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ABSTRACT 
The growing need to increase the competitiveness of 

industrial systems continuously requires a reduction of 
maintenance costs, without compromising safe plant operation. 
Therefore, forecasting the future behavior of a system allows 
planning maintenance actions and saving costs, because 
unexpected stops can be avoided.  

In this paper, four different methodologies are applied to 
predict gas turbine behavior over time: Linear and Non Linear 
Regression, One Parameter Double Exponential Smoothing, 
Baesyan Forecasting Method and Kalman Filter. The four 
methodologies are used to provide a prediction of the time 
when a performance limit will be exceeded in the future, as a 
function of the current trend of the considered parameter. The 
application considers different scenarios which may be 
representative of the trend over time of some significant 
parameters for gas turbines. Moreover, the Baesyan Forecasting 
Method, which allows the detection of discontinuities in time 
series, is also tested for predicting system behavior after two 
consecutive trends.  

The results presented in this paper aim to select the most 
suitable methodology that allows both trending and forecasting 
as a function of data trend over time, in order to predict time 
evolution of gas turbine characteristic parameters and to 
provide an estimate of the occurrence of a failure. 

 
NOMENCLATURE 
A1, A2, A3 matrices in KM  
E error  
h shift parameter in BFM  
H Bayes factor  
m1,m2 space dimensions  
n number 
RMSE Root Mean Square Error  
S smoothed statistics in OPDES  
t time 

U optional control input in KM 
w process noise in KM 
X unknown state  
Y non-dimensional state parameter  
Z measurement in KM 
α smoothing constant in OPDES 
β model parameter in Regression Method 
ε  error term in Regression Method  
σ2 variance of simulated data trends  
λ uncertainty limit in BFM  
υ  measurement variance in BFM  
ω1,ω2 variances in value and gradient in BFM  
ξ measurement noise in KM 
∆t time frame of the trend  
∆Y variation of Y over the time frame ∆t 
Subscripts and Superscripts 
av average  
grad gradient  
meas measurement  
meth methodology  
min minimum  
p prediction  
t time  
T trend  
u measurement uncertainty  
v value  
∆t time frame of the trend  
[2] double  
Acronyms  
BFM  Bayesian Forecasting Method  
DLM Dynamic Linear Model  
KM Kalman Method  
OPDES One Parameter Double Exponential Smoothing  
SLRM Simple Linear Regression Method  
SNLRM Simple Non Linear Regression Method  
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INTRODUCTION  
The growing need to increase the competitiveness of 

industrial systems continuously requires a reduction of 
maintenance costs, without compromising safe plant operation. 
Therefore, forecasting the future behavior of a system allows 
planning maintenance actions and saving costs, because 
unexpected stops can be avoided. More generally, the 
prediction of future events can provide key information to the 
decision-making process, especially in today’s ever competitive 
energy market.  

Nowadays, most gas turbines in operation are equipped 
with monitoring and/or diagnostic tools [1-5]. In fact, it is 
common practice that the most significant operational 
parameters (e.g. overall gas turbine efficiency or exhaust gas 
temperature) are always monitored, and in many cases raw 
measurements are also processed by diagnostic tools to provide 
a further insight into the engine health state. For instance, Gas 
Path Analysis techniques [6-10] use gas turbine field 
measurements to determine the actual values of the parameters 
which are indices of the gas turbine health state, such as 
efficiencies, characteristic flow passage areas and pressure 
drops along the gas path. Such indices, usually called health 
indices, allow both the faulty component to be localized and the 
malfunction to be identified and quantified.  

Once the trend over time of raw measurements or health 
indices is available, linear trending is one of the prognostic 
methods commonly applied in field operations, as reported for 
instance in [11,12]. However, three issues have to be 
considered. First, it is reasonable to assume that failure 
evolution over time is linear only in a short term period, since 
the failure rate is not constant, as it likely tends to occur during 
initial operation. For instance, the failure rate in case of fouling 
roughly follows an exponential law [13]. Second, the 
methodology to be used to reproduce the available data has to 
be selected, in accordance with the actual time evolution of the 
considered parameter. Finally, the parameter considered for 
trending should be rendered independent of machine operating 
point. In fact, otherwise, the prediction would also account for 
load variation, as may happen for measured variables, such as 
fuel mass flow rate or vibration levels. To do this, a procedure 
called normalization was presented in [11], where the measured 
values of thermodynamic quantities are normalized with 
respect to the respective expected values calculated in the same 
boundary conditions and actual working point. Health indices 
estimated through Gas Path Analysis techniques are instead 
independent of machine load and ambient conditions [7,8].  

In literature, several prognostic methodologies for gas 
turbines have been reported. A good overview is offered by 
Roemer et al. in [14]. In the same area, Lipowsky et al. [15] 
present a statistical method called Bayesian Forecasting, which 
will also be applied in this paper. Zaluski et al. [16] develop a 
data mining methodology, while Bryg et al. [17] apply logistic 
regression to aircraft engine takeoff data. Finally, Puggina and 
Venturini [18] develop a methodology, which allows the 
prediction of future availability, starting from data trends 

collected in the past. 
In this context, this paper stems from the work produced by 

Li and Nilkitsaranont [12] for gas turbine data trending and 
forecasting over one trend, by assuming different failure rate 
patterns over a given time frame. Moreover, this paper also 
continues the work by Lipowsky et al. [15] for forecasting 
system behavior after two consecutive trends, as for instance in 
the case of performance deterioration due to a gradual 
progressive failure followed by performance recovery due to a 
maintenance action. Such use of this methodology was not 
investigated in [15] and, so, it represents a new application 
carried out in this paper.  

Four different methodologies are tested:  
• Simple Linear and Non Linear Regression (SLRM and 

SNLRM);  
• One Parameter Double Exponential Smoothing (OPDES);  
• Baesyan Forecasting Method (BFM);  
• Kalman Filter Method (KM).  

The four models are used to provide a prediction of the time 
when a performance limit will be exceeded in the future (e.g. 
maximum decrease of efficiency, or highest turbine exhaust 
temperature), as a function of the current trend of the 
considered parameter. The application considers different 
scenarios which may be representative of the trend over time of 
several significant gas turbine parameters. The attention is 
focused on gradual deteriorations (e.g. compressor fouling or 
turbine erosion), since they can usually be tracked [18,19] and, 
therefore, their time evolution can be predicted. The influence 
of the presence of measurement uncertainty is also considered 
in the simulated scenarios. To this aim, a simulation model, 
with an easy-to-use graphical interface, is set up, to allow both 
the simulation of data trends and their prediction by means of 
the considered methodologies.  

The Baesyan Forecasting Method, which allows the 
detection of discontinuities in time series, which may be 
associated with system failure followed by performance 
recovery, is also used for predicting system behavior after two 
consecutive trends.  

Thus, the results presented in this paper are aimed to select 
the most suitable methodology that allows both trending and 
forecasting. As a consequence, maintenance planning may be 
optimized, as a function of the current machine health state, in 
order to (i) predict the time evolution of gas turbine state 
parameters and (ii) provide an estimate of the time point when 
the considered state parameter falls below a given threshold 
value. 

 
FORECASTING METHODOLOGIES  

To predict the future reliability of a system, it is common 
practice to make use of statistical methods to support system 
performance monitoring. The main features of some statistical 
techniques established in literature for this purpose are briefly 
reported below, while a thorough description, which is beyond 
the scope of this paper, can be found in specialized texts, which 
are referenced within each section.  
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Regression Method. Time series regression models relate 
the dependent variable X to polynomial functions of time. The 
pth-order polynomial trend model is given by Eq. (1) derived 
from [20]:  

εββββε +++++=+= p
pT tttXX ...2

210  (1)

The error term ε represents random fluctuations that cause 
the X values to deviate from the average level XT. Two trend 
expressions are considered in this paper: linear trend 
(XT=β0+β1t) and quadratic trend (XT=β0+β1t+β2t2), which lead 
to the Simple Linear Regression Method (SLRM) and Simple 
Non Linear Regression Method (SNLRM), respectively. Least 
square point estimates of the β parameters in the trend models 
can be obtained by using regression techniques. To do this, the 
error term ε is assumed to satisfy the constant variance, 
independence and normality assumptions. For a complete 
description of regression method fundamentals, the reader is 
addressed to [20,21], while samples of its application to gas 
turbine data can be found in [11,12].  

One Parameter Double Exponential Smoothing. In 
ongoing forecasting systems, forecasts of a time series are 
made each period for succeeding periods. Hence the 
forecasting equation and the estimates of the time series 
parameters need to be updated at the end of each period to 
account for the most recent observations.  

Exponential smoothing is a forecasting method that weights 
the observed time series values unequally. In fact, more recent 
observations are weighted more heavily than more remote 
observations, by means of smoothing constants. Exponential 
smoothing has been found to be most effective when the 
parameters describing the time series change slowly over time, 
as may happen to the variation of gas turbine health parameters 
due to gradual failures. Unfortunately, exponential smoothing 
methods are not based on any formal statistical theory, but are 
rather intuitive methods that may produce adequate forecasts in 
some applications. 

One Parameter Double Exponential Smoothing (OPDES) is 
an exponential smoothing method for handling a time series 
that displays a slowly changing linear trend, i.e. XT=β0+β1t. It is 
supposed that parameters β0 and β1 were determined at time   
(t-1), and a new observation is available at time t, to update the 
estimates of β0 and β1. To do this, single and double smoothed 
statistics (ST and ST

[2]) can be computed as follows [20]:  
( )
( ) ]2[

1
]2[

1

1

1

−

−

−+=

−+=

TTT

TTT

SSS

SXS

αα

αα
 (2)

Both equations employ the same smoothing constant α, 
which is defined to be between 0 and 1. The first equation 
smoothes the original time series observations, while the 
second one smoothes the ST values obtained by means of the 
first equation.  

For a discussion about the capabilities and the limitations of 
this method, the reader is once again addressed to [20,21].  

Bayesian Forecasting Method. The Bayesian Forecasting 
Method (BFM) applied in this paper is derived from the paper 
authored by Lipowsky et al. [15]. The idea of Bayesian 
forecasting is based on Bayes’ theorem for calculating 
conditional probabilities. In combination with Dynamic Linear 
Models (DLM), which break down the chronological sequence 
of the observed parameters into mathematical components 
(value, gradient, etc.), BFM can be used to calculate probability 
density functions prior to the next observation.  

Starting from the information available at time (t-1), the 
guess values for the value, the gradient and the measurement at 
time t can be calculated as follows [15]:  
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where the parameters ω1, ω2 and υ are the variances in value, 
gradient and measurement, respectively, which can be used to 
adjust the smoothing level. Equation (3) can be extended, so 
that, given the state at time (t-1), the BFM provides the 
predictions for any number of steps ahead, starting from the 
next time t. The conditional probability is accounted for by 
means of Bayes Factors H, which are the ratios of two 
probability density functions for the next observation: one is 
obtained by means of the current model and one is obtained by 
means of an alternative model, of which the mean value is 
shifted by h. Bayes Factors allow the identification of 
uncertainty limits for outlier detection, as defined in Eq. (4):  

( )
2

ln min h
h
H

+=λ  (4)

where h is the shift parameter.  
Moreover, in the same paper [15], the logic for outlier 

detection is extended to change detection of parameter X, by 
means of cumulative Bayes Factors. In fact, as the method of 
Bayesian Forecasting provides guesses for both the value of the 
observed process and its dynamics (gradient, curvature, etc.), 
BFM is well suited to perform a prognosis of parameter X as an 
application of the forecast for a given number of steps ahead.  

For the analytical description of this method, the reader is 
addressed to [22], while its application and validation for gas 
turbine prognostics can be found in the same paper [15]. Paper 
[23] also reports an application of Bayesian approach for 
fatigue life prediction.  

Kalman Method. The method based on Kalman filter 
(KM) addresses the problem of estimating the state X in an   
m1-dimensional space of a discrete-time controlled process that 
is governed by the linear stochastic difference equation [24] 

11211 −−− ++= tttt wUAXAX  (5)

with a measurement Z, defined in an m2-dimensional space:  

ttt XAZ ξ+= 3  (6)
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The random variables wt and ξt represent the process and 
measurement noise, respectively. They are assumed to be 
independent of each other, white, and with normal probability 
distributions. The m1xm2 matrix A1 in the difference Eq. (5) 
relates the state at the previous time step (t-1) to the state at the 
current time step t, in the absence of either a driving function or 
process noise, while the m1x1 matrix A2 relates the optional 
control input U to the state X. Instead, the m1xm2 matrix A3 in 
the measurement Eq. (6) relates the state to the measurement Zt. 
It should be noted that matrices A1 and A3 generally change 
with each time step or measurement.  

Therefore, the Kalman filter estimates a process by using a 
form of feedback control: the filter estimates the process state 
at some time and then obtains feedback in the form of (noisy) 
measurements. As such, the equations for the Kalman filter fall 
into two groups: time update equations and measurement 
update equations. Time update equations are responsible for 
projecting forward in time the current state, while error 
covariance estimates can be used to obtain the a priori 
estimates for the next time step. The measurement update 
equations are responsible for the feedback, i.e. for 
incorporating a new measurement into the a priori estimate to 
obtain an improved a posteriori estimate. The time update 
equations can also be thought of as predictor equations, while 
the measurement update equations can be thought of as 
corrector equations. Indeed, the final estimation algorithm 
resembles that of a predictor-corrector algorithm for solving 
numerical problems.  

The approach of BFM is similar to the KM applied to time 
series, since both methods comprise predictor and corrector 
elements. In fact, the value of the next measurement is 
predicted and subsequently corrected when the next 
measurement is actually available.  

Many specialized books deal with Kalman Filter, as for 
instance [25-27]. A fundamental application of the KM to gas 
turbine time series is reported by Provost in [28]. Other 
cornerstones in the field of gas turbine diagnostics through 
Kalman Filter based approaches are the papers authored by 
Volponi [29,30] and Doel [31].  
 
SIMULATED DATA TRENDS  

Let us assume that the considered state parameter, identified 
as Y(t), varies over time due to gradual gas turbine performance 
deterioration, as for instance compressor fouling. Let us also 
assume that data recording frequency is constant.  

Equation (7) shows that the evolution over the time frame 
∆t of parameter Y(t) depends on the data trend and 
measurement uncertainty:  

( ) ( ) ttYtYtY uT ∆=+= 1,2,...,,0                         (7)

The trend values YT(t) are simulated in this paper through 
four different curves (linear, quadratic, exponential and 
logarithmic). The assumption of linear trend means that the 
failure rate is constant and may approximate several types of 
degradation, mainly in a short-term period. However, the 

evaluation of different trends is made according to the fact that 
(i) performance degradation can occur in different forms, since 
the degradation rate is specific to the considered engine and 
installation and (ii) it is often found that the failure rate is not 
constant. For instance, in the case of fouling, the failure rate 
roughly follows an exponential law [13]. Moreover, the 
evaluation of different trends and of different YT(t) variations 
also allows the behavior of different operational parameters, 
which may decrease slightly or considerably over a given time 
frame ∆t, to be simulated. 

The contribution of measurement uncertainty is given by Yu, 
which is a random number taken from a Gaussian distribution 
with a zero mean and a variance σu

2, which can be varied to 
account for different instrumentation categories. In this paper, a 
variance of 1.0 % with respect to the actual value was imposed, 
to simulate a field instrumentation category. Moreover, the 
influence of halved measurement uncertainty (i.e. σu

2 = 0.5 %) 
was also evaluated for some of the analyzed cases. For each 
considered case, several simulations are carried out, to account 
for different data sets. In the following, the results will always 
refer (unless otherwise indicated) to the average of the errors 
occurred in the simulated data sets, in order to smooth the 
influence of the random numbers used to simulate the presence 
of measurement uncertainty.  

Since the aim of this paper is to compare different 
forecasting methodologies, different minimum allowable values 
Ymin are considered. Reaching Ymin means that a shop visit is 
mandatory, since a limitation in the engine operation (e.g. a 
maximum power loss [5] or reaching turbine exhaust 
temperature limit [32]) has occurred.  

Three gradual degradation scenarios, summarized in Tab. 1, 
are considered, in order to cover different rates of performance 
loss. Without any loss of generality, the first value of the trend 
is equal to 1, as the starting reference condition of the 
considered non-dimensional state parameter Y (i.e. YT = 1 @     
t = 1). In fact, the state parameter Y is assumed non-
dimensional, as in the case of gas turbine health indices 
estimated through Gas Path Analysis techniques. Moreover, the 
time frame is considered equal to 180 days in all cases.  

Therefore, the difference among the scenarios is the relative 
change of parameter Y with respect to the initial unit value, i.e. 
(-1 %, -3 %, -5 %) and the respective minimum value Ymin 
lineeeeeeeeeeee 
 

Table 1 – Scenarios for data trends (YT = 1 @ t = 1) 

Scenario ∆YT@∆t ∆t 
[days] Ymin Trend 

#1 -1 % 180 0.98 
Linear, Quadratic, 

Exponential, Logarithmic 

#2 -3 % 180 0.95 
Linear, Quadratic, 

Exponential, Logarithmic 

#3 -5 % 180 0.92 
Linear, Quadratic, 

Exponential, Logarithmic 
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(0.98, 0.95, 0.92). For instance, these values are in agreement 
with Schneider et al. [5], who reported experimental values of 
compressor performance degradation in terms of compressor 
efficiency drop and power output loss due to fouling, over a 
period of approximately seven months. 

The values of parameter Y are reported in Fig. 1 for the four 
simulated trends for scenario #1. The same figure also 
illustrates YT values extrapolated after time ∆t by means of two 
different procedures: 
1. the line after time ∆t is the linear interpolation line of YT 

values. Therefore, the interpolating and extrapolating lines 
in the case of YT linear trend are clearly superimposed. 
Moreover, it can be observed that this assumption moves 
the time point when YT = Ymin further forward (e.g. YT 
logarithmic trend) or backward (e.g. YT quadratic trend) 
with respect to that of the linear trend;  

2. the line after time ∆t is the line passing through the last two 
YT values. Thus, also in this case, the interpolating and 
extrapolating lines in the case of YT linear trend are 
superimposed. However, unlike the previous situation, the 
time point when YT = Ymin is always much further forward 
for all YT trends (quadratic, exponential and logarithmic) 
with respect to that of the linear trend.  
The reason for the use of the linear interpolating line to 

extrapolate the data trend after time ∆t is due to the fact that the 
actual trend is not known in practical applications and so a 
linear interpolation is the easiest and most likely solution. For 
instance, this same solution was also adopted in [12]. Instead, 
the rationale for the second procedure is that BFM prognosis 
for a second order DLM (i.e. only value and gradient are 
calculated) is essentially a continuation of the gradient 
calculated at the last observed cycle. Thus, the prognosis is 
linear [15]. Therefore, this procedure for extrapolation is 
applied to all methodologies, to make the results comparable.  
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Figure 1 – Data trend for scenario #1 and extrapolating lines  

(linear interpolation lines of YT values or line passing  
through the last two YT values) 

 

Indices for methodology assessment. In this paper, two 
indices are adopted to assess the reliability of the different 
methodologies.  

The first index is the Root Mean Square Error RMSE, 
expressed in Eq. (8):  
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The RMSE represents the error made by the methodology, 
which estimates Ymeth, with respect to the expected value YT, 
which does not account for measurement uncertainty. The sum 
is performed on all time points ti from 1 to n∆t. In this paper,  
n∆t = 180, i.e. one Y value is available per day. Therefore, the 
RMSE can be used to evaluate the trending capability of each 
methodology.  

The second index used for methodology reliability 
assessment is the prediction error Ep, expressed in Eq. (9):  

|| **
methp ttE −=  (9)

This value is obtained as the absolute value of the 
difference between two time points and so it is expressed in 
days. The time point t*

meth represents the moment when the 
parameter Ymeth achieves the minimum allowable value Ymin and 
so it depends on the considered methodology and on data 
measurement uncertainty. Instead, the time point t* represents 
the moment when the parameter Y actually achieves the 
minimum allowable value Ymin and is calculated by evaluating 
YT after time ∆t up to the moment when YT(t*) = Ymin. 
Therefore, this time value only depends on the considered type 
of trend, while it does not account for data measurement 
uncertainty. This time value t* can be calculated by means of 
two different lines after time ∆t, as previously discussed:  
1. linear interpolation line of YT values;  
2. line passing through the last two YT values.  

Therefore, the prediction error Ep depends on the 
considered methodology and also on data measurement 
uncertainty. Therefore, this index can be used to evaluate the 
forecasting capability of each methodology.  

The simulation model. All the forecasting methodologies 
have been implemented in the Matlab® environment. The 
simulation model is provided with a graphical user interface, 
which can be seen in Fig. 2.  

The model allows the user to easily handle the data (either 
simulated or experimental) and to perform both trending and 
forecasting. The model also estimates the prediction error over 
a user-defined time frame.  

Model inputs are the data trends. The model internal 
parameters depend on the considered methodology and are 
reported in Tab. 2, together with the respective values used for 
the simulations carried out in this paper. The values of model 
internal parameters were adjusted to achieve an optimal tuning 
of each forecasting methodology.  
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Figure 2 – Graphical user interface of the simulation model  

 
Table 2 – Simulation parameters  

Parameter Description Value 

Y(t) Data trends  
Ymin Minimum value  

Simulated,  
as in Tabs. 1 and 3 

α Smoothing constant (OPDES) [0.01;0.30]  

ω1, ω2 
Variances in value and 

gradient (BFM) ω1 = ω2 = 10-11 

h Shift parameter (BFM) [0.03;0.15] 

 
RESULTS AND DISCUSSION 

The comparison of the capability of the different 
methodologies to predict gas turbine behavior is reported in the 
following for the four types of simulated trends. First, trending 
capability within the time frame ∆t is addressed. Second, the 
forecasting reliability after the time frame ∆t is assessed. 
Finally, the forecast after two consecutive trends is also 
investigated through the BFM approach.  

Trending capability. Two sample situations are reported in 
the following to illustrate trending capability evaluation 
procedure. Figure 3 shows the deviation between YT values 
(linear trend) and Ymeth values (obtained by using the SLRM 
methodology), which in this case is only due to the presence of 
measurement uncertainty. Instead, Figure 4 shows the deviation 
between YT values (quadratic trend) and Ymeth values (estimated 
through BFM), which accounts for both the presence of 
measurement uncertainty and the modeling approach. In this 
case, Ymeth values estimated through BFM oscillate at the first 
time steps, while they seem to reproduce YT values correctly 
after t = 10 days. Figure 4 also shows the uncertainty limits λ 
for outlier detection, calculated according to Eq. (4).  

The complete results for the two scenarios #1 and #3 and all 
the considered trends for YT (i.e. linear, quadratic, exponential 
and logarithmic) are reported in Fig. 5, as a function of the 
methodology  used  for  trending. It  can  be  seen  that  SLRM,  

0.98

0.99

1.00

1.01

1.02

0 45 90 135 180t  [days]

Y (t ) Y_trend

Y

Y_meth

Y T(t )

Y (t )

Y meth(t )

 
Figure 3 – YT linear trend and Ymeth values obtained through SLRM 

for scenario #1 
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Figure 4 – YT quadratic trend and Ymeth values obtained through BFM 

for scenario #1 (uncertainty limits obtained according to Eq. (4))  
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Figure 5 – RMSE values for scenarios #1 and #3 (σu

2 = 1.0 %) 
 

SNLRM, OPDES and KM allow RMSE values, which are 
almost comparable and usually very low (i.e. less than 0.4 %). 

Instead, with the exception of the linear trend for YT, RMSE 
values for BFM can be high (i.e. up to 2.5 %). Therefore, the 
analysis carried out in this section highlights that all 
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methodologies offer good trending capability, with the 
exception of BFM, mainly because of high errors at the first 
time points. The reason for this behavior can be observed in 
Fig. 4, where the values estimated through the BFM at the first 
time points considerably deviate from the expected value YT. 
However, this only affects BFM trending capability, while, as 
shown in the next section, the reliability of BFM forecast will 
prove to be comparable to that of the other methodologies.  

One more comment can be made about the influence of the 
magnitude of the degradation. The RMSE values for KM and, 
above all, BFM considerably increase by passing from scenario 
#1 to #3, as this latter method reproduces trends characterized 
by high gradients with difficulty. Otherwise, the RMSE 
variation which can be observed by passing from scenario #1 to 
#3 for the other methodologies depends on the considered trend 
and, in any case, RMSE values usually remain very low. As a 
general conclusion, BFM and KM are better suited to modeling 
parameter trends which change slightly with time.  

Forecasting capability. The results of the analysis of the 
forecasting capability of the four considered methodologies 
after the time frame ∆t is reported in Figs. 6 and 7 in the case of 
linear trend for YT. It can be observed that the prediction error:  
• depends on the procedure used to forecast system behavior. 

However, the use of the linear interpolation of YT values is 
preferable in almost all cases, as shown in Fig. 6. In fact, 
according to Fig. 7. the line passing through the last two YT 
values provides lower Ep values in three cases only, i.e. in 
case of scenario #3 for SLRM, OPDES and BFM 
methodologies;  

• decreases by passing from a slowly degrading (scenario #1) 
to a fast degrading (scenario #3) machine, since in the latter 
case the forecast is made for a lower number of future time 
steps and, as a consequence, the influence of the 
methodology and extrapolation procedure reduces;  

• does not heavily depend on the selected methodology, as the 
order of magnitude of Ep is almost the same for all 
methodologies;  

• in contrast with the results obtained in the previous section 
to evaluate trending capability, BFM proves as reliable as 
the other methodologies. This can be explained by 
considering that the prediction smoothes the influence of 
trending errors at first time points. Moreover, it should be 
noted that the Ep values for BFM in Fig. 7 are the actual 
prediction errors of this methodology, as discussed while 
presenting methodology characteristics.  
The forecast capability of SLRM is evaluated in Fig. 8 for 

all the four YT trends. In this case, it can be concluded that the 
type of trend slightly affects the prediction error, if the 
interpolation line on the YT values is used. This is a remarkable 
result, since it confirms the reliability of this procedure, which 
is often adopted in practice.  

Finally, it can be observed that the prediction errors may be 
considered acceptable for scenarios #2 and #3 and in the case 
of YT linear trend (Figs. 6 and 7). In fact, Ep values are lower 
than 15 days over a time frame ∆t of 180 days. In contrast, for 

scenario #1, prediction errors can be very high, i.e. up to 58 
days. Instead, if different trends are considered, as in Fig. 8 for 
the SLRM, prediction errors can be considerably lower.  
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Figure 6 – Prediction errors by means of linear interpolation line of  

YT values for scenarios #1, #2 and #3 (YT linear trend) 
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Figure 7 – Prediction errors by means of the line passing through the 

last two YT values for scenarios #1, #2 and #3 (YT linear trend) 
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Figure 8 – Prediction errors by means of linear interpolation line of  

YT values obtained through SLRM for scenarios #1, #2 and #3  
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Influence of measurement uncertainty. In this section, 
reduced measurement uncertainty (i.e. σu

2 equal to 0.5 % 
instead of 1.0 %) is evaluated for scenarios #1 and #3. The 
results, reported in Figs. 9 and 10 for assessing trending and 
forecasting capability respectively, quantify the magnitude of 
the decrease in the errors, by direct comparison with the results 
presented in Figs. 5 and 6.  

As regards RMSE values in Fig. 9, it can be observed that, 
when measurement uncertainty is halved, the RMSE values for 
SLRM, SNLRM and OPDES are also halved, while the 
reduction of measurement uncertainty is less effective or even 
negligible in the case BFM or KM are used.  

As regards the prediction error in Fig. 10, the reduction of 
measurement uncertainty leads to an almost proportional 
reduction of Ep, with the exception of KM, which is less 
sensitive to σu

2 variation. Finally, Fig. 10 confirms that scenario 
#3 allows lower prediction errors, as previously discussed.  

BFM capability to forecast system behavior after two 
consecutive trends. The results presented so far deal with 
trending and forecasting one trend only. However, it is common 
in practice that two or more consecutive trends for the 
considered parameter Y are available.  
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Figure 9 – RMSE values for scenarios #1 and #3 (σu

2 = 0.5 %) 
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Figure 10 – Prediction errors by means of linear interpolation line of 
YT values for scenarios #1, #2 and #3 (YT linear trend; σu

2 = 0.5 %) 

This situation may be due to performance deterioration 
followed by a maintenance action which recovers machine 
performance. Due to their modeling approach, the Regression 
Method and One Parameter Double Exponential Smoothing are 
useless, since they would interpolate both trends and, as a 
consequence, the effect of performance recovery on Y would 
not be accounted by these methodologies. In contrast, the 
Bayesian Forecasting Method is well suited for prognostics, 
since it provides estimates for both the value of the observed 
process and its dynamics (gradient, curvature, etc.). In fact, it 
inherently allows forecasting, by means of the recursive 
estimation of parameter Y at the next time step, as reported in 
Eq. (3). Moreover, it was previously verified that BFM also 
proves a reliable methodology to forecast system behavior 
when only one trend is considered. 

The considered scenarios are summarized in Tab. 3. Two 
different variations of parameter Y are imposed (-1% or -3%) 
over the same time frame (180 days). Similar values of gradual 
deterioration for several consecutive trends were also 
considered by Puggina and Venturini in [18]. Moreover, it has 
to be noted that these values are consistent with the values for 
which BFM detection capability was tested in [15], i.e. a 
change height up to 5σu

2. In fact, in this paper, the considered 
step changes are equal to 1σu

2 or 3σu
2, for scenario #4 or #5 

respectively. Moreover, it has to be underlined that, for each 
scenario considered in this section, ten simulations are carried 
out (as reported in Tab. 4), to account for different data sets 
simulated through different combinations of random numbers. 
Finally, it has to be remarked that all trends YT are assumed to 
start from the unit reference condition, i.e. YT = 1, both at t = 1 
and at t = ∆t+1.  

Figures 11 and 12 sketch the situations corresponding to 
scenarios #4a and #5a, respectively, to simulate two different 
values of the step change. An exponential trend is imposed for 
the first 180 days, followed by a linear trend for additional 180 
days. BFM estimation of the trend is also reported, together 
with the two uncertainty limits.  

Figure 11 shows that the step change at t = (∆t+1) is 
reproduced by BFM with a noticeable delay, which may be 
responsible for the high RMSE values highlighted in the 
previous sections. This delay is due to the fact that the imposed 
step change is of the same order of magnitude as measurement 
uncertainty and therefore it can be recognized by BFM with 
difficulty.  

 
Table 3 – Scenarios for data trend forecasting  
(total time frame: 2∆t = 360 days; σu

2 = 1.0 %) 

Scenario ∆Y Ymin Trend 

#4 -1 % 0.98 
a) Exponential + Linear 

b) Exponential + Quadratic 

#5 -3 % 0.95 
a) Exponential + Linear 

b) Exponential + Quadratic 
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Figure 11 – Ymeth values and uncertainty limits obtained  

through BFM for scenario #4a  
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Figure 12 – Ymeth values and uncertainty limits obtained  

through BFM for scenario #5a  
 

Table 4 – Prediction errors after two consecutive trends  

Scenario #4a #4b #5a #5b 

(Ep)1 6 491 15 326 
(Ep)2 43 518 8 309 
(Ep)3 42 198 2 306 
(Ep)4 35 485 2 321 
(Ep)5 28 564 2 285 
(Ep)6 6 423 5 314 
(Ep)7 1 539 18 290 
(Ep)8 20 494 11 287 
(Ep)9 17 409 14 323 
(Ep)10 9 471 18 264 

(Ep)av 21 459 10 303 

 
However, in spite of this, the average prediction error on ten 

data sets is 21 days for scenario #4a, as reported in Tab. 4. This 
represents a very good estimation, since the total time frame for 
scenarios #4 and #5 is 360 days, as both trends are made up of 

180 days. This good result is also confirmed in scenario #5a 
(characterized by a faster degradation rate), where the average 
prediction error is 10 days. In fact, in the case of a more 
remarkable step change (i.e. 3 %), the BFM can track the 
change with a delay of a few days only, as clearly shown in 
Fig. 12. Otherwise, scenarios #4b and #5b, i.e. those ones of 
which the second trend is quadratic, are affected by very large 
prediction errors (i.e. larger than 300 days).  

Therefore, it can be stated that, in the case the second trend 
is linear, BFM actually has the capability to track the step 
change-over time of the considered parameter and improves the 
prediction reliability in the case of a scenario with a faster 
degradation rate. In contrast, if the second trend decreases with 
a quadratic law, the BFM prediction error can be very high.  

 
CONCLUSIONS 

In this paper, several scenarios for gas turbine parameter 
trends, representative of time evolution of gradual 
deteriorations, were investigated, in order to identify the most 
suitable methodology which allows both trending and 
forecasting. Four different methodologies were applied, i.e. 
Regression, One Parameter Double Exponential Smoothing, 
Baesyan Forecasting Method and Kalman Filter.  

As regards trending capability, Regression, One Parameter 
Double Exponential Smoothing and Kalman Filter allowed 
very low RMSE values (i.e. less than 0.4 %). Otherwise, the 
Baesyan Forecasting Method usually proved less reliable (i.e. 
errors up to 2.5 %). The analysis of the influence of the 
degradation scenario showed that the Baesyan Forecasting 
Method and the Kalman Filter are better suited to estimate 
parameter trends which change slightly with time.  

As regards forecasting capability, it was proved that the 
prediction error (i) depends on the procedure used to forecast 
system behavior, (ii) decreases by passing from a slowly 
degrading to a fast degrading machine and (iii) does not heavily 
depend on the selected methodology. However, in contrast with 
the results obtained from the analyses on trending capability, 
the Baesyan Forecasting Method proved as reliable as the other 
methodologies.  

The reduction of measurement uncertainty leads to an 
almost proportional reduction of errors both for trending and 
forecasting, with the exception of the Kalman Filter and the 
Baesyan Forecasting Method, which are less sensitive to this 
reduction.  

Finally, the Baesyan Forecasting Method was also applied 
for predicting system behavior after two consecutive trends. It 
was observed that, when the second trend is linear, this 
methodology actually has the capability to track a step change 
over time of the considered parameter and improves the 
prediction reliability in the case of a scenario with a faster 
degradation rate. In contrast, if the second trend decreases with 
a quadratic law, the prediction error can be very high.  

Future developments will deal with the assessment of the 
capability of the Baesyan Forecasting Method as a diagnostic 
tool for fault detection, both in the case that some data are not 
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available during the considered time frame and in the case that 
this method is applied to an on-line monitoring system, in 
which the measurements are continuously recorded.  
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