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ABSTRACT 
Analysis of thermodynamic and thermal-engineering 

parameters of GTE for mercantile and naval marines was 
conducted. A conclusion was made that GTEs designed 
specially for application under sea conditions have the highest 
efficiency. This is the 36-37% efficiency for simple cycle 
GTEs. With application of the complex cycle, a notable 
increase in the engine efficiency could be attained, particularly, 
by use of structural ceramics (SCMs) on the basis of innovative 
materials and some novel technological and design concepts. It 
permits to raise the engine efficiency up to 50% even with the 
net power of 300-500 kW. 

Results of numerical calculations for single unit and thirty 
two module GTEs demonstrated as follows. With the same 
baseline conditions, a multi-module unit has the volume which 
is more than twice less and the mass more than five times 
lower. Though when the number of GTE modules still further 
increases, decreasing of the turbomachine efficiency becomes a 
negative factor. To compensate it, it is required to increase the 
air heater regeneration ratio, to apply helical-channel 
turbomachines made of heat resistant SCMs, etc. Advantages of 
multi-module GTEs are evident. Thus, the mean efficiency of a 
machine during its lifetime increases. The handling 
independency increases, too. A need in outages to repair 
machines is eliminated. The control, governing and protection 
systems become simpler. The fire- and explosion safety 
increases. In fact, all the designing procedure now reduces to 

identification of the module number under conditions specified 
and within a space targeted. 

As opposed to a conventional ship’s GTE design with the 
engine having only a single electric net power generator, the 
multi-module design allows a fast implementation of the entire 
wide spectrum of operation duties required. 

1. INTRODUCTION. POWER AND MINIATURIZATION 
The concept of development of multi-module GTEs is 

based on a well known natural 3D space law: «Should linear 
sizes (D) for an object vary by a factor of (m), then its surface 
(F) varies by a factor of (m2), while the volume (V) and mass 
(M) vary by a factor of (m3)». For power machines (power 
N∼F) it means: «Should, given the same conditions, the power 
engine be scaled down by a factor of (m), then its specific 
power (kW/kg, kW/l increases by a factor of (m)». 

Compare the specific mass power Nem for engines 1 and 2 
at D1=mD2, F1=m2F2; V1=m3V2; M1=m3M2: 

 
 Nem1= Ne1

M1
= m2Ne2

m3M2
= Nem2

m
; or  Nem2=mNem1 (1) 

 
Thus, through the ten-fold increasing of the engine power  

we get the ten-fold increase in its specific power if the same 
baseline conditions are maintained (thermodynamic scheme, 
environment, fuel, TIT, πк, efficiency for turbomachines, 
electric generator, combustor, air flow rate for cooling, 
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regeneration ratio, pressure losses in combustor paths, air 
heater, intermediate air cooler, etc). 

Certainly, the baseline conditions of the engines 
compared are not similar, since: 

− with the linear reduction, the  scale factor affects 
adversely the turbomachine characteristics, e.g. their 
efficiency drops; 

− friction losses and heat losses into environment 
increase because of  the “surface-volume” ratio increase; 

− it becomes impracticable to use cooling for the turbine 
blading due to extremely thin airfoils of blades; 

− challenges emerge with measuring parameters obtained 
for separate devices and the entire plant on the research 
and test rigs, these challenges  not easily solved  because 
to do it you need measuring devices based on the contact-
free principles; 

− a high accuracy is required  for: 
• sizes and geometry of parts, 
• gaps between the rotor/stator elements, 
• surface roughness values, 

• out-of balance value at the rotor balancing; 
− therefore conceptually new structural materials and 

processes of manufacture for engine  parts and 
components are required. 

At the same time, G.S. Skubachevsky [1] reported that the 
volume and mass law (n=3) is valid only for turbomachines, 
while the square law (n=2) is typically valid for other GTE 
turbounit devices manufactured of sheet materials (combustors, 
intake devices, plate heat exchangers, etc). Therefore, it is 
recommended in [1] to admit the scale degree exponent in the 
relations V1=mnV2 and M1=mnM2 as 

 
n=2.6…2.8,   (2) 

 
i.e. at m=10 the engine specific power may increase, at least, , 
by a factor of  six. This conclusion is confirmed by the Table 1 
data where similar power engines are compared, namely 
Capstone C30 [2] and a multi-module engine made up of 15 gas 
turbine ceramic engines F/E-BC2 (Fig.1) with 2kW power 
each. 

Table 1 
 

Nos Company 
Parameter Capstone Multi-module GTE  of 15 

modules 

1 GTE С30 15F/E-BC2 

2 Power, kW 30 2×15=30 

3 Electric efficiency, %  28±2 28±1 

 NOx emissions, ppm (at 15% О2) <9.0 <5.0 

5 Sizes  (L×B×H), or ∅D×L, mm 1900×1344×714 (∅116×424)×15 

6 Volume, m
3
 1.823 0.0045×15=0.0675; 

0.0672×1.5=0.1013* 

7 Mass, kg 578 6×15=90 

8 
Specific power 

mass, W/kg 51.9 333 

9 volume, W/l 16.46 446/294* 

∗ coefficient accounting  for inter-module volume  
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At the same time, mass-size values differ notably from unit 
to unit since they depend primarily on a design approach 
applied, with various materials and technological aspects of 
production involved. E.g. the mass and volume of Rolls-
Royce GTEs are nearly one order over those of the “Saturn” 
and “Zorya-Mashptoject” GTEs of the same power. It can be 
seen now that the ship’s GTEs М70FRU and М90FR, which 
total lifetime amounts to 40,000 hours [5,12], are the most 
acceptable candidates for making comparison with the 
complex cycle ship’s GTEs. 

Application of complex cycle GTEs ensures a considerable 
increase in the engine efficiency, especially, by use of heat 
resistant and high thermal stability materials, effective 
structures for cooling of turbine blading, combustor liners, and 
heat exchange surfaces of air heaters. These gains were 
achieved in the ship’s GTE WR-21 of Rolls-Royce and 
Westinghouse production (Table 2). Here, TIT is 1,100°C, the 
cycle is regenerative with intermediate cooling. The latter 
makes this engine a most efficient. Therefore, WR-21 is 
admitted to be the most adequate illustration of a ship’s GTE to 

make comparison with the ship’s ceramic engines (CGTE), 
given these CGTEs are developed on the basis of a similar 
complex cycle for a civic ship’s application. 

Application of uncooled ceramic components (combustor 
liners, nozzle vanes, and turbine wheel, heat exchange surface 
P, gas duct lining) allows a considerable increasing of the GTE 
efficiency. At tests of the ceramic GTE CGTE302 of 300kW 
power of Kawasaki production at TIT=13500C, the design 
efficiency ηe=42% [18] was obtained. 

4. SHIP’S CERAMIC GTEs 
4.1 Ceramic GTEs under development  

A numerical optimization study was carried out. Its 
purpose was to explore the rated operation duties for ship’s 
CGTEs projects under baseline conditions in accordance with 
ISO and at the same initial technical parameters. The 
calculation results for optimum pressure rise ratios in each 
CGTE are summed up in the Table 3 and shown in Fig.5. 

Table 3 
Main thermal-engineering and mass-size1 parameters of CGTEs under development 

 
Parameter2 

CGTE 
Single-unit Multi-module 

8-17.5 8-19 16-38 16-35 F/E-BC500 32F/E-BC500 
Neн, MW 8 8.7 16.5 16.5 0.5 16.3 
Gв, kg/s 17.5 19.0 38.0 35.0 1.17 37.4 

beн, g/kW·h 162 163 162 173.8 161.7 
ηe, % 51.5 51.1 51.5 48 51.6 

TIT, °C 1400 
Regeneration ratio, Er, %2 85 

Pressure rise ratio, πk, 10 12 10 12 10 
Speed, n, Krpm 12.7 13.55 9.58 9 67/38 

Mass, М, t 14.8 16.3 35.5 31.2 0.625 20.0 
Volume, V, m3 150 164 358 315 6.30 202 

1 Electric generators, service space included, 2ref. note 2 (Table 2). 
 

 
Figure 5. Comparison between efficiencies ηe of ship’s GTEs: 

- simple cycle: 1 - 601-KF9;2 - 601-KF11; 3 - М70FRU; 4 - UGT 10000; 5 – Spey; 6 - UGT 15000+; 7 - М90FR; - complex cycle: 8 
- WR-21; 9 – CGTE 8-17,5; 10 – CGTE 8-19; 11 – CGTE 16-38; 12 – CGTE 16-35; 13 – CGTE 0,5-1,17; 14 – multi-module 32F/E-

BC500. 
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Figure 14. Efficiency vs operation duty for single-unit [11] (WR-21, TYNF, SPEY, OLYMPUS, LM2500) and multi-module 

GTEs. 
 

5. SUMMARY 
Application of multi-module plants instead of single –unit 

ones of the same power reduces the cost of the power produced. 
This is achieved  not only by substantially lower mass-sizes 
and, accordingly, lesser expenses for production and running, 
but, first and foremost, at the expense of operation at any power 
required under rated, most efficient, eco-friendly, and reliable 
conditions as well as thanks to elimination of outages to carry 
out repairs. 

All the above could make generation of the electric, heat, 
and mechanical power much cheaper and lead to a more 
reliable and less costly running of GTEs [22]. 
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