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ABSTRACT 
In general, there are three kinds of common metal flexible 

couplings, such as diaphragm coupling, disc coupling and gear 

coupling. Gear couplings, compared with diaphragm couplings 

and disc couplings, usually have a little ability in compensating 

misalignments. Diaphragm couplings have nice compensatory 

ability in radial, angular and axial directions, especially muti-

diaphragm couplings have better compensatory ability than disc 

couplings. Diaphragm couplings are also suitable for higher 

rotating speed than disc couplings. They are high technology 

products, are widely used in micro gas turbine. Joint way of a 

diaphragm coupling with a shaft usually uses bolts and 

interference fit. In this article, a flexible diaphragm coupling 

assembled by interference fit was taken as research object. By 

comparing three kinds of interference assembly forms of the 

coupling, a most reasonable form was chosen and its axial 

compensatory ability was treated as main research content. An 

idea that “established process of balances is the varied process 

of misalignment magnitude” was presented. Combining the idea 

and the characters of interference fit, new boundary conditions 

were confirmed via bringing assumed shearing forces, and then 

the physical model was established based on the new boundary 

conditions mentioned above. Two-step method, based on the 

physical model, was presented to solve the axial compensatory 

magnitude. Meanwhile centrifugal stress and torsional shearing 

stress of diaphragms of the coupling were also considered in the 

process of calculation. Finally an example was done to support 

the method. Some important conclusions were acquired by 

calculating, and they are significant for design of the flexible 

diaphragm couplings. 

 

 

INTRODUCTION 
With the continuous development of high and super high 

speed rotating machinery, compensatory ability of misalignment 

in different directions is required more and more. Consequently 

lots of flexible couplings are invented and produced. The most 

famous couplings, with the largest compensatory ability, of 

them are flexible disc couplings and flexible diaphragm 

couplings. They are all suited to work at the high speed 

situations, so they are often applied into high-tech turbo 

machinery or used by the army. At present, there are just a little 

published journal papers and some conference papers written to 

describe the BENDIX diaphragm couplings[1-10] and to be 

used as scientific popularity in the world. The BENDIX 

diaphragm couplings are connected with the shaft by bolts. In 

this article, the main research object is a kind of special 

diaphragm couplings connected with shaft by interference fit 

and found from patents[11-13], so far there have not been 

relative technical papers published. This kind of diaphragm 

couplings is primarily used in commercially available micro gas 
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turbine to connect multi-span rotor and accommodate offset, 

angular and axial misalignments. Axial misalignment magnitude 

is an approaching or departing distance of two shafts connected 

by the diaphragm coupling, and here it is called “axial 

approaching misalignment” and “axial departing misalignment” 

respectively.  

In this paper, the axial compensatory magnitude of the 

diaphragm coupling assembled by interference fit was studied 

and presented. The solving method is a kind of quantitative 

analysis method to the compensatory magnitude of the 

diaphragm coupling, and different from the qualitative analysis 

method by the finite element software. The effects of design 

parameters on the misalignment magnitude are more definite 

and the range of variation of the parameters is easier to define 

than the method by the finite element software. Thus, the 

method presented in this paper is more appropriate for 

standardization of the diaphragm coupling design. 

NOMENCLATURE 

4,3,2,1iC  Undetermined coefficients 

0D  Diameter of the middle shaft (mm) 

1D  Anti-bending stiffness of the right diaphragm 

( mmN  ) 

2D  Anti-bending stiffness of the left diaphragm ( mmN  ) 

E  Elastic modulus of the material of the coupling ( MPa) 

FD Deformation of the coupling at the first step (mm) 

1h  Thickness of the right diaphragm (mm) 

2h  Thickness of the left diaphragm (mm) 

l  Length of the middle shaft (mm) 

rM 1  Radial bending moment acted on the right 

diaphragm ( N ) 

1M  Tangential bending moment acted on the right 

diaphragm ( N ) 

rM 2  Radial bending moment acted on the left diaphragm 

( N ) 

2M  Tangential bending moment acted on the left 

diaphragm ( N ) 

MD  Total axial compensatory magnitude of the “axial 

approaching misalignment” (mm) 

n  Safety coefficient 

0n  Rotary speed of the coupling and the shaft ( min/r ) 

0P  Input power of the diaphragm coupling ( kw) 

dQ  Tensile shearing force acted on the middle shaft 

( mmN / ) 

lQ  Uniformly distributed shearing forces acted on the 

inner hole of the left diaphragm( mmN / ) 

rQ  Uniformly distributed shearing forces acted on the 

inner hole of the right diaphragm( mmN / ) 

0Q  Well-distributed shearing force acted on the inner hole 

of the diaphragm ( mmN / ) 
1

0

rQ  Maximal shearing force based on the positive stress 

check and endured by the right diaphragm( mmN / ) 
2

0

rQ  Maximal shearing force based on the shearing stress 

check and endured by the right diaphragm ( mmN / ) 
1

0

lQ  Maximal shearing force based on the positive stress 

check and endured by the left diaphragm ( mmN / ) 
2

0

lQ  Maximal shearing force based on the shearing stress 

check and endured by the left diaphragm ( mmN / ) 

max1Q  Maximal shearing force endured by the right 

diaphragm ( mmN / ) 

m ax2Q  Maximal shearing force endured by the left 

diaphragm ( mmN / ) 

rQ1  Axial shearing force acted on the right diaphragm 

( mmN / ) 

rQ2  Axial shearing force acted on the left diaphragm 

( mmN / ) 

r  Radial coordinate in local system on the diaphragm 

0r  Radius of the middle shaft (mm) 

1lr  Inner radius of the left diaphragm (mm) 

2lr  Outer radius of the left diaphragm (mm) 

1rr  Inner radius of the right diaphragm (mm) 

2rr  Outer radius of the right diaphragm (mm) 

SD  Compensatory magnitude of “axial approaching 

misalignment” of the coupling at the second step (mm) 

T  Torque acted on the diaphragm ( mmN  ) 

w  Bending deformations of the diaphragms (mm) 

1w  Bending deformation of the right diaphragm (mm) 

2w  Bending deformation of the left diaphragm (mm) 

1rw  Bending deformations of the right diaphragm caused 

by interference fit in the physical model (mm) 

2rw  Compensatory magnitude provided by the right 

diaphragm (mm) 

2rw  Bending deformation of the right diaphragm caused 

by the shearing force max1Q  (mm) 

1lw  Bending deformations of the left diaphragm caused 

by interference fit in the physical model (mm) 

2lw  Compensatory magnitude provided by the left 

diaphragm (mm) 
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maxlw  The deformation of the left diaphragm in the 

location of the inner radius (mm) 

z  Axial coordinate in local system on the diaphragm 

dA  The area of the differential element ( 2mm ) 

dr  Radial width of the differential element (mm) 

dT Torque acted on the differential element ( mmN  ) 

  The shearing strain caused by torque 

d  Tensile value of the middle shaft in the condition of 

lQ < rQ  (mm) 

l  Deformation of the left diaphragm in final equilibrium 

state considered effects from inertial forces and torque, but no 

misalignment (mm) 

p  Compressive value of the middle shaft in the condition 

of lQ > rQ  (mm) 

r  Deformation of the right diaphragm in final 

equilibrium state considered effects from inertial forces and 

torque, but no misalignment (mm) 

r1  Radial strain of the right diaphragm 

t1  Tangential strain of the right diaphragm 

  Poisson’s ratio of the material of the coupling 

rd 1  Varied magnitude of the radial centrifugal stress 

thru the width of the differential element ( MPa) 

3,2,1i  Principal stress ( MPa) 

r  The total radial stress of the right diaphragm ( MPa) 

s  Yield limit of the material ( MPa) 

r1  Radial centrifugal stress of the right diaphragm 

( MPa) 

r2  Radial centrifugal stress of the left diaphragm 

( MPa) 
l

r  Radial stress of the left diaphragm ( MPa) 

l

  Tangential stress of the left diaphragm ( MPa) 

r

r  Radial stress of the right diaphragm ( MPa) 

r

  Tangential stress of the right diaphragm ( MPa) 

t  The total tangential stress of the right diaphragm 

( MPa) 

t1  Tangential centrifugal stress of the right diaphragm 

( MPa) 

t2  Tangential centrifugal stress of the left diaphragm 

( MPa) 
l

rz  Shearing stress of the left diaphragm ( MPa) 

r

rz  Shearing stress of the right diaphragm ( MPa) 

 r  Circumferential shearing stress caused by torque 

( MPa) 

d  The torsional angle corresponding with  in the 

location of differential circular ring on the diaphragm ( rad ) 

  The torsional angle corresponding with  in the 

location of inner radius of the diaphragm ( rad ) 

PHYSICAL MODEL 
As Fig.1, there are three different assembly deformation 

forms of diaphragms of the cup-style diaphragm coupling. 

Fig(a) shows the deformation form of the diaphragms when two 

interference fits are produced on the inner cylindrical surface of 

the coupling. Fig(b) shows the deformation form of the 

diaphragms when two interference fits are produced on the 

outer cylindrical surface of the coupling. Fig(c) shows the 

deformation form of the diaphragms when left interference fit is 

produced on inner cylindrical surface and right interference fit 

is generated on the outer cylindrical surface. Comparing 

Fig(a) ,Fig(b) and Fig(c), it’s easy to know that the first one and 

the second one all have the best unidirectional compensatory 

magnitude, and the third one has better bidirectional 

compensatory ability, so the third one is more appropriate to be 

used in machinery. Here we choose the third assembly form and 

it is showed on the Fig.2. 

 

Fig.1 Different assembly deformation status of cup-style 

diaphragm coupling 

 

Fig.2 Better assembly form for the cup-style diaphragm 

coupling 

With respect to the diaphragm coupling showed in Fig.2, 

two diaphragms generate bending deformation after assembly 
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and are acted by inertial force and torque at work, finally axial 

forces acted on the coupling are in a balance. In this balance, 

bending deformation of any diaphragm includes two parts: One 

part is caused by the final interference fit, and another part is 

owing to the interaction of assembly deformations of the two 

diaphragms. Assumed that deformations of the left diaphragm 

and right diaphragm are l  and r  respectively in the 

balance. When axial misalignment occurs, lead head of the 

coupling begins to move along the axis. Assumed that another 

end of the coupling is fastened, any moving distance of the lead 

head has a corresponding equilibrium state, so there are many 

equilibrium states in the moving process of the lead head. Two 

interference fits exist always, two diaphragms can be considered 

as thin annular plates with fixed outer rim and the inner surface 

acted by well-distributed shearing forces. In order to keep the 

deformations l and r , we assumed that two uniformly 

distributed shearing forces lQ  and rQ  act on the surface of 

the inner hole. According to the assumptions mentioned above, 

the physical model in the balance that axial misalignment does 

not occur is drawn, as Fig.3.   

 

Fig.3 Physical model in the equilibrium state and no 

misalignment 

SOLUTION OF AXIAL MISALIGNMENT COMPEN-

SATORY MAGNITUDE 
Axial misalignment includes “axial approaching 

misalignment” and “axial departing misalignment”. In this 

paper, compensatory magnitudes were solved about the two 

kinds of axial misalignment. According to the physical model 

mentioned above, two diaphragms, acted on the surface of inner 

hole by shearing forces rQ and lQ  respectively, are fixed on 

the outer rim. And in any balance status, the boundary 

conditions of the two diaphragms are always that surfaces of the 

inner holes are acted by shearing forces and outer rims are 

fastened. Just the magnitudes of the shearing forces and 

deformations of the diaphragms are changed in different 

equilibrium states. Under the balance status, if lQ > rQ , it can 

be seen that the left cup is assembled firstly and right cup is 

followed, middle shaft is compressive, compression shearing 

force is rQ , supposed that compressive value is p . If 

lQ < rQ , it is judged that the right cup is assembled firstly, 

middle shaft is in a tensile status, supposed that tensile shearing 

force is dQ , tensile value is d  and it is equal to 

rl   ,then dQ  can be solved.  

AXIAL APPROACHING MISALIGNMENT 
Supposed that bending deformations of the left diaphragm 

and the right diaphragm at the inner radius, caused by 

interference fit in the physical model, are 1lw  and 1rw . 

Assumed that the right ends of the coupling is lead head. In 

the equilibrium state, if lQ > rQ , the middle shaft is 

compressive. When the lead head approaches to the left end, 

with the increasing pressure acted on the middle shaft, the 

compression deformation increases. Simultaneous shearing 

force acted on the location of inner radius of two diaphragms 

also increases and until it reaches the smaller one of the 

maximal shearing forces endured by the two diaphragms. In this 

course, sum of all new deformations of the two diaphragms and 

the middle shaft is the axial compensatory magnitude of the 

“axial approaching misalignment” in the condition of lQ > rQ .     

In the equilibrium state, if lQ < rQ , in order to solve the 

axial misalignment magnitude of the “axial approaching 

misalignment” more definitely, here the solving process of the 

total misalignment magnitude is divided into two steps. At the 

first step, the lead head will move three distances: the first one 

is decreased deformation of the middle shaft from tensile status 

to free status; the second one is increased deformation of the 

left diaphragm from l  to 1lw  as a result of disappearance 

of the shearing force transmitted by the middle shaft; the third 

distance is decreased deformation of the right diaphragm from 

r  to 1rw . At the second step, the right diaphragm moves 

toward to the left diaphragm continuously, the free status of the 

middle shaft is changed into compressive status and until the 

transmitted shearing force reaches the smaller one of the 

maximal shearing forces endured by the two diaphragms, the 

move stops. During this moving process, sum of all new 

deformations based on the first step deformations is the second 

step deformation. Finally sum of the first step deformations and 

the second step deformations is the axial misalignment 

magnitude. 

AXIAL DEPARTING MISALIGNMENT 

In the balance state, if lQ < rQ , the middle shaft is under 

tension. With the increasing tension acted on the middle shaft, 

the tensile deformation increases when the lead head departs 

from the left end. Simultaneous shearing force acted at the inner 
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radius of the two diaphragms also increases and until it reaches 

the smaller one of the maximal shearing forces endured by the 

two diaphragms. In this course, sum of all deformations of the 

two diaphragms and the middle shaft is the axial compensatory 

magnitude of the “axial departing misalignment” in the 

condition of lQ < rQ .     

In the equilibrium state, if lQ > rQ , When the lead head 

departs from the left end, in order to solve the axial 

misalignment magnitude of the “axial departing misalignment” 

more definitely, the solving process of the total misalignment 

magnitudes is also divided into two steps. At the first step, the 

lead head will move three distances: The first one is increased 

deformation of the middle shaft from compressive status to free 

status; The second one is decreased deformation of the left 

diaphragm from l  to 1lw  as a result of disappearance of 

shearing force transmitted by the middle shaft; The third 

distance is increased deformation of the right diaphragm from 

r  to 1rw . At the second step, the right diaphragm moves 

away from the left diaphragm continuously, the free status of the 

middle shaft is changed into tensile status and until the 

transmitted shearing force reaches the smaller one of the 

maximal shearing forces endured by the two diaphragms, the 

move stops. During this moving process, sum of all new 

deformations based on the first step deformation is the second 

step deformation. Finally, sum of the first step deformation and 

the second step deformation is the axial misalignment 

magnitude. 

Obviously, the deformation processes in the condition of 

lQ < rQ  for “axial approaching misalignment” and in 

condition of “ lQ > rQ ” for “axial departing misalignment” are 

more general, complete and typical. Because the solving 

method of the misalignment magnitude in these cases is 

uniform, only the deformation case in condition of lQ < rQ  

for “axial approaching misalignment” is chosen to research in 

this article. 

ANALYSIS ON SOLUTION OF MISALIGNMENT 

MAGNITUDE 

Solution of the first step deformation  
The left and the right diaphragms are treated as annular thin 

plates that their outer rims are fixed and their inner surfaces are 

acted by even-distributed shearing forces, and angle of rotation 

is zero in the position of the inner radius when bending 

deformation occurs. Here the right diaphragm is taken as an 

example to solve axial compensatory magnitude of the “axial 

approaching misalignment”. Supposed that w  is bending 

deformation of the diaphragm and subscript 1 and 2 of w  

express the right diaphragm and the left diaphragm respectively. 

1lr , 2lr ， rM 2 ， 2M  and rQ2  indicate inner radius, 

outer radius, radial bending moment, tangential bending 

moment and axial shearing force on the left diaphragm. 
l

r , 

l

 and
l

rz  are the radial stress, the tangential stress and the 

shearing stress corresponding with rM 2 , 2M and rQ2 . 1rr , 

2rr ， rM 1 ， 1M  and rQ1  indicate inner radius, outer 

radius, radial bending moment, tangential bending moment and 

axial shearing force on the right diaphragm, 
r

r ，
r

  and 

r

rz  are the radial stress, the tangential stress and the shearing 

stress corresponding with rM 1 ， 1M  and rQ1 . 1h and 2h  

are the thickness of the right diaphragm and the left diaphragm 

respectively. 1D and 2D  are the anti-bending stiffness of right 

diaphragm and left diaphragm respectively. z  is the axial 

coordinate in local system on the diaphragm. Origin of the local 

system is located at the center of the mid-surface of the 

diaphragm. According to the theory of plate and shell[14], 

bending displacement, bending moment, shearing force and 

stress of the right diaphragm are expressed as follows: 

4

2

1

3

1

2

1

2

2

11 ]1)[(
2

1
ln)(ln)( C

r

r
C

r

r

r

r
C

r

r
Crw

rrrr

 - (1) 

)( 1

2

1

2

11
dr

dw

rdr

wd
DM r


                      (2) 

)
1

( 1

2

1

2

11
dr

dw

rdr

wd
DM                    (3) 

)
11

( 1

22

1

2

3

1

3

11
dr

dw

rdr

wd

rdr

wd
DQ r            (4) 

3

1

112

h

zM rr

r                                 (5) 

3

1

112

h

zMr 
                                 (6) 

)
4

(
6

= 2

2

1

3

1

1 z
h

h

Q rr

rz                           (7) 

Boundary conditions are as follows: 

r
r

rrr QQ  
1

1 ； 0
1

1 
r

rr
dr

dw
； 

0
2

1 


r
rr

w ； 0
2

1 


r
rr

dr

dw
                   (8) 

From equation (1) thru equation (8), the equation of rQ  

acted on the inner hole surface of the right diaphragm and 

bending deformation r  is as follows： 
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]2)(ln4[

)(8

4

2

4

1

2

2

2

1

2

1

22

2

2

11

2

1

2
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r
rrr

rrr
r

rrrr
r

r
rrr

rrD
Q







   (9) 

Similarly, the equation of lQ  and l  is as follows: 

]2)(ln4[

)(8

4

2

4

1

2

2

2

1

2

1

22

2

2

11

2

1

2

22

llll

l

l
lll

lll
l

rrrr
r

r
rrr

rrD
Q







   (10) 

Bending deformations l  and r  are taken as the 

known conditions to be provided in this paper. Comparing the 

magnitude of lQ  and rQ by equation (9) and (10), 

deformation status and deformation magnitude of the middle 

shaft can be obtained. And then, shearing force transmitted by 

the middle shaft is also solved. Subsequently, the first part 

deformations of the diaphragms caused by interference fit and 

the second part deformations caused by interaction of the first 

part deformations can be solved. With respect to “axial 

approaching misalignment”, we supposed that the tensile 

shearing force acted on the middle shaft is dQ  in the condition 

of lQ < rQ , and the radius of the middle shaft is 0r . Tensile 

value of the middle shaft is expressed as follows: 

rld                                   (11) 

Then, tensile shearing force is as follows: 

l

Er

lr

Er
Q dd

d
22

0

0

2

0 




                       (12) 

1rw is the bending deformation of the right diaphragm at 

the inner radius caused by interference fit in the physical model 

and it can be achieved just in the boundary conditions of  a 

fixed outer rim and an inner hole surface acted by shearing 

force dr QQ  . The expression is as follows: 

1

2

1

2

212

1

2

2

1

2

21

2

2

3

1
1

8

))((
)][ln(

)(2

)(

D

QQrrr

r

r

rrD

rrQQ
w drrrr

r

r

rr

rrdr
r







 (13) 

As a result of disappearance of shearing force transmitted 

by the middle shaft, decreased deformation of the left 

diaphragm from r  to 1rw  is 1rr w . Similarly, 1lw  of 

the left diaphragm can be achieved just in the boundary 

condition of a fixed outer rim and an inner hole surface acted by 

shearing force rQ + dQ . The expression is as follows: 

　
1

2

1

2

212

1

2

2

1

2

21

2

2

3

1
1

8

))((
)][ln(

)(2

)(

D

QQrrr

r

r

rrD

rrQQ
w dllll

l

l
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l







 (14) 

So increased deformation of the left diaphragm from l  

to 1lw  is llw 1 . As a result, all three deformations 

included in the first step deformation have been obtained. 

Assumed the first step deformation is FD ， then the 

expression is as follows: 

1

2

1

2

212

1
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2
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r
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r

r
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dllll
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
















　　　　

　　　　

　



(15) 

MAXIMAL SHEARING FORCE ENDURED BY THE 

DIAPHRAGM 
Maximal shearing force endured by the diaphragm in the 

physical model may be affected by bending stress, shearing 

stress caused by interference fit, inertial stress and torsional 

stress. According to the distributions of all kinds of stresses, the 

first step is to judge the critical section and critical points on the 

section; the second step is to check the positive stress and 

shearing stress at their critical points respectively. Solved 

shearing force at the critical status of material yield limit is the 

maximal shearing force endured by diaphragm at the inner 

radius.   

Centrifugal stress analysis 

 

Fig.4 Centrifugal stress analysis 

Here a differential element on the right diaphragm is taken 

just as Fig.4. Its radial width is dr , the thickness of the 

diaphragm is 1h , the radial stress is r1  in the location of r 

and radial stress is rr d 11    in the location of drr  , 

tangential stress on the differential element is t1 . Equation of 

the stress equilibrium is expressed as follows: 

02111 


 r
rdr

d trr 


                (16) 

According to the stress function method, r1  and t1  

can be solved as follows: 
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22

2

2
11

8

)3(
r

r

C
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



               (17) 
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2
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8

)31(
r

r
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
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
               (18) 

Thin annular plate can be seen as plane stress problem, so 

the constitutive equations[15] are as follows: 

)(
1

111 trr
E

   

)(
1

111 rtt
E

                          (19) 

Geometric equations are as follows： 

dr

dw
r

1
1  ，

r

w
t

1
1                         (20) 

Boundary conditions are as follows： 

0
1

1 


r
rr

w ； 0
1

1 


r
rr

dr

dw
                  (21) 

Combining equation (16)~(20)，centrifugal stresses on the 

right diaphragm are expressed as follows： 
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Similarly, centrifugal stress on the left diaphragm can be 

expressed as follows: 
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It can be seen from equation (22)~(25) that centrifugal 

stresses is zero in the location of inner radius of the diaphragm 

and is maximal in the outer rim of the diaphragm. 

Shearing stress analysis caused by torque 
Common torsions almost are torsions of rotating shafts and 

the torque is transmitted along the axis. In this paper, the torque 

is transmitted along the radial direction of the diaphragm from 

inner radius to outer radius or from outer radius to inner radius, 

but torsional shearing stress is uniform. Here the style of 

transmission torque from inner radius to outer radius is taken to 

research in this paper, as Fig.5.   is the shearing strain caused 

by torque and   is torsional angle corresponding with   at 

the inner radius of the diaphragm. A differential circular ring is 

taken in the location of r and its width is dr  along the radial 

direction. Shearing strain on the differential circular ring is   

too, and torsional angle is d . The thickness of the diaphragm 

is 1h . 

Supposed that circumferential shearing stress caused by 

torque is  r . A differential element was taken on the 

differential circular ring along the circumferential direction and 

the area of the differential element is dA . So torque acted on 

the differential element is expressed as follows: 

rdAdT r  

Integrating to above equation, the following equation can 

be obtained： 

  rr hrrdAT 1

22                       (26) 

So, shearing stress can be expressed as follows: 

1

22 hr

T
r


                                  (27) 

It can be seen that shearing stress generated by torque on 

the diaphragm is decreasing along the radius from inner radius 

to outer radius. 

 

 
Fig.5 Torsional deformation of the diaphragm 

Solution of the maximal shearing force endured 

by diaphragm 

We assumed that a well-distributed shear force 0Q  is 

acted on the inner hole surface of the diaphragm. Misalignment 

deformation process in every moment can be treated as a 

equilibrium state. For example, the physical model is the 

original balance. Thus, every diaphragm can be simplified into 

a thin annular plate and the boundary condition is uniform in 

every equilibrium state. At the outer radius, the boundary 

condition is that displacement and angle of rotation are zero. At 

the inner radius, angle of rotation is zero too and a shearing 

force is acted on the inner hole surface, here the shearing force 

is 0Q . So the boundary conditions are shown as follows: 
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01
1

QQ
r

rrr   ； 0
1

1 
r

rr
dr

dw
； 

0
2

1 


r
rr

w ； 0
2

1 


r
rr

dr

dw
                   (28) 

Combining the equations (1)~(7), bending stresses on the 

diaphragm are as follows: 
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(30) 
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3
= 22
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10 zh
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rQ rr

rz                       (31) 

Using above method, parameters of the right diaphragm are 

substituted into parameters of the left diaphragm in the 

equations (29), (30) and (31), distribution of bending stresses of 

the left diaphragm is obtained. Using the equations (22), (23), 

(29) and (30), total radial stress r  and tangential stress t  

are expressed as follows: 
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According to the equations (27), (31), (32) and (33), 

distributed drawing of the positive stress and shearing stress can 

be obtained. And then, positions of the critical section and 

critical point on the section can be judged. At the critical point, 

material strength is checked with respect to positive stress and 

shearing stress, it was based on the third strength theory[16]. 

Generally speaking, solved maximal shearing forces are 

different based on positive stress check and shearing stress 

check, and the smaller value of the solved maximal shearing 

forces is taken as maximal shearing force endured by 

diaphragm. Here supposed that the maximal shearing force 

endured by the right diaphragm is max1Q  and the maximal 

shearing force endured by the left diaphragm is m ax2Q . 

SOLUTION OF THE SECOND STEP COMPEN-

SATORY MAGNITUDE  

Comparing the magnitude of max1Q  and m ax2Q , if 

max1Q > m ax2Q , the middle shaft changes its free status into 

compressive status, when approaching move of the lead head at 

the second step, based on the approaching move at the first step, 

occurs. In this case, the shearing force transmitted by middle 

shaft uses m ax2Q  when the material strength is checked. Then 

the new deformations of two diaphragms and the middle shaft 

can be solved, i.e. compensatory magnitude of the approaching 

move at the second step is obtained. 

If max1Q < m ax2Q , after the first approaching move, the 

current deformation of the right diaphragm can be seen as the 

deformation acted by shearing force dr QQ   and it is 1rw . 

With the move of the right diaphragm at the second step, the 

deformation status of the diaphragm will be a completely 

reversed deformation status finally. In this case, the force 

transmitted by the middle shaft uses dr QQQ max1  when 

the material strength is checked, but the transmitted shearing 

force must meet the condition of 
max2max1 QQQQ dr  . If 

max2max1 QQQQ dr  , the force transmitted by middle shaft 

uses m ax2Q when material strength is checked. Aiming at the 

two cases above, an exact analysis is presented as follows: 

Compressive deformation of the middle shaft p  

If dr QQQ max1 < m ax2Q , 

0

max1 )(2

Er

QQQl dr
p


                    (34) 

If dr QQQ max1 > m ax2Q , 

0

max22

Er

lQ
p                                (35) 

Deformation of the left diaphragm 2lw  



 9 Copyright © 2011 by ASME 

If dr QQQ max1 < m ax2Q , the shearing force acted on 

the surface of inner hole is dr QQQ max1 . Supposed that 

the deformation of the left diaphragm at the inner radius is 

maxlw . In this case, compensatory magnitude provided by the 

left diaphragm is 1max2 lll www  . 
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Combining equations (14) and (35), 2lw  is expressed as 

follows: 
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If dr QQQ max1 > m ax2Q , the shearing force 

transmitted by the middle shaft is m ax2Q , so here maxlw  and 

2lw  are expressed as follows: 
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Deformation of the right diaphragm 2rw  

If dr QQQ max1 < m ax2Q , 

Here the shearing force transmitted by the middle shaft is 

dr QQQ max1 . With respect to the right diaphragm, there 

are two uniformly distributed shearing force acted on the 

surface of the inner hole, and they have different directions, so 

the move deformation of the right diaphragm at the second step 

can use two parts of deformations to express, i.e one part is 

1rw  and another deformation is 2rw  caused by shearing 

force max1Q . Thus, 

122 rrr www   
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Combining equations (13) and (40), the deformation of the 

right diaphragm 2rw  is solved as the following formula: 
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If dr QQQ max1 > m ax2Q , the differences from the 

former is that deformation 2rw  is caused by shearing force 

dr QQQ max2 , so the results of 2rw  and 2rw  in this 

condition are expressed respectively as follows: 
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Considering the mentioned above, we assumed that 

approaching compensatory magnitude at the second step is 

SD , and then the expression of SD  is as follows: 

22 rlp wwSD                          (44) 

The flow chart of the solving method and steps is seen from 

ANNEX B. 

CALCULATION EXAMPLE 
Supposed that a group of parameters of the diaphragm 

coupling are as the Table1.(Seen from ANNEX A, Table.1) 

With respect to l  and r , they can be done special 

calculation in considering of assembly, rotating speed and 

temperature, here just for telling the solving method of the 

misalignment compensatory magnitude, so the value of l  

and r  are presented without any calculation. 

SOLUTION OF COMPENSATORY MAGNITUDE OF 

THE RIGHT DIAPHRAGM AT THE FIRST STEP  

Substituting 104.0l  and 1.0r  into equations 

(9) and (10), the assumed shearing force are 

-26.4411NlQ  and -44.1753NrQ . Apparently their 

magnitude meets the condition of lQ < rQ . So approaching 
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misalignment magnitude at the first step and its three parts are 

calculated according to equations (11)~(15) just as follows: 

mmrld 004.0    

N
l

Er
Q d

d 7755.18
2

0 


        

In order to keep uniform sign of the input shearing force on 

the diaphragm, we take the shearing force acted in the reverse 

direction negative value, i.e. NQd 7755.18 . According to 

the equation (13), the value of 1rw  is as follows: 

mmwr 0575.01                

And, 

mmwrr 0425.01   

According to the equation (14), the value of 1lw  is as 

follows: 

mmwl 17.01   

And， 

mmw ll 066.01   

Thus, 

mm1125.0        

0.0040.04250.066        

11







　
rrdll wwFD 

    

SOLUTION OF THE MAXIMAL SHEARING FORCE 

ENDURED BY THE DIAPHRAGMS 

Known from equations (31), (32) and (33)，critical section 

on the diaphragm is located at 1rrr  , i.e. critical section is the 

surface of the inner hole of the diaphragm. Critical point 

corresponding with the shearing stress is located in the section 

of 0z . Critical point corresponding with the positive stress is 

located in the section of 2/1hz  . 

Firstly, checking on the positive stress, order that 

)2/,( 111 hzrr rrr   ， 02  ， 

)2/,( 113 hzrr rtt   ，            (45) 

According to equations (32) and (33), positive stresses on 

the critical point are expressed as follows: 
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Make check about positive stress based on the third 

strength theory： 

][31 


 
n

s
                        (48) 

According to equation (48), maximal shearing force based 

on the positive stress check and endured by the right diaphragm 

is NQr 1861.531

0  . Similarly, maximal shearing force based 

on the positive stress check and endured by the left diaphragm 

is NQl 55.73681

0  . 

Secondly, checking on shearing stress and meeting the 

following conditions： 

75.343
2

1373.0
2

9550

2 01

2
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nnhr
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n
zrr s

rrz
2

)0,( 1


                       (49) 

Combining equation (31) and (49), maximal shearing force 

based on the shearing stress check and endured by the right 

diaphragm is NQr 3333.4582

0  . The maximal shearing 

force based on the shearing stress check and endured by the left 

diaphragm is NQl 5502

0  . So we choose the smaller value 

of the maximal shearing forces with respect to every diaphragm, 

the maximal shearing force of the right diaphragm at the inner 

radius should be NQ 1861.53max1  , and the maximal 

shearing force of the left diaphragm at the inner radius should 

be NQ 55.7368max2  .  

Obviously, 

max2max1 QQ  and
max2max1 QQQQ dr  . 

SOLUTION OF APPROACHING COMPENSATORY 

MAGNITUDE AT THE SECOND STEP 

According to equation（35）, compressive magnitude of 

the middle shaft at the second step is as follows: 

mmp 119.00
410115

)7368.55(492
3





         

Obviously,  

7368.555859.78 max2max1  QQQQ dr  

In this case, shearing force transmitted by the middle shaft is 

 NQQd 7368.55max2   

Deformation of the left diaphragm is as follows: 

mmwl 2192.0max   

mmwl 17.01   

mmwww lll 0492.01max2   

Deformation of the right diaphragm is as follows： 

mmwr 0687.02   

mmwr 0575.01    



 11 Copyright © 2011 by ASME 

0.1262mm122  rrr www  

So the compensatory magnitude at the second step is as 

follows: 

mm1873.0        

0.1262119.000492.0        

22







　
rpl wwSD 

 

Above all, total compensatory magnitude MD  of “axial 

approaching misalignment” in the provided conditions of 

calculation example is as follows: 

mm2998.0       

7381.01125.0       







　
SDFDMD

 

According to the text above, the axial compensatory 

magnitude of the “axial approaching misalignment” has been 

solved, the two-step method is convenient and valid, but the 

parameters in the calculation example are not the best 

parameters, so the result of misalignment magnitude doesn’t 

achieve the maximal compensatory value. 

CONCLUSION 

Above all, via comparing the deformation forms of the two 

diaphragms in different assembly ways between the diaphragm 

coupling and two sides rotating shaft, a kind of deformation 

form was chosen based on the bidirectional requirement of axial 

misalignment compensation. The right end of the coupling was 

treated as lead head when the axial misalignment occurs, i.e. the 

right end of the coupling is connected with a drive shaft. The 

diaphragms were seen as annular thin plate. An idea that the 

process of establishing the equilibrium states is the varied 

process of the misalignment compensatory magnitude was 

presented. Two frictional shearing forces acted at inner radius 

of the diaphragms were put forward and the physical model was 

established based on an assumption that interference fit is fixed 

connection and a condition that bending deformation must be 

kept in the equilibrium state. And then, two-step method of 

solving the axial misalignment magnitude based on the physical 

model was presented. As a result of the same solving principle 

of the two directions misalignments, “axial approaching 

misalignment” was chosen to do exact analysis. Calculation 

formulas of the axial compensatory magnitude, based on the 

acquirement of maximal shearing force acted at the inner radius 

of the diaphragm, were presented at the first step and the second 

step. Finally, a calculation example was presented and used to 

calculate the axial approaching misalignment magnitude in the 

condition of the known parameters, and some conclusions can 

be obtained by the calculation and analysis above. 

1) According to the two-step method presented above, axial 

misalignment compensatory magnitudes of the diaphragm 

coupling at the first and the second step are easy to solve, but 

whether the second step axial compensatory magnitude can 

obtain the maximal value or not, is strongly depended on the 

matching of the design parameters of the two diaphragms, and 

the best parameters can be obtained by calculating more than 

once.  

2) On the diaphragm, the maximal radial bending stress occurs 

on both sides of the surface and at the inner radius, the maximal 

tangential bending stress occurs on the both sides of the surface 

and near the location of the inner radius. They usually decided 

the main distribution of the stresses and the location of the 

critical section on the diaphragm. The maximal shearing stress 

occurs on the middle surface of the diaphragm and at the inner 

radius. The maximal value of the torsional shearing stress is 

also on the surface of the inner hole, but they are far smaller 

than the positive stresses, so they don’t have enough effects on 

the strength of the diaphragm. The maximal value of the 

centrifugal stress is on the outer rim of the diaphragm, and its 

magnitude is smaller than the maximal value of the bending 

stress, so it also can’t change the position of the critical section. 

3) The outer radius and the thickness of the diaphragm are 

the main influencing factors on the axial compensation ability 

of the coupling. Geometric sizes of the middle shaft have a little 

effect on the axial compensation value. With the increase of the 

outer radius of the diaphragm and the length of the middle shaft, 

the axial compensation magnitude is increasing. With the 

increase of the thickness of the diaphragm and the radius of the 

middle shaft, the axial compensation magnitude is decreasing. 

Where, the change of the axial compensation magnitude is most 

sensitive to the change of the thickness of the diaphragm. 
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ANNEX A 
 

Table.1 Calculation parameters of the diaphragm coupling 

Parameters of the diaphragm 

coupling 
Description value 

Items Name 

Material 

Properties 

E  Elastic Modulus MPa310115  

  Poisson’s Ratio 0.3 

s  Yield Limit MPa825  

n  Safety Coefficient 1.2 

Operating 

Conditions 

0n  Rotary Speed 90000 rpm  

0P  Input Power 130KW 

Geometric 

Parameters 

1h  Thickness of the right diaphragm 1mm 

2rr  Outer radius of the right diaphragm 12.5mm 

2h  Thickness of the left diaphragm 1.2mm 

2lr  Outer radius of the left diaphragm 17.5mm 

0r  Radius of the middle shaft 4mm 

l  Length of the middle shaft 49mm 

Additional 

Parameters 

r  

Deformation of the right diaphragm in the 

final equilibrium state considered effects from 

inertial forces and torque, but no misalignment 

0.1mm 

l  
Deformation of the left diaphragm in the final 

equilibrium state considered effects from 

inertial forces and torque, but no misalignment 

0.104mm 
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