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ABSTRACT 
    Multi-objective optimizations were conducted for a 
compressor station comprising two dissimilar compressor 
units driven by two dissimilar gas turbines, two coolers of 
different size, and two parallel pipeline sections to the next 
station.  Genetic algorithms were used in this optimization 
along with models describing the performance characteristics 
of gas turbines, compressors, aerial coolers, and downstream 
pipeline section.   Essential in these models is the heat 
transfer between the gas and soil as it affects the pressure 
drop along the pipeline, and hence relates back to the coolers 
and compressor flow/pressure settings.  Further investigative 
techniques were developed to also minimize NOx and CO2e 
emissions along with total energy consumption, i.e. fuel 
(used in the driver gas turbines) and electrical energy (used in 
the electrical fans of the aerial coolers).   
 
    Two optimization scenarios were conducted: 1) Two-
objective optimization of total energy consumption and NOx 
emission, and 2) Two-objective optimization of total energy 
consumption and CO2e emission.   The results showed that 
savings in the energy consumption in the order of 5–6% is 
achievable with slight adjustment to unit load sharing and 
coolers by-pass/fan speed selections.  It appears that most of 

the savings (around 70–75%) are derived from optimizing the 
load sharing between the two parallel compressors, while the 
balance of the savings is realized from optimizing the aerial 
coolers settings.  In order to optimize operation for minimum 
NOx emission as well, a shift towards employing more of the 
aerial coolers is required.  Preliminary cost analysis was 
conducted for valuation of balancing between energy 
consumption vs. emission loading in terms of both NOx and 
CO2e. 
 
 
NOMENCLATURE 
CP = specific heat capacity at constant pressure 
D = pipe diameter 
e = total energy consumption  
f = friction factor 
H = adiabatic head across a compressor unit 
m&  = mass flow rate 
N = compressor speed 
P  = pressure 
Q = actual inlet flow rate to a compressor unit 
T =  temperature 
U = overall heat transfer coefficient 
W = compressor power 
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Greek Letters: 
α = constant  
ηis = compressor isentropic efficiency 
ηm = compressor shaft mechanical efficiency 
ηth = turbine thermal efficiency (inverse of heat rate) 
ϕ = pipeline hydraulic function 
ρ = fluid density 

Subscripts: 
1-4 = locations in the system (see Fig. 1) 
amb,∞ = ambient condition 
i = inside of pipe 
j,k = compressor or cooler identifier 
min = minimum 
max = maximum 
o = outside of pipe 
soil = soil condition 
 
 
INTRODUCTION 
 The TransCanada system may be described as a collection 
of measurement, pipeline, compressor station, and valve 
facilities of every size, type, vintage, design, and 
configuration imaginable.  This is not much different than 
many large pipeline systems worldwide which are always 
faced with the significant challenge associated with 
optimization.  However, the Alberta system is somewhat 
unique in terms of throughput (285–343 106 m3/day) and 
linepack (370–430 106 m3), which cannot be influenced by 
TransCanada, but rather by the extreme climatic conditions (-
40 to 40°C), soil conditions (some frozen areas) and a 
diversity of maximum allowable operating pressure (MAOP) 
that varies between 2750 to 9930 kPa-g. 

 In previous work by TransCanada, Genetic Algorithm 
(GA)-based optimization methodology was used to perform 
automated optimizations specifically to its Alberta System.  
The outcome of this effort was successfully implemented and 
was reported in the open literature [1-5]. 

 In the aforementioned development, high level 
performance characteristics were used to model the major 
components in the compressor stations, namely the 
compressor units, drivers and aerial coolers.  These models 
employed ‘unit-operation’ type models without accounting 
for details of load sharing, variation in the turbine heat rates 
with loads, aerial cooler by-pass and fan speed control, etc.  
This was found to be not only appropriate but proved to be 
sufficient when a system network comprising 22 compressor 
stations and 54 decision variables, hence an optimization 
space of 1.85x1078 cases was analyzed [1].   

 Since this work, an opportunity was recognized for 
further optimization to achieve more savings in energy 
consumption.  In multi-unit compressor stations comprising 

dissimilar compressor units, dissimilar gas turbine drivers, 
multi-coolers with possibility of controlled cooler by-pass 
and fan speed setting, it is realized that optimization of this 
station configuration could trigger more saving in energy use.   
The system to be optimized in this case would start from the 
gas turbine drivers, booster compressors, coolers, and 
downstream pipeline section to the next compressor station.  
Such a system would be considered a subsystem of a larger 
network which was analyzed in the previous work [1-4].  
Once this subsystem is optimized, it can be used as sub-
module in a larger optimization of a multi-station network.  
We called the optimization of such a sub-system: 
“optimization of power train”, comprising all of the elements 
listed above.  

 This paper presents the methodology adopted for such 
optimization which is still based on GA with the familiar 
constraints of booster compressor operating boundaries, gas 
turbine performance limits, and climatic conditions.  An 
example of two dissimilar units from a compressor station on 
the TransCanada system driven by dissimilar gas turbines 
(LM1600 and LM 2500) as well as two different size coolers 
was considered to demonstrate the optimization approach.  
Results include two-objective optimization to minimize 
energy consumption (or cost) and NOx emission for a given 
throughput.  Alternate two-objective optimization involves 
minimization of carbon dioxide equivalent (CO2e) and NOx 
emission, also for a given throughput.   Preliminary cost 
analysis was conducted for valuation of balancing between 
energy consumption vs. emission loading in terms of both 
NOx and CO2e. 

 
OPTIMIZATION METHODOLOGY  
 Typically, there are three fundamental objective functions 
pertaining to a gas pipeline network operation. These are 
total energy consumption (or cost), throughput and linepack.  
The present paper deals with all three objectives in addition 
to optimization of single- vs. multi-compressor unit 
operations.  For example, optimization of the energy 
consumption can be formulated as follows: 
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and other linear and non-linear constraints, where: 
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Maximum throughput (delivery or receipt), can be 
represented by: 
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 In the case of minimizing energy consumption for gas 
pipeline systems, often multiple unit compressor stations 
present significant challenges to the optimization tool.  This 
is because several feasible solutions might exist which satisfy 
both the minimum objective function and associated 
constraints.  Local minima might occur leading to a non-
convexity optimization problem [6,7].   Therefore, a detailed 
station optimization tool (like the one used in the present 
work) should be incorporated in the overall system 
optimization to arrive at the optimum solution of station 
operation for a given set of control parameters. 

 Gradient-based optimization methods have been used to 
analyze gas pipeline networks in the past [8-14].  Like the 
name implies, they rely on the derivative of the function 
being optimized with respect to all control variables that 
define the system. The derivative, or slope, of the function at 
a sampled point determines the direction in which the 
algorithm will progress in the operating space.  There are 
several gradient-based optimization methods depending on 
the nature of the objective function and associated 
constraints, i.e. constrained and unconstrained linear, 
quadratic and non-linear programming.  An extensive review 
of these methods and available software tools can be found in 
[15].   Applications of these methods to steady-state pipeline 
optimization were found to be unstable [8], particularly close 
to the operation boundaries, often trapped in local minimum 
and very dependent on the initial (starting) point.  These 
methods have also been extended to transient pipeline 
optimization [16-18], however only on relatively smaller 
systems.   Optimizations based on dynamic programming 
have been attempted, e.g. those based on Bellman’s 
Optimality Principle [19-21], again limited only to pipelines 
with series stations.  

 The other category of optimization methods is based on 
stochastic methods such as Recourse Methods, Simulated 
Annealing and Genetic Algorithm (GA).  However, GA has 
great advantages for large systems with many interlinked 
control variables and a large number of possible cases (hence 
large search space). As the algorithm evolves through 

generations (similar to iterations in a typical algorithm), the 
objective function trends towards an optimum value.  Due to 
the pseudo-random nature of the algorithm and its 
independence from objective function gradients, it does not 
become fixed in a local optimum point.   

 The first application of GA to pipeline optimization was 
introduced by Goldberg and Kuo [22,23] where they 
demonstrated its application on a liquid pipeline system. 
They demonstrated that GA’s are computationally more 
demanding than conventional optimization algorithms, but 
offer many advantages over conventional methods.  Current 
development involves hybrid optimizations, which combines 
the advantages of both categories of optimization methods 
[24]. 

 As mentioned earlier, multiple unit compressor stations 
could produce many local minima, but there is a fundamental 
requirement to find the global minimum regardless of the 
initial starting point.  Secondly, multi-objective requirements, 
robustness and stability of the optimization procedure while 
managing the computational times, suggested that GA would 
best suit optimization of the power train system under 
consideration in the present work.   

 
COMPRESSION POWER TRAIN SYSTEM 
 A two-unit compressor station on the TransCanada 
System is considered as an example of a complex power train 
system.  It comprises two dissimilar compressor units driven 
by two dissimilar gas turbines as shown in Table 1. The 
station includes two aerial coolers of different sizes (termed J 
and K), which are connected in parallel to both of the 
compressor units.  The downstream section of the pipeline to 
the next station (69.5 km downstream) is composed of two 
parallel lines of different sizes, one of which is looped.  
Figure 1 shows a schematic of the station and the 
downstream pipeline section which comprises the power train 
system considered as an example for the present optimization 
exercise. 

 
 

TABLE 1: TWO DISSIMILAR COMPRESSOR AND GAS 
TURBINE DRIVERS. 

 

 
 
 

Unit Compressor 
Unit Driver

J DeLaval B30/30 LM 1600

K PGT PCL-802/N LM2500 
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FIGURE 1: SCHEMATIC OF THE TWO-UNIT 
COMPRESSOR STATION AND DOWNSTREAM 
PIPELINE SECTION UNDER STUDY. 

 

 Table 2 gives salient specifications of these aerial coolers, 
and their dimensionless performance characteristics in terms 
of pressure drop and degree of cooling are given in Figures 2 
through 6.  The pressure drop is normalized to the density of 
the fluid and fitted to a polynomial function, while the degree 
of cooling is normalized with respect to the fluid 
temperatures depicted in Figure 2, and fitted to the following 
function: 
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TABLE 2: SPECIFICATIONS OF THE TWO AERIAL 
COOLERS.  

 

 
 
 
 

 
FIGURE 2: AERIAL COOLER TEMPERATURE 
NOMENCLATURE.  

 
 

Aerial Cooler J K
NO. OF PASSES 1 1
NO. OF BAYS 6 6
BARE SURFACE AREA/BAY (m2) 427.68 408.6
NO. OF FANS PER BAY 2 2
FAN DRIVE TYPE Two Speeds Two Speeds
MAX FAN SPEED (RPM) 201 245
MIN FAN FRACTION (RPM) 50% of max 50% of max
AIR FLOW/FAN at 100% speed (kg/s) 69 115.9
Tube Materials SA‐334‐6 SA‐334‐7
Fin Materials  Aluminum Aluminum
Tube Length (m) 14.63 12.19
Fan Power (DESIGN) (kW) ‐ for one fan 8.5 20.1
Fan Power (MOTOR) (kW) ‐ for one fan 14.9 29.8
NO. OF BUNDLES OF TUBES PER BAY 1 2
NO. OF TUBES PER BAY 293 420
TUBE O.D (mm) 31.75 25.4
TUBE WALL THICKNESS (mm) 1.65 1.65
TUBE I.D (mm) 28.45 22.1

Tin Tout

∞T
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FIGURE 3: NORMALIZED PRESSURE DROP THROUGH 
COOLER J 

 

 
 

FIGURE 4: DIMENSIONLESS PERFORMANCE 
CHARACTERISTICS OF COOLER J. 
 

 The downstream section of the pipeline to the next station 
(69.5 km downstream) is composed of two parallel lines of 
different sizes, one of which is looped as shown in Fig. 7.   
The compressor performance characteristics and associated 
driver’s heat rate map at ambient temperature = 10°C are 
shown in Figs. 8 and 9, respectively.  Notice that the range of 
the flow capacity of unit K is approximately twice that of unit 
J. 

 

 
FIGURE 5: NORMALIZED PRESSURE DROP THROUGH 
COOLER K. 

 

 
FIGURE 6: DIMENSIONLESS PERFORMANCE 
CHARACTERISTICS OF COOLER K. 
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FIGURE 7: SCHEMATIC AND DIMENSIONS OF THE 
TWO PARALLEL PIPELINE SECTIONS DOWNSTREAM 
OF THE COMPRESSOR STATION. 

 

 A custom-built computer program (Simulator) was used 
for hydraulic modeling of the power train and downstream 
pipeline section described above. The model simulates the 
steady-state gas flow from the suction to the J and K 
compressors to the downstream end of the pipeline section 
(i.e. to the next compressor station).  The model is non-
isothermal; it calculates the gas temperature variations across 
the aerial coolers and along the pipeline section and account 
for the heat exchange between the pipe and the ground.  The 
pressure drop and temperature profile along the various 
pipeline sections are obtained from solving:  
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 The temperature increase in a compressor is modeled as 
an irreversible adiabatic process. Upon mixing of streams of 
different temperatures at the discharge from both compressor 
units, downstream of the coolers and cooler by-passes, the 
mixed temperature is calculated using conservation of 
enthalpy.  The American Gas Association Report No. 8 
(AGA-8) equation of state [25] is used in determining the 
various physical and thermodynamic properties at each 
condition of the gas, given the prevailing gas mixture 
composition shown in Table 3. 

 

 

 

FIGURE 8: PERFORMANCE CHARACTERISTICS OF 
THE J COMPRESSOR AND ITS GAS TURBINE DRIVER 
AT 10°C AMBIENT TEMPERATURE. 
 

 In a single-objective optimization for a given throughput, 
case-specific input parameters are (see Fig. 1 for notation): 

P1, P4, T1, Tsoil, Tamb, total gas flow 

The values for these parameters are given in Table 4. 

10.5 km, 42″

9.2 km, 48″

50.3 km, 42″

36.6 km, 36” 22.4 km, 42″

10.5 km, 42″ 9.2 km, 42″

P3, T3

Pipe 36″ 42″ 48″ 
Heat transfer coefficient (W/m².C) 4.42 4.04 3.6

ID (mm) 891.8 1046 1195

Internal Surface Roughness (μm) 5.08 5.08 6.35

−10°C

+ 25°C

Ambient Temp
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FIGURE 9: PERFORMANCE CHARACTERISTICS OF 
THE K COMPRESSOR AND ITS GAS TURBINE DRIVER 
AT 10°C AMBIENT TEMPERATURE 

 
TABLE 3: GAS MIXTURE COMPOSITION. 

 

TABLE 4: INPUT PARAMETERS FOR THE POWER 
TRAIN SYSTEM OF FIG. 1. 

 

 The control variables are: 

• Compressor load sharing in terms of the mass flow 
split to each compressor unit. 

• Four possible aerial cooler fan speed settings for each 
of the J and K coolers, namely i) all fans are running at 
100%, ii) all fans are running at 50% speed, iii) half 
the number of fans are running at 100% speed, and iv) 
all fans are turned off. 

• Aerial cooler fraction of the gas bypassing the 
respective cooler. 

 Table 5 gives the selected resolution for each of the above 
control variables, the range, and the corresponding required 
number of GA strings.  It is shown that for the two-objective 
exercise, the total number of GA strings is 39 and the 
resulting search space is 5.5 x 1011.  This large search space 
makes any unorganized search of all configurations for the 
best case impossible. 

TABLE 5: CONTROL VARIABLES IN CASE OF MULTI-
OBJECTIVE OPTIMIZATIONS. 

 

NOX EMISSION MODEL 
 Predictive Emission Monitoring (PEM) models have been 
developed for non-DLE GE LM2500 and GE LM1600 gas 
turbines used on a natural gas compressor station on the 
TransCanada Pipeline System in Alberta. The PEM models 
are based on an optimized Neural Network (NN) architecture 
which takes four fundamental engine parameters as input 

−10°C

+25°C

Ambient Temp

Mole %
C1 95.68766
C2 2.645223
C3 0.164775
i-C4 0.010543
n-C4 0.011128
i-C5 0.003811
n-C5 0.002448
C6 0.003521
C7 0.000498
C8+ 0.000124
N2 0.945524
CO2 0.496869
HE 0.027879

100.000

Input Parameters

Suction Pressure (P1) 4250 kPa-a

Suction Pressure at Next Ststion (P4) 4250–5000 kPa-a

Suction Temperature (T1) 10 °C

Soil Temeprature  10 °C

Ambient Temeprature  10 °C

Gas Flow 400–650 kg/s

Control Variable Min Max Resolution # of Cases # of String 

Gas Flow (kg/s) 400 650 0.1 2501 12

Compressor  Flow Split 
(fraction to J Compressor) 0.15 0.55 0.001 401 9

J cooler cases 0 4 1 4 2

K cooler cases 0 4 1 4 2

J Cooler bypass fraction 0 1 0.01 101 7

K Cooler bypass fraction 0 1 0.01 101 7

Total String Length 39

Search Space 5.50E+11
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variables [26-28].  These models predict NOx emission in 
ppmv-dry-O2 corrected and in kg/hr as NO2.   The NN was 
trained using Continuous Emission Monitoring (CEM) 
measurements comprising sets of actual emission data 
collected over different seasons to capture the effects of 
ambient temperature variation.  These training data were 
supplemented by other emission data generated by GE 
‘Cycle-Deck’ tools to generate emission data at different 
ambient temperatures ranging from -30 to +30oC in the case 
of the LM2500, or Computational Fluid Dynamic simulation-
generated data for the case of LM1600.  The PEM models 
comprise a simple single hidden layer perceptron type NN 
with only two neurons in it, as shown in Fig. 9.  The 
performance of the NN based model showed a correlation 
coefficient greater than 0.99, and error standard deviation of 
1.1-1.4 kg/hr as NO2 [28].   Sensitivity analysis was 
conducted to assess the effects of uncertainties in the engine 
parameters on the NOx predictions by PEM.   It was shown 
that for uncertainty in the ambient temperature of +1oC, the 
uncertainty in the NOx prediction is +0.9% to +3.5%.   
Uncertainties of the order of +1% in the other three input 
parameters results in uncertainties in NOx predictions by 
+2.5 to +6% [28].    Figures 10 and 11 show comparison 
between prediced vs. measured NOx emissions from a non-
DLE GE LM2500 and LM1600 gas turbine, respectively. 

 

FIGURE 9: PEM NEURAL NETWORK BASED MODEL 
ARCHITECTURE. 

 

 

FIGURE 10: PEM MODEL PREDICTION VS. 
MEASURED NOX FOR A NON-DLE GE LM2500 GAS 
TURBINE.  

 

 
FIGURE 11: PEM MODEL PREDICTION VS. 
MEASURED NOX FOR A NON-DLE GE LM1600 GAS 
TURBINE.  

 

 
GENETIC ALGORITHM PARAMETERS 
 Previous effort was devoted to determine the optimum set 
of GA operators.  Combinatorial variations of these operators 
were examined and the resulting two-objective Pareto front 
characteristics were evaluated in terms of convergence to a 
stable non-dominated solution and diversity of the optimum 
cases along the converged Pareto front.  The optimum set of 
the GA operators thus arrived at are given below: 

• Elitism: 5% 
• Copying: 5% 
• Mutation: 10% 
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• Directional crossover: 50% 
• Classical crossover: 30% 

 Effort has also been devoted to the optimum number of 
populations and generations to achieve convergence with 
minimum computational effort and without compromising 
the accuracy of the results.   Experimenting with different 
scenarios resulted in a population size of 400 and 1000 for 
the single- and multi-objective runs, respectively.   
Convergence was obtained after 30 and 40 generations, 
respectively. 

    
RESULTS OF TWO-OBJECTIVE 
OPTIMIZATIONS  
 Two-objective optimization simulations were conducted 
at two different fixed throughput of 511.7 kg/s (~2.1 
BSCFD), and 600 kg/s (~2.46 BSCFD).  The results for the 
511.7 kg/s case are shown in Fig. 12, where the total energy 
consumption is shown on the x-axis and the NOx emission is 
on the y-axis.  The Pareto points are also identified.  The 
different colors correspond to different aerial coolers’ 
scenario as indicated, which show that in order to achieve the 
absolute minimum NOx emission, a shift to more utilization 
of the aerial coolers with electric energy is required.  This 
does not mean that a minimum total energy consumption is 
achieved.  Clearly, there is a trade-off between the two as 
shown in Fig. 12.  The resulting CO2e from this simulation is 
shown in Fig. 13.   The CO2e is determined from the fuel 
flow consumption multiplied by an emission factor (EF) 
according to the following: 

 EF = 2.03 tonnes of CO2e per E3M3 of gas fuel      (8) 

 The above EF is based on combination of i) history 
of station; ii) AP42, iii) Stoichiometric combustion and iv) 
Global Warming Potential GWP (which is 21 × CH4 + 310 × 
N2O + 1 × CO2).   Therefore, the CO2e emission tracks the 
fuel consumption via EF.  Emissions associated with 
electrical production and the costs allocated to the resultant 
emissions were not included in the cost optimization of this 
study. 

 Figure 14 shows, again, the Pareto points on a smaller 
scale graph to identify six operating points that bracket the 
three different aerial cooler scenarios. The corresponding fuel 
and electric energy consumptions, as well as NOx and CO2e 
emissions are given in Table 6.  These are also plotted as 
normalized parameters w.r.t. the minimum total energy 
consumption case (operating point #1) in Fig. 15.  This 
Figure illustrates clearly that in order to realize minimum 
NOx and CO2e emissions, a trade-off has to occur between 
the electric energy consumed in the aerial cooler and the fuel 

energy used in the gas turbine, such that more utilization of 
the aerial cooler is required.   However, it appears that the 
gain in lower NOx and CO2e emission is not that significant 
(about 1.2% reduction in NOx and 0.5% reduction in CO2e).   
Hence, optimizing for minimum total energy would be 
adequate, unless charges for NOx and CO2e emission are 
high. 

 

FIGURE 12: RESULTS OF TWO-OBJECTIVE 
OPTIMIZATION OF MINIMUM TOTAL ENERGY 
CONSUMPTION AND MINIMUM NOX EMISSION 
(THROUGHPUT = 511.7 kg/s). 

 
 

 

FIGURE 13: OPTIMIZED NOX EMISSION AND 
CORRESPONDING CO2E EMISSION FROM THE 
OPTIMIZATION DATA OF FIG. 12 (THROUGHPUT = 
511.7 kg/s).  
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FIGURE 14: IDENTIFICATION OF SIX OPERATING 
POINTS ON THE PARETO FRONT FROM THE TWO-
OBJECTIVE OPTIMIZATION OF MINIMUM TOTAL 
ENERGY CONSUMPTION AND MINIMUM NOX 
EMISSION (THROUGHPUT = 511.7 kg/s). 
 
 
 
TABLE 6 – ENERGY CONSUMPTION AND EMISSIONS 
OF THE IDENTIFIED SIX OPERATING POINTS ON THE 
PARETO FRONT FROM THE TWO-OBJECTIVE 
OPTIMIZATION OF MINIMUM TOTAL ENERGY 
CONSUMPTION AND MINIMUM NOX EMISSION 
(THROUGHPUT = 511.7 kg/s) 

 

 

 

FIGURE 15: NORMALIZED ENERGY AND EMISSION 
PARAMETERS (WITH RESPECT TO THE MINIMUM 
TOTAL ENERGY CONSUMPTION CASE) OF THE SIX 
OPERATING POINTS ON THE PARETO FRONT FROM 
THE TWO-OBJECTIVE OPTIMIZATION OF FIG. 14 
(THROUGHPUT = 511.7 kg/s). 

 

In order to investigate the effects of emission charges on the 
optimization protocol, three different charges for CO2e and 
NOx emissions were applied (for argument sake).  Figures 
16, 17 and 18 show the normalized fuel and emission charges 
for the six optimum operating points on the Pareto front.  The 
hypothetical emission charges are identified in each 
respective Figure.   It is shown that the total charges (cost of 
energy + emission charges) are not lower than that of 
operating point #1, unless the emission charges are escalated, 
e.g. $150/tonne of CO2e and $16,000/tonne of NOx. 
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FIGURE 16: NORMALIZED ENERGY AND EMISSION 
CHARGES (WITH RESPECT TO THE MINIMUM TOTAL 
ENERGY CONSUMPTION CASE) OF THE SIX 
OPERATING POINTS ON THE PARETO FRONT ON FIG. 
14 (EMISSION CHARGE SCHEME 1). 

 

 

FIGURE 17:  NORMALIZED ENERGY AND EMISSION 
CHARGES (WITH RESPECT TO THE MINIMUM TOTAL 
ENERGY CONSUMPTION CASE) OF THE SIX 
OPERATING POINTS ON THE PARETO FRONT ON FIG. 
14 (EMISSION CHARGE SCHEME 2).  

 

 

FIGURE 18: NORMALIZED ENERGY AND EMISSION 
CHARGES (WITH RESPECT TO THE MINIMUM TOTAL 
ENERGY CONSUMPTION CASE) OF THE SIX 
OPERATING POINTS ON THE PARETO FRONT ON FIG. 
14 (EMISSION CHARGE SCHEME 3). 

 

Similar results are shown for the higher throughput case of 
600 kg/s.   The corresponding results are shown in indicative 
Figures 19 through 25 and Table 7.  For this throughput, the 
normalized fuel and emission charges for the six optimum 
operating points on the Pareto front show slightly lower total 
charges than that of point 1 as the emission charges are 
increased. 

 

 
FIGURE 19: RESULTS OF TWO-OBJECTIVE 
OPTIMIZATION OF MINIMUM TOTAL ENERGY 
CONSUMPTION AND MINIMUM NOX EMISSION 
(THROUGHPUT = 600 kg/s). 
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FIGURE 20: OPTIMIZED NOX EMISSION AND 
CORRESPONDING CO2E EMISSION FROM THE 
OPTIMIZATION DATA OF FIG. 8 (THROUGHPUT = 600 
kg/s).  
 

 

 
FIGURE 21: IDENTIFICATION OF SIX OPERATING 
POINTS ON THE PARETO FRONT FROM THE TWO-
OBJECTIVE OPTIMIZATION OF MINIMUM TOTAL 
ENERGY CONSUMPTION AND MINIMUM NOX 
EMISSION (THROUGHPUT = 600 kg/s). 

 

TABLE 7: ENERGY CONSUMPTION AND EMISSIONS 
OF THE IDENTIFIED SIX OPERATING POINTS ON THE 
PARETO FRONT ON FIG. 21 

 

 

 

 

FIGURE 22: NORMALIZED ENERGY AND EMISSION 
PARAMETERS (WITH RESPECT TO THE MINIMUM 
TOTAL ENERGY CONSUMPTION CASE) OF THE SIX 
OPERATING POINTS ON THE PARETO FRONT ON FIG. 
21. 
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FIGURE 23: NORMALIZED ENERGY AND EMISSION 
CHARGES (WITH RESPECT TO THE MINIMUM TOTAL 
ENERGY CONSUMPTION CASE) OF THE SIX 
OPERATING POINTS ON THE PARETO FRONT FROM 
ON FIG. 21 (EMISSION CHARGE SCHEME 1). 

 

 

 

FIGURE 24: NORMALIZED ENERGY AND EMISSION 
CHARGES (WITH RESPECT TO THE MINIMUM TOTAL 
ENERGY CONSUMPTION CASE) OF THE SIX 
OPERATING POINTS ON THE PARETO FRONT ON FIG. 
21 (EMISSION CHARGE SCHEME 2). 

 

 

FIGURE 25: NORMALIZED ENERGY AND EMISSION 
CHARGES (WITH RESPECT TO THE MINIMUM TOTAL 
ENERGY CONSUMPTION CASE) OF THE SIX 
OPERATING POINTS ON THE PARETO FRONT ON FIG. 
21 (EMISSION CHARGE SCHEME 3). 
 
 
CONCLUSIONS 
 The following conclusions can be drawn from the present 
investigation: 

1. Savings in the energy consumption is achievable with 
slight adjustment to unit load sharing and coolers by-
pass/fan speed selections.  It appears that most of the 
savings (around 70–75%) are derived from optimizing 
the load sharing between the two parallel compressors, 
while the balance of the savings is realized from 
optimizing the aerial coolers settings.   

2. In order to minimize either NOx or CO2e directly 
attributed to the pipeline system, a shift towards 
maximum electric usage is required, i.e. maximum 
utilization of aerial coolers.  This is not necessarily the 
best or optimum scenario from total energy 
consumption. 

3. If emission charges are up to $60/tonne CO2e and 
$8,000 /tonne NOx, there is no benefit in optimizing for 
either CO2e or NOx.   Minimum total energy 
consumption corresponds to minimum overall cost 
(energy and emission).  This of course depends on fuel 
and electric energy costs. 

4. If emission charges are up to $150/tonne CO2e and 
$16,000 /tonne NOx, there could be benefits in 
optimizing for both. Minimum total energy 
consumption is not necessarily the minimum cost 
scenario in this case.   
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