optimal operational planning

problem results in the following mixed-integer nonlinear pro-
gramming (MINLP) one:

where Y and Z are the vectors for the initial values of and
, respectively, at the sampling time interval k = 0.  The

seventh equation in Eq. (8) means that is a binary variable
vector with a dimension of N.  This problem includes nonlinear
equations, and can become large-scale as the numbers of N and
K increase.  Therefore, it is difficult to solve the problem
directly.  

In this paper, a solution method is proposed by transform-
ing the MINLP problem into a MILP one.  For this purpose, the
nonlinear terms due to the products of and δ(k–1),

and δ(k), and δ(k–1), and and
δ(k) in Eqs. (3) to (6) are replaced by the nonnegative continu-
ous variables p(k), q(k), r(k), and s(k), respectively, as follows:

This replacement makes Eqs. (3) to (6) the following linear
equations:

In addition, since Eq. (9) is still nonlinear, the following equa-
tions are employed in place of it:  

where and are upper bounds for and
, respectively.  The constraints of Eq.

(11) are because, for example, the first and second equations in
Eq. (11) means that if δ(k–1) = 0, then p(k) = 0, and that else if
δ(k–1) = 1, then p(k) = , which makes the first equation
in Eq. (9) valid indirectly.  This procedure can linearize the
nonlinear terms without any approximations and transform the
optimal operational planning problem into the following MILP
one:

where is the continuous variable vector composed of p(k),
q(k), r(k), and s(k) for the pieces of equipment whose minimum
up and down times are considered, and is the renewed con-
straint function vector, and is a linear function with respect to
all the variables.

The resultant MILP problem can be solved using a com-
mercial solver, for example, GAMS/CPLEX [8].  

Extension
With increases in and , the constraints for mini-

mum up and down times become severe and difficult to be sat-
isfied.  In such a case, the constraints should be relaxed to
obtain a feasible solution.  Here, the constraints for minimum
up and down times are relaxed by introducing new variables

t downt up

hk″

x ′(k)

min. J = fk(x (k))∆ t∑
k = 1

K

sub. to hk″(x (k), x ′(k), y (k–1), y (k), z (k–1), z (k)) = 0
 (k = 1, 2, , K)
 y (0) = Y
 z (0) = Z
 x (k) ≥ 0    (k = 1, 2, , K)
 x ′(k) ≥ 0    (k = 1, 2, , K)
 y (k) ≥ 0    (k = 0, 1, , K)
 z (k) ∈ {0, 1}N   (k = 0, 1, , K)

 
      (12)

tup(k–1)

tdown(k–1)
tup(k–1)tdowntup

p(k) ≤ tupδ(k–1)
tup(k–1) + tup{δ(k–1) – 1} ≤ p(k) ≤ tup(k–1) 

q(k) ≤ tupδ(k)
tup(k–1) + tup{δ(k) – 1} ≤ q(k) ≤ tup(k–1) 

r(k) ≤ tdownδ(k–1)
tdown(k–1) + tdown{δ(k–1) – 1} ≤ r(k) ≤ tdown(k–1) 

s(k) ≤ tdownδ(k)
tdown(k–1) + tdown{δ(k) – 1} ≤ s(k) ≤ tdown(k–1) 

  

 (k = 1, 2, ..., K) (11)

r(k) – s(k) – t down{δ(k–1) – δ(k)} ≤ 0
 (k = 1, 2, ..., K) (10)

tup(k) – q(k) – ∆ tδ(k) = 0
p(k) – q(k) – t up{δ(k–1) – δ(k)} ≥ 0
tdown(k) – tdown(k–1) + s(k) – ∆ t{1 – δ(k)} = 0

 

p(k) = tup(k–1)δ(k–1)
q(k) = tup(k–1)δ(k)
r(k) = tdown(k–1)δ(k–1)
s(k) = tdown(k–1)δ(k)

  (k = 1, 2, ..., K) (9)

tdown(k–1)tdown(k–1)tup(k–1)
tup(k–1)

z(k)
z(k)

y(k)

min. J = fk(x (k))∆ t∑
k = 1

K

sub. to hk′(x (k), y (k–1), y (k), z (k–1), z (k)) = 0
 (k = 1, 2, , K)
 y (0) = Y
 z (0) = Z
 x (k) ≥ 0    (k = 1, 2, , K)
 y (k) ≥ 0    (k = 0, 1, , K)
 z (k) ∈ {0, 1}N   (k = 0, 1, , K)

 (8)

z(k)z(k–1)y(k–1)

hk′
tdown(k)tup(k)

y(k)

hk′(x (k), y (k–1), y (k), z (k–1), z (k)) = 0
 (k = 1, 2, , K) (7)
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into Eqs. (4) and (6).  Namely, Eqs. (4) and (6) are replaced by 

and

respectively, where and are the variables
expressing the degrees with which Eqs. (4) and (6) are not sat-
isfied, respectively.  With this replacement, the objective func-
tion of the first equation in Eqs. (8) and (12) is replaced by

where and are the unit costs for penalty correspond-
ing to and , respectively, and their values
should be large enough so that and become
positive only if Eqs. (4) and (6) are not satisfied, respectively.  

NUMERICAL STUDY

Plant Configuration
Figure 1 shows the configuration of a gas turbine cogener-

ation plant for district energy supply considered in this numeri-
cal study.  This plant is composed of two gas turbine generators
(GT1, 2), two waste heat recovery boilers (WB1, 2), two gas-
fired auxiliary boilers (GB1, 2), two electric compression
refrigerators (TR1, 2), three steam absorption refrigerators
(AR1~3), eight cooling towers (CT1~8), and four pumps
(P1~4).  Each block means that multiple units are connected in
parallel, except that one of the gas turbine generators is con-
nected with one of the waste heat recovery boilers in series.

In this plant, electricity is supplied to users by operating
gas turbine generators and by purchasing electricity from an
outside electric power company.  Electricity is also used to
drive electric compression refrigerators, cooling towers,
pumps, and other auxiliary machinery in the plant.  Waste heat
of exhaust gas generated from gas turbines is recovered by
waste heat recovery boilers, and steam generated is used for
thermal energy supply.  Surplus waste heat is disposed of
through exhaust gas dumpers.   Shortage of steam is supple-
mented by gas-fired auxiliary boilers.  Both electric compres-
sion and steam absorption refrigerators are installed to supply
cold water for space cooling.  Steam is used for space heating
and other miscellaneous purposes.  

The formulation of the optimal operational planning prob-
lem for this cogeneration plant is partly given in the appendix.  

Input Data
A weekday, a Saturday, and a holiday in each month are

selected as representative days, and the daily operational strate-
gy is investigated on each day, i.e., T = 24 h.  Each day is dis-
cretized into 24 identical sampling time intervals, i.e., K = 24
and ∆t = 1 h.  As examples, Figs. 2 (a) to (c) show the energy
demands estimated on the weekdays in April, June, and
August, respectively, based on historical data.  

Performance characteristics of equipment are identified on
the basis of data measured.  One binary variable is used to
express performance characteristics of each piece of equipment
except cooling towers.  Therefore, the number of binary vari-
ables at each sampling time interval is N = 15, and their total
number is NK = 15 24 = 360.  Table 1 shows capacities and
performance characteristic values of equipment, and contract
demands of utilities purchased.  Table 2 shows unit costs for
energy charge of utilities.

Table 3 shows minimum up and down times of equipment
set in this study.  The same value is used for minimum up and
down times of each piece of equipment.  In addition, the initial

×

Pdown(k)Pup(k)
Pdown(k)Pup(k)

ψdownψup

J ′ = fk(x (k)) + ψupPup(k) + ψdownPdown(k) ∆ t∑
k = 1

K
   (15)

Pdown(k)Pup(k)

{tdown(k–1) – t down}{δ(k–1) – δ(k)} ≤ Pdown(k)
 (k = 1, 2, , K) (14)

{tup(k–1) – t up}{δ(k–1) – δ(k)} ≥ – Pup(k)
 (k = 1, 2, , K) (13)
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GT1, 2

WB1, 2Exhaust 
gas

Heat disposal
Cold 
water

Steam

Electricity
demand

Fig. 1  Configuration of gas turbine cogeneration plant for district energy supply



value of on/off status δ(k) is set as δ(0) = 0 for all the pieces of
equipment.  In relation to this condition, the initial value of
continuous up time is set as = 0, and that of contin-
uous down time is set as = for all the
pieces of equipment, so that they can be started up at the first
sampling time interval.  The upper bounds for and

are set as = T and = T + , respec-
tively, so that they can be operated or stopped continuously
during the period T.  

Calculation Methods
In order to investigate the validity and effectiveness of the

proposed method, the optimization calculation is carried out as

t downtdowntuptdown(k–1)
tup(k–1)

 t downtdown(0)tdown(k)
tup(0)tup(k)
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(b) Weekday in June

Fig. 2  Estimated energy demands

Utility Unit cost

Electricity 10.77 yen/kWh (Jul.~Sep.)
9.79 yen/kWh (Other months)

Natural gas 30.88 yen/
Feedwater 360.00 yen/

m3

m3

Table 2  Unit costs for energy charge of utilities

Equipment Capacity Performance *1

Gas turbine GT1 3.6  MW *2 Efficiency 0.25 *2

generator plus WB1 10.9  t/h *2 Efficiency 0.49 *2

waste heat GT2 3.8  MW *2 Efficiency 0.26 *2

recovery boiler WB2 11.3  t/h *2 Efficiency 0.51 *2

Gas-fired GB1 9.6  t/h Efficiency 0.91
auxiliary boiler GB2 11.3  t/h Efficiency 0.90
Electric compression TR1 3.2  MW COP *3  4.42
refrigerator TR2 3.4  MW COP *3  5.02

Steam absorption  AR1 6.8  MW COP *3  1.14

refrigerator AR2 7.0  MW COP *3  1.17
AR3 7.0  MW COP *3  1.18

Utility Contract demand
Electricity 14.5  MW
Natural gas 3.9  /h
Feedwater –

   *1 Rated load status
 *2 Intake air temperature 17.5 ̊C

×103 m3

*3 COP: Coefficient of performance

Table 1  Capacities and performance characteristic
values of equipment and contract demands
of utilities
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(a) Weekday in April

Equipment Minimum
up time  h

Minimum
down time  h

Gas turbine GT1 5.0 5.0
generator GT2 5.0 5.0
Waste heat WB1 5.0 5.0
recovery boiler WB2 5.0 5.0
Gas-fired GB1 3.0 3.0
auxiliary boiler GB2 3.0 3.0
Electric compression TR1 2.0 2.0
refrigerator TR2 2.0 2.0

Steam absorption  AR1 4.0 4.0

refrigerator AR2 4.0 4.0
AR3 4.0 4.0

Table 3  Minimum up and down times of equipment



follows:

• Case A: The operational strategy is derived independently
at each sampling time interval by neglecting the constraints
for minimum up and down times.  

• Case B: The operational strategy is derived in considera-
tion of the constraints for minimum up and down times by
the proposed method.

The comparison of cases A and B clarifies the influence of the
constraints for minimum up and down times on the operational
strategy and cost.

Results and Discussion
Operational Strategy.    All the constraints for minimum

up and down times are satisfied on every representative day
under the condition shown in Table 3, and do not need to be
relaxed by Eqs. (13) and (14).  Figures 3 (a) to (c) show the
on/off status of equipment for the optimal operational strategy
on the weekdays in April, June, and August, respectively,
obtained in case A.  Figures 4 (a) to (c) show the corresponding
results obtained in case B.  

On the weekday in April, the operational strategy of all the
pieces of equipment satisfies the constraints for minimum up
and down times even in case A.  Therefore, the operational
strategy in case B is the same as that in case A.  On the week-
day in June, the operational strategy in case B is quite different
from that in case A.  The first gas turbine cogeneration unit is
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Fig. 4  On/off status of equipment (case B)
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Fig. 3  On/off status of equipment (case A)
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started up later, and it is shut down and started up again on the
way of operation in case A, while both the gas turbine cogener-
ation units are operated continuously in case B.  Both the elec-
tric compression and steam absorption refrigerators repeat their
startups and shutdowns frequently in case A.  The numbers of
their startups and shutdowns decrease drastically by consider-
ing the constraints for minimum up and down times in case B.
On the weekday in August, the operational strategy in case B is
similar to that in case A.  The first gas turbine cogeneration

unit is shut down later in case B.  In addition, the operational
strategy of the gas-fired auxiliary boilers and both the electric
compression and steam absorption refrigerators in case B is
slightly different from that in case A.  The numbers of startups
and shutdowns of the refrigerators decrease slightly by consid-
ering the constraints for minimum up and down times in case
B.  

As aforementioned, the conventional method makes transi-
tion of on/off status of equipment sensitive to variations in
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Fig. 6  Energy allocation (weekday in June, case B)

0

5

10

15

20

GT2
GT1
Purchased

24181260
Time   h

   
El

ec
tri

c 
po

w
er

   
M

W

(a) Electricity supply

0

5

10

15

20

AR3
AR2
AR1
TR2
TR1

24181260
Time   h

C
ol

d 
w

at
er

 h
ea

t f
lo

w
 ra

te
   

M
W

(c) Cold water supply

0

10

20

30

WB2
WB1
GB2
GB1

24181260
Time   h

St
ea

m
 fl

ow
 ra

te
   

t/h

(b) Steam supply

Fig. 5  Energy allocation (weekday in June, case A)
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energy demands and increases the numbers of startups and
shutdowns of equipment excessively.  On the other hand, the
proposed method makes transition of on/off status of equip-
ment less sensitive, and can reduce the numbers of startups and
shutdowns of equipment.  Therefore, the proposed method can
assess the operational strategy suitable from the viewpoint of
continuous operation.

Figures 5 (a) to (c) show the energy allocation for electrici-
ty, steam, and cold water supplies, respectively, for the optimal
operational strategy on the weekday in June obtained in case A.
Figures 6 (a) to (c) show the corresponding results obtained in
case B.

According to (a) and (b), although both the gas turbine
generators are operated at the rated load status when they are at
the on status, the flow rates of steam generated by both the
waste heat recovery boilers change with time.  This is because
the power generating efficiencies of the gas turbine generators
decrease significantly at part load status, and it is cost-effective
for them to be operated at the rated load status although a part
of exhaust heat generated by the gas turbines must be disposed
of.  According to (c), the cooling load to each refrigerator
changes significantly with time in case A.  Such an operational
strategy is not suitable from the viewpoint of smooth operation.
On the other hand, the cooling load to each refrigerator changes
smoothly with time in case B.  

Operational Cost.    Table 4 shows the comparison of cases
A and B in terms of the daily operational cost as well as the
increases in the daily operational cost and their rates on all the
representative days.  All the increase rates in the daily opera-
tional cost are only less than 0.4 %.  These results show that the
consideration of the constraints for minimum up and down
times can assess the operational strategy suitable from the
viewpoint of smooth operation at the sacrifice of a small
increase in the operational cost.  

CONCLUSIONS
An optimal operational planning method based on the

mixed-integer linear programming has been developed to deter-
mine the operational strategy of equipment so as to minimize
the operational cost, in consideration of equipment minimum
up and down times for each piece of equipment to be operated
with appropriate numbers of startups and shutdowns.  Con-
straints for minimum up and down times have first been formu-
lated as quadratic equations, and then they have been trans-
formed into linear equations by adding new variables and con-
straints.  In addition, a penalty method has also been introduced
so that the constraints for minimum up and down times are
relaxed in case that they are not perfectly satisfied even by any
combinations of on/off status of equipment.

In the numerical study, the proposed method has been
applied to the daily operational planning of a gas turbine
cogeneration plant for district energy supply.  It has been clari-
fied how the constraints for minimum up and down times affect

the operational strategy and cost.  The proposed method makes
transition of on/off status of equipment less sensitive to varia-
tions in energy demands, and can reduce the numbers of star-
tups and shutdowns of equipment at the sacrifice of a small
increase in the operational cost.  Through the study, the validity
and effectiveness of the proposed method has been ascertained.
Therefore, the proposed method can be applied to a real-time
operational advisory system from the viewpoints of operational
strategy and cost.  
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Day
Cost in
case A

Cost in  
case B

Increase
rate

%
w 2126.04 2127.59 1.55 0.073  

Jan. s 1903.54 1909.61 6.07 0.319  
h 1642.88 1646.31 3.43 0.209  
w 2115.65 2117.58 1.93 0.091  

Feb. s 1899.00 1905.02 6.02 0.317  
h 1642.07 1646.19 4.12 0.251  
w 2077.07 2083.81 6.74 0.324  

Mar. s 1862.09 1864.26 2.17 0.117   
h 1642.95 1642.95 0.00 0.000  
w 1940.33 1940.33 0.00 0.000  

Apr. s 1730.58 1733.49 2.91 0.168  
h 1562.73 1563.62 0.89 0.057  
w 2362.70 2364.70 2.00 0.085  

May s 2070.14 2072.68 2.54 0.123  
h 1834.44 1835.38 0.94 0.051  
w 2703.25 2706.70 3.45 0.128  

Jun. s 2327.38 2331.10 3.72 0.160  
h 2011.29 2014.10 2.81 0.140  
w 3485.57 3489.06 3.49 0.100  

Jul. s 2957.07 2960.21 3.14 0.106  
h 2503.52 2504.47 0.95 0.038  
w 3601.56 3603.80 2.24 0.062  

Aug. s 3028.85 3035.26 6.41 0.212  
h 2537.04 2538.72 1.68 0.066  
w 3272.70 3274.30 1.60 0.049  

Sep. s 2807.69 2810.56 2.87 0.102  
h 2410.66 2411.18 0.52 0.022  
w 2299.62 2301.10 1.48 0.064  

Oct. s 2055.72 2061.31 5.59 0.272  
h 1825.94 1828.61 2.67 0.146  
w 1894.67 1894.67 0.00 0.000  

Nov. s 1711.89 1714.61 2.72 0.159  
h 1552.32 1552.58 0.26 0.017  
w 2084.89 2086.52 1.63 0.078  

Dec. s 1868.56 1869.77 1.21 0.065  
h 1631.36 1632.77 1.41 0.086  

Increase

w: weekday, s: Saturday, h: holiday

×103 yen/d ×103 yen/d ×103 yen/d

Table 4  Comparison of cases in operational cost
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APPENDIX
Concrete forms of the part of objective function and the

constraints are presented for the gas turbine cogeneration
plant in the numerical study.  

The constraints are composed of performance charac-
teristics of equipment and energy balance relationships.  As an
example, performance characteristics of gas turbine generators
are formulated as follows:

where E is the electric power generated, is the exhaust heat
generated, is the electric power consumed for auxiliary
machinery, F is the natural gas consumption, and δ is the bina-
ry variable for on/off status.  These are treated as variables in
the optimization problem.  In addition, a and b are performance
characteristic values, and and are lower and upper lim-
its, respectively.  These are treated as parameters.  The sub-
script GTm denotes the mth gas turbine generator, and the
superscripts e and a denote exhaust heat and auxiliary machin-
ery, respectively.  On the other hand, as an example, the elec-
tric power balance relationship is formulated as follows:  

where is the electric power demand, and is treated as a
parameter.  In addition, is the electric power purchased.
All the quantities except are treated as variables.  

The hourly operational cost is formulated as follows:  

where W is the water consumption, and is treated as a variable.
In addition, , , and are the unit costs for energy
charge of electricity, natural gas, and water, respectively, and
are treated as parameters. 

ϕwaterϕgasϕelec
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