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ABSTRACT 
Single crystal nickel-based turbine blades are 

directionally solidified during the casting process with the 

crystallographic direction [001] aligned with the blade stacking 

axis. This alignment is usually controlled within 10°, known as 

the Primary angle. The rotation of the single crystal about the 

[001] axis is generally not controlled and this is known as the 

Secondary angle. The variation in Primary and Secondary 

angles relative to the blade geometry means that the stress 

response from blade to blade will be different, even for the 

same loading conditions. This paper investigates the influence 

of single crystal orientation on the elastic stresses of a CMSX-4 

turbine blade root attachment using finite element analysis. The 

results demonstrate an appreciable variation in elastic stress 

when analysed over the controlled Primary angle, and are 

further compounded by the uncontrolled Secondary angle. The 

maximum stress range will have a direct impact on the fatigue 

resistance of the turbine blade. By optimizing the Secondary 

angle variation the elastic stresses can be reduced, giving the 

potential to enhance the fatigue resistance of the turbine blade. 

 

 

INTRODUCTION 
Single crystal nickel-based materials, such as CMSX-4 

are commonly used for turbine blade applications due to their 

superior creep and fatigue properties at high temperature. The 

crystal structure of these materials is face-centered cubic (FCC), 

and due to their cubic symmetry have the same elastic constants 

in the principal crystallographic directions [100], [010] and 

[001]. However, in other crystallographic directions, for 

example [111], the elastic constants will change. As the elastic 

constants are sensitive to direction, variation in single crystal 

orientation relative to the blade geometry will directly affect the 

turbine blade elastic stresses and hence durability. If any one of 

the principal crystallographic directions is aligned in the 

direction of maximum radial stress caused by the centrifugal 

loading, then this will offer the best performance with respect to 

creep and fatigue.  

During the casting process the turbine blade is directionally 

solidified so that the crystallographic direction [001] aligns with 

the blade stacking axis. Due to casting variability, a perfect 

alignment of the [001] axis or Primary axis is not practical. The 

Primary axis is usually controlled within an imaginary cone 

spanning up to 10° of the stacking axis, known as the Primary 

angle, α. The rotation of the single crystal about the Primary 

axis is known as the Secondary angle, β, which is generally not 

controlled, see Figure 1.  
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Figure 1. A turbine blade showing the Primary axis located 

within the limits defined by an imaginary cone. 
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COORDINATE TRANSFORMATION OF STRESS AND 

STRAIN 
The state of stress at a point is defined by a stress 

tensor, consisting of 9 stress components of which 6 are 

independent (i.e. 3 normal stresses and 3 shear stresses). The 

stress tensor components are usually defined in a Cartesian 

coordinate system and expressed in a 3 x 3 matrix [1]. 
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Stress is a 2
nd

 rank tensor (i.e. it requires magnitude and two 

directions). Using coordinate transformation laws, a stress 

tensor at a point can be expressed in a different Cartesian 

coordinate system [2]. For example, a stress tensor can be 

expressed in the turbine blade coordinate system (X, Y, Z) or in 

the material (single crystal) coordinate system (X
m
, Y

m
, Z

m
) and 

vice versa. Using a 3 x 3 matrix, the transformation is given by,  

 

      TAA       (2) 

 

where     is the stress tensor in the rotated coordinate system 

indicated by the prime, and  A  is called the transformation (or 

rotation) matrix, and contains the direction cosines between the 

two coordinate systems. 
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It is often more convenient to define the elements of the 

transformation matrix using Eulerian angles. This method can 

involve up to 3 successive rotations about an orthogonal axis in 

order to define the required orientation, as illustrated in Figure 

2. The first rotation is by angle about the Z axis. 

 

 

 

 

 
 

  
 

 
Figure 2. Eulerian angles involving three rotations.  

 

The second rotation is by angle  about the X’ axis. The third 

rotation is by angle  about the Z’’ axis. With regard to single 

crystal orientation, the first and second rotations define the 

Primary axis (with the second rotation known as the Primary 

angle). The third rotation defines the Secondary angle about the 

Primary axis. The transformation matrix for each rotation is 

given below and can be multiplied together to form the 

elements of the transformation matrix  A . Eulerian angles will 

be used throughout this paper to define crystal orientation. 
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      zxz AAAA     (7) 

    

Strain is also a 2
nd

 rank tensor and can be expressed in a 

different Cartesian coordinate system using the same methods 

as described above for stress. The off diagonal strain tensor 

terms are known as the shear strains and equal to one-half of the 

engineering shear strain. 
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Transformation law for strain;  

 

      TAA       (9) 

 

Up to this point coordinate transformation of stress and strain 

tensors have been described using 3 x 3 matrices. The same 

transformation can be achieved when the stress and strain 

tensors are expressed as 6 x 1 column vectors [2]. This 

approach is required for the stress-strain relationship as will be 

shown in the following section. In column vector form, the 

stress tensor can be transformed using, 

 

       A  (10) 

 

where  A  is a 6 x 6 transformation matrix. The first column 

vector of  A  is defined by using (2) and setting 11 = 1 in the 

stress tensor (all other stress components are set to zero). The 

resulting 3 x 3 matrix is then unfolded giving the first column 

vector. This process is repeated for all stress components using 

the same sequence as defined by the stress column vector. In the 

case of shear stresses, 1 jiij   is set for the stress 

tensor. Completing this process  A  is defined as, 
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Similarly, the strain tensor in column vector form can be 

transformed using, 

 

       A  (12) 

    

It is often required to express the shear strain tensor as 

engineering shear strain. This can be achieved using, 

 

       Reng   (13) 

 

where  eng  signifies engineering shear strain, and  R  is 

called the Reuter matrix [3] defined as, 
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ELASTIC STRESS-STRAIN RESPONSE OF CUBIC 

MATERIALS 
If a material deforms linear-elastically it can be 

represented by Hooke’s law. This means that the 6 stress 

components are linearly related to the 6 strain components. In 

matrix form Hooke’s law may be generalised as, 

 

       Seng   (15) 

 

     engC     (16) 

 

where  S  is the compliance matrix and  C  is the stiffness 

matrix. Both these quantities represent 4
th

 rank tensors, but can 

be reduced to 6 x 6 matrices due to symmetry in stress and 

strain. The stress tensor and engineering strain are expressed 

as column vectors. The compliance matrix for a cubic material 

in the principal crystallographic directions [100], [010] and 

[001] is defined below. For this condition the elements of the 

compliance matrix are related by S11 = S22 = S33, S12 = S13 = S23 

and S44 = S55 = S66. A cubic material has 3 elastic constants: 

Young’s modulus E, the modulus of rigidity G, and Poisson’s 

ratio . For isotropic materials it is customary to define G in 

terms of E and . This is not valid for cubic materials as the 3 

elastic constants are independent.  
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In other crystallographic directions (or loading directions), the 

elastic constants will change [3]. The extreme values of E in a 

cubic material occur in the [100] and [111] directions and 

when expressed as a ratio E[111]/E[100] this provides a measure 

of anisotropy. For nickel the ratio is ~2.3 and can be calculated 

from the elastic compliances [4] as defined below.  
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When the loading is not in the principal crystallographic 

directions the compliance matrix needs to be evaluated. As an 

example, consider a plain specimen under load-controlled 

conditions. The applied load and hence stress tensor will be 

known in the specimen axial direction. Using either (2) or (10) 

with knowledge of the single crystal orientation relative to the 

specimen, the stress tensor can be calculated in the principal 

crystallographic directions. Also, the corresponding 

engineering strain can be calculated using (15). To calculate 

the engineering strain in the specimen axial direction, a new 

compliance matrix must be formed to reflect the changes in 

elastic constants. Note that the transformation matrix  A  used 

to find the stress tensor in the principal crystallographic 

directions and the engineering strain in the specimen axial 

direction will be different due to the sense of the angles. 

 

The engineering strain in the specimen axial direction  eng   

can be calculated by deriving (15) for a rotated coordinate 

system. 
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        Seng  (19) 

 

where          11 
 ASRARS      is the compliance 

matrix in the rotated coordinate system. 

 

Let’s assume a nickel single crystal specimen at room 

temperature is loaded in tension with a stress of 300 MPa in 

the axial direction as shown in Figure 3. Nickel is a cubic 

material and the elastic compliances in the principal 

crystallographic directions [100], [010] and [001] are typically, 

S11 = 0.769 x 10
-5

 /MPa, S12 = -0.292 x 10
-5

 /MPa and S44 = 

0.836 x 10
-5

 /MPa [5]. In these principal directions the elastic 

constants are the same and can be calculated by equating the 

elastic compliances to the elements in (17) giving, E = 130039 

MPa, G = 119617 MPa, and  = 0.38.  

 

Using the definitions given above the Eulerian angles for the 

single crystal orientation are given by  = 0°,  = 10° and  = 

0° (this is equivalent to a Primary angle of 10° and a 

Secondary angle of 0°). 

 

The angles defining the single crystal orientation are used with 

matrices (4-6) and combined using (7) to form the 3 x 3 

transformation matrix  A  giving,  
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The elements of this matrix are then substituted into (11) to 

form the 6 x 6 transformation matrix  A . 

 

 
 

Figure 3. Test specimen showing the alignment of the single 

crystal Primary axis. 

 

Using (10) the stress tensor in the principal crystallographic 

directions is, 
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and substituting the elastic constants into (17) and using (15), 

the engineering strain is, 
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To calculate the engineering strain in the specimen axial 

direction, a new transformation matrix is required as the angle 

from the Primary axis to the specimen axial direction is in the 

opposite sense. Using the Eulerian angles  = 0°,  = -10° and 

 = 0°, the new 6 x 6 transformation matrix  A  is formed as 

previously described. The engineering strain in the specimen 

axial direction can be calculated using (19) where  S   is the 

new compliance matrix in the rotated coordinate system. The 

engineering strain is,  
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TURBINE BLADE FINITE ELEMENT ANALYSIS 
The influence of single crystal orientation on the 

elastic stresses of a CMSX-4 turbine blade root attachment 

using finite element analysis has been investigated. The 

approach taken and the results are summarised below. 
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A finite element model of the turbine blade and disc sector was 

created using PATRAN and solved using ABAQUS Standard. 

The finite element model is shown in Figure 4. The majority of 

the model was auto-meshed using quadratic tetrahedral 

elements. The blade and disc root pressure flanks were meshed 

separately and locally refined using linear hexahedral 

elements. The elements’ density in these regions was increased 

significantly to capture the high stress gradients adjacent to the 

edge of contact and in the fillets. The tetrahedral and 

hexahedral dissimilar meshes were joined together using tied 

contact. At the blade and disc root interface, small sliding 

surface-to-surface contact was defined with friction. 

 
 

Figure 4. Finite element model of the turbine blade and disc 

sector. 

 

Boundary conditions were added to the disc sector cut-

boundary faces to represent cyclic symmetry. Rigid body 

motion of the disc is prevented by tangential and axial 

restraints applied to the upstream disc face, located at the hirth 

teeth. The blade was also constrained to the disc in the root 

axial direction to avoid rigid body motion. The finite element 

model was simulated under representative engine speed and 

temperature conditions. 

 

The disc material is IN718, and modelled with isotropic 

behaviour. The single crystal turbine blade material is CMSX-

4, and modelled with orthotropic behaviour. In ABAQUS, the 

orientation of the orthotropic material relative to the turbine 

blade is specified using the orientation keyword. 

  

In order to quantify the effect of crystal orientation on the 

elastic stresses at the blade root, the simulation was repeated 

81 times with different crystal orientations, see Table 1. The 

Eulerian angles are measured relative to the turbine blade 

coordinate system. The Secondary angle reference location  

= 0° is defined when the crystallographic direction [100] is in 

alignment with the X-axis of the turbine blade coordinate 

system. 

 

Table 1. Simulated crystal orientations. 

 

Primary 

Axis 

Location 

Angle 

 

Angle 

 
Angle  

 

0 0 0 
0, 10, 20, 30, 40, 50, 

60, 70, 80 

1 0 5 0 

2 45 5 0 

3 90 5 0 

4 135 5 0 

5 180 5 0 

6 225 5 0 

7 270 5 0 

8 315 5 0 

9 0 10 
0, 10, 20, 30, 40, 50, 

60, 70, 80 

10 22.5 10 0 

11 45 10 0, 15, 30, 45, 60, 75 

12 67.5 10 0 

13 90 10 
0, 10, 20, 30, 40, 50, 

60, 70, 80 

14 135 10 0, 15, 30, 45, 60, 75 

15 180 10 
0, 10, 20, 30, 40, 50, 

60, 70, 80 

16 202.5 10 0 

17 225 10 0, 15, 30, 45, 60, 75 

18 247.5 10 0 

19 270 10 
0, 10, 20, 30, 40, 50, 

60, 70, 80 

20 315 10 0, 15, 30, 45, 60, 75 

 

 

RESULTS AND DISCUSSION 
The results of the above simulations were studied to 

investigate the influence of Primary and Secondary angle 

variation on the elastic stresses at the blade root attachment. 

The normalized Maximum Principal Stress distribution is 

shown in Figure 5 for a Primary and Secondary angle of 0° 
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(i.e. Location 0). The Primary axis locations are illustrated in 

Figure 6.  At full load, the peak tensile stresses occur near to 

the edge of contact. The results being presented for discussion 

occur at the lower lobe suction side towards the trailing edge.  

 

 
 

Figure 5. Normalized Maximum Principal Stress distribution 

of the blade root suction side. 
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Figure 6. Plan view of the turbine blade illustrating the 

Primary axis locations at two Primary angles 5 and 10. 
 

 

The results in Figure 7 show how the Primary axis location 

defined by angles  and  affects the normalized von Mises 

stress magnitude when Secondary angle  = 0°. For a given 

Primary angle, changing the Primary axis location causes the 

stress to fluctuate in a cyclic manner. For example, a Primary 

angle of ° has a 9.7% increase in stress compared to a 

perfectly aligned single crystal when the Primary axis is 

located by  = 45°. However, rotating the Primary axis to  = 

202.5°, results in a stress reduction of 19%. The data points in 

Figure 7 are numbered in brackets and refer to the actual 

Primary axis location as illustrated in Figure 6. What is evident 

from the results is that when the Primary axis is leaning 

towards the stress being monitored (i.e. Lower lobe suction 

side towards trailing edge) the stress increases, whereas, when 

the Primary axis leans away from the stress being monitored 

the stress reduces. For a balanced blade root, whereby the 

stresses on the suction and pressure side are similar, no benefit 

would be obtained from the above observation, apart from 

reducing the Primary angle. To approximate the stress for other 

Primary angles (within the limits of  = 0° to  = 10°) a 

response surface was created. The resulting contour plot is 

shown in Figure 8. 

 

The results in Figure 9 show how the Secondary angle  

affects the normalized von Mises stress magnitude. For a 

Primary angle  = 0° the stress increases by 1% when  = 15°. 

For this Secondary angle the principal crystallographic 

direction [100] will be aligned along the blade root axial 

direction since the blade root has a skew angle of 15°. 

However, rotating the Secondary angle to  = 60°, results in a 

stress reduction of 5.6%. A contour plot illustrates this result, 

see Figure 10. 

 

The Primary angle study found that the maximum stress 

occurred when the Primary angle °, and the Primary 

axis was located at  = 45° (i.e. Location 11). Rotating the 

Secondary angle resulted in no increase in stress, but a 

reduction of 5.2% when  = 50°. However, this stress 

reduction would not be gained if the Primary axis was located 

at  = 0° (i.e. Location 9). If the Secondary angle is nominally 

controlled in the region of   = 56°, then there is a potential to 

lower the maximum stress by 4% when °. A contour plot 

illustrates this result, see Figure 11. Choosing the required 

optimized Secondary angle needs to reflect all Primary axis 

locations, as their minimum stresses will not always coincide, 

as is evident from Figure 9.  Also, it must be acknowledged 

that optimizing the Secondary angle at the blade root location 

may have an adverse effect at other blade locations, such as the 

aerofoil and therefore the whole blade must be considered.
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Figure 7. Variation in normalized von Mises stress against angle  for Primary angles of 0, 5 and 10 (Secondary angle is 0). 

 

 

 

 
 

Figure 8. Contour plot showing the influence of the Primary angle and axis location on normalized von Mises stress.                                                                                                                                     
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Figure 9. Variation in normalized von Mises stress against Secondary angle  for a Primary angle of 0 and 10. Different Primary 

axis locations are shown for a Primary angle of 10.

 

 

 

 
 

Figure 10. Contour plot showing the influence of the Secondary angle on normalized von Mises stress when the Primary angle is 0. 
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Figure 11. Contour plot showing the influence of the Secondary angle on normalized von Mises stress when the Primary angle is 10. 
 

 

 

CONCLUSION 
Single crystal nickel-based materials, such as CMSX-4 

have a FCC crystal structure, and due to their cubic symmetry 

have the same elastic constants in the principal 

crystallographic directions [100], [010] and [001]. The 

orientation of the single crystal relative to the component has a 

direct impact on the elastic state of stress, as the elastic 

constants change with direction. 

  

The methodology for calculating the elastic state of stress 

given the single crystal orientation was explained and 

demonstrated using a simple specimen under load-control. The 

ability to determine the stresses (and strains) in the 

crystallographic directions is of interest when exploring 

suitable fatigue criteria involving slip planes [6]. 

 

The influence of single crystal orientation on the elastic 

stresses of a turbine blade root was not insignificant. For a 

Primary angle = 10° the stress was found to fluctuate by 

+9.7% and -19% depending on the Primary axis location. If 

the Secondary angle is nominally controlled in the region of   

= 56°, then there is a potential to lower the maximum stress by 

4% when ° and to improve the fatigue resistance of the 

turbine blade root. Optimizing the Secondary angle at the 

blade root location may have an adverse effect at other blade 

locations, such as the aerofoil and therefore the whole blade 

must be considered. 

 

These results indicate that care should be taken when using 

traditional deterministic approaches for fatigue life assessment 

as the results will only be valid for a given crystal orientation. 

An alternative approach would be to treat the crystal 

orientation as a random variable and use probabilistic 

methods. 

 

 

 

REFERENCES 
[1] Dieter, G. E., 1988, Mechanical Metallurgy, McGraw-Hill 

Book Co., Singapore.  

[2] Slawinski, M. A., 2009, Waves and Rays in Elastic 

Continua, World Scientific Publishing Co, Singapore. 

[3] Stouffer, D. C., and Dame, L. T., 1996, Inelastic 

Deformation of Metals, Models, Mechanical Properties, and 

Metallurgy, John Wiley & Son, Inc., New York. 

[4] Hosford, W. F., 2005, Mechanical Behavior of Materials, 

Cambridge University Press, Cambridge. 

[5] Smithells, C. J., 1967, Metals Reference Book Vol. 3 

(Fourth Edition), Butterworths, London. 

[6] Arakere, N. K., and Swanson, G., 2002, “Effect of Crystal 

Orientation on Fatigue Failure of Single Crystal Nickel Base 

Turbine Blade Superalloys” Journal of Eng. For Gas Turbines 

and Power, 124, pp. 161-175. 

 


