
 1 Copyright © 2011 by ASME 

EXPERIMENTAL VALIDATION OF EMPIRICAL METHODS FOR DYNAMIC STRESS 
PREDICTION IN TURBOMACHINERY BLADES 

 
 

Timothy C. Allison, Ph.D. 
Southwest Research Institute 

San Antonio, TX, USA 

Andrew H. Lerche 
Southwest Research Institute 

San Antonio, TX, USA 
  

J. Jeffrey Moore, Ph.D. 
Southwest Research Institute 

San Antonio, TX, USA 
 

ABSTRACT 
Turbomachinery blade fatigue life estimation requires 

reliable knowledge of actual static and dynamic stresses 
occurring within the blades. A common method for predicting 
dynamic stresses is to construct a finite element model of the 
blade and simulate the dynamic response to aerodynamic loads. 
Although this method is powerful and very useful, modeling 
errors (geometry, boundary conditions, stress concentrations, 
damping, etc.) may result in inaccurate stress predictions. 
Furthermore, unavoidable variability in manufacturing results in 
blade mistuning, which significantly affects stress amplification 
at resonance. This paper presents two empirical methods for 
predicting dynamic stresses in turbomachinery blades that 
include the actual effects of structural damping and mistuning. 
Both methods use strain gauge measurements from a blade 
modal test to obtain load to strain transfer functions, which are 
applied to predict the blade strain or stress response to a 
simulated load. The advantages and disadvantages of each 
method are discussed. The predictions of each method are 
compared with dynamic blade strain data acquired during a 
rotating test of a centrifugal compressor impeller. 

 
INTRODUCTION 

Many turbomachinery blade failures occur even when 
maximum stress levels are lower than the yield strength of the 
failed component's material. These failures can most often be 
attributed to high-cycle fatigue as a result of high dynamic 
stress levels experienced at a blade or disk dominant resonant 
condition. Accurate modeling of these dynamic stresses can 
improve blade reliability during the design stage and also aid in 
the identification of the root cause of many blade failures. 

The Finite Element (FE) method is often applied to analyze 
the dynamics (including dynamic stresses) of structures. This 
method is able to calculate strains (and therefore stresses) from 
simulated displacements by forming a strain-displacement 
matrix from element shape functions. Although the FE method 
is widely used, problems with the method do exist and 
inaccurate results may be obtained from FE model simulations. 
First, the process of creating and analyzing a finite element 
model can be time-consuming and computationally expensive, 
particularly for models with complex geometry. Even after the 
analysis is complete, there is no guarantee that the model 
accurately predicts the behavior of the actual structure. The 
analysis results may be incorrect due to modeling errors (e.g. 
incorrect assumptions about damping or boundary conditions), 
parameter errors (e.g. geometry or material properties), or other 
factors [1]. For this reason, models must often be updated or 
"tweaked" until their simulation results are consistent with one 
or more sets of experimental data [2]. Finally, most finite 
element models assume identical geometry from blade to blade, 
but mistuning due to manufacturing variances can significantly 
affect dynamic stress levels in bladed disks. 

Purely empirical methods for  dynamic system modeling 
have been developed that attempt to predict a system's dynamic 
behavior based solely on experimental data, but they have not 
typically been applied to dynamic strains. Most common system 
realization methods (e.g., the Eigensystem Realization 
Algorithm described in [3]) are unable to identify predictive 
strain models without partitioning the structure into 
substructures of known shapes (e.g. beams, plates, etc.) with 
known finite element shape functions so that a strain-
displacement matrix can be calculated. This limitation is 
attributed to the fact that "strains are typically valid over only a 
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very localized region, and therefore any theory [for system 
realization] which includes strains as an output or state variable 
must hold for the local [or substructural] level only" [4]. For 
structures with complex geometry, the number of substructures 
required to accurately model the system may be high and 
obtaining strain measurements at the nodes of every 
substructure is impractical.  

This paper describes two empirical methods for dynamic 
stress prediction in turbomachinery blades and compares 
predictions from both methods with experimental strain 
measurements on a rotating centrifugal compressor impeller. 
The first method is a frequency-domain modification of the 
method introduced in [5], which applies the Proper Orthogonal 
Decomposition (POD) to a measured data set to extract 
dominant response information and reduce the system order and 
then employs a coupled deconvolution scheme to compute 
frequency response or impulse response functions of the 
reduced coordinates. The strain response of the system to new 
dynamic loads may then be simulated. The second method, 
presented in [6], uses a superposition of measured strain 
Frequency Response Functions (FRFs) to predict the stress 
response to a specified dynamic excitation. Although these 
methods have been introduced in the past, the POD-based 
method is modified in this paper and both methods are validated 
with experimental data from a rotating test of a centrifugal 
compressor impeller.   

The remainder of this paper is organized into five sections. 
The first two sections describe both empirical stress prediction 
methods, and the third section describes the experimental setup 
for developing the empirical models and measuring dynamic 
stresses on a rotating centrifugal compressor impeller. The 
fourth section describes the experimental results and compares 
them with predictions from each method, and the final section 
presents conclusions regarding the data and methods. 

NOMENCLATURE 
A  = State coefficient matrix 

qA  = Grid area for point q 

B  = State coefficient matrix 

ijc  = (i,j)th element of ( )tC (time-sampled) 

( )tC = Modal impulse response function matrix 
D  = Spatial domain 

sD  = Damping operator for strain response 

sD  = Strain response damping matrix in modal coordinates 

E  = Young's modulus 
F  = Original force matrix  
Fi  = Force matrix for ith load case 

F~   = New force matrix 
( )txf , =Forcing function (continuous) 

pqH  = Strain frequency response function relating a force at  
  point p to a strain response at point q 
i  = Index for proper orthogonal coordinates, values, and  
  modes 
j  = Index for proper orthogonal values 
k   = Number of dominant proper orthogonal modes 

sK  = Stiffness operator for strain response 

sK  = Strain response stiffness matrix in modal coordinates 

sM  = Mass operator for strain response 

sM  = Strain response mass matrix in modal coordinates 
m   = Number of measurement degrees of freedom 
n   =  Number of time samples 
p   =  Index for strain response location 
P  =  Pulsation load  
q   =  Index for loading grid point 

jq  = jth Modal force (discretized) for original load case 

j
i q  = jth Modal force (discretized) for ith load case 

)(tqi = jth Modal force (continuous) 

( )tq  = Vector of continuous modal forces 

( )ωqi = Vector of discrete Fourier transforms of modal forces 
  for ith load case evaluated at a single frequency  
r   =  Number of grid points 
S   =  Strain response matrix for original load case 
Si   =  Strain response matrix for ith load case 

kS  =  Approximated strain response matrix 

S~   =  Predicted strain response matrix 
t  =  Time variable 
x  =  Location variable 

iu   =  ith Proper orthogonal mode (discretized) 

( )xui =  ith Proper orthogonal mode (continuous) 

U  = Matrix of proper orthogonal modes (discretized) 
iv   =  ith Proper orthogonal coordinate history (time- 

  sampled) 
( )tviˆ =  ith scaled proper orthogonal coordinate history  

  (continuous) 

iv̂   =  ith scaled proper orthogonal coordinate history (time- 
  sampled) 
( )ωv̂i =Vector of discrete Fourier transforms of proper  

  orthogonal coordinate histories for ith load case  
  evaluated at a single frequency 
V  = Matrix of proper orthogonal coordinate histories for  
  original load case (time-sampled) 
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TiV̂  = Matrix of proper orthogonal coordinate histories for ith 
  load case (time-sampled) 

iγ   =  ith Proper orthogonal value 

iε   =  Energy captured by ith proper orthogonal mode 

( )tΦ =  State transition matrix 
σ  =  Stress 
τ  =  Integration dummy variable 
ω   =  Frequency 
 
METHOD I: POD-BASED STRESS PREDICTION 

This section provides a brief overview of the Proper 
Orthogonal Decomposition (POD) and describes an application 
of the method for dynamic stress prediction. 

 
The Proper Orthogonal Decomposition 

This section describes the POD and explains one method 
for calculating it using the singular value decomposition (SVD). 
The relationship between the POD and mode summation theory 
is also shown. Although other methods have been developed for 
calculating the POD [7], the SVD is used for its algorithmic 
simplicity and its resemblance to a modal sum. First, a system 
response is generated by either forcing the system or imposing 
an initial condition. In this paper we will assume the system 
starts at rest and that an applied load is used to generate a 
response. The strain response at m degrees of freedom is 
sampled n times and the data are arranged in a response matrix 
S : 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

















=

nmm

n

n

txstxstxs

txstxstxs
txstxstxs

S

,,,

,,,
,,,

221

22212

12111









. (1) 

This matrix can be measured experimentally by applying strain 
gauges at m locations. Next, the singular value decomposition 
of S  is computed: 

 TVUS Γ= . (2) 

In Eq. (2), the columns iu  of U are the proper orthogonal 
modes (POMs), the columns iv  of V are the orthonormalized 
amplitude modulations of the POMs in the response, and Γ  is a 
diagonal matrix whose diagonal elements iγ  are the proper 
orthogonal values (POVs) corresponding to each POM. In this 
paper we refer to the columns of V as proper orthogonal 
coordinate (POC) histories. The POVs describe the relative 
contribution of each POM to the response S and can be 

considered as scaling factors for the POC histories. The 
percentage of signal energy captured by iu  is given by 
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Typically, a certain percentage of signal energy (e.g., 95% 
or 99%) is specified and only POMs that contribute up to that 
percentage are considered [7,8]. If k dominant POMs are 
considered then S may be accurately approximated as a 
weighted summation of POMs and corresponding POC 
histories: 

 ∑
=
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k

i

T
iiikSS

1
vuγ . (4) 

The POMs are the statistically optimal basis for 
representing S  compactly in the sense that the Frobenius norm 
of the error matrix 

FkSS −  is minimized over all other rank 
k approximating matrices [8]. Therefore, only a small number 
of POMs are often used and k is typically much smaller than m. 
If displacement data are used instead of strain data in Eq. (1) 
and the structure is lightly damped with a mass matrix 
proportional to the identity matrix, then the POMs will closely 
resemble the normal modes [9].  

Although the POD is often computed from the 
displacement response of a system, any measured response data 
may be decomposed by the process described in Eqs. (1)-(4). In 
this paper, we will assume that strain response data are used to 
form S . If this is the case, then the first k PO modes represent 
the strain distributions that are optimal (in the Frobenius norm 
sense) for reconstructing a rank k approximation of S . In other 
words, the first k PO modes represent the dominant strain 
distributions in the measured data. 

 
POD-Based Dynamic Stress Prediction 

This section describes a method for using these quantities 
to predict the dynamic stress response of a structure. The 
methodology described is similar to the methodology in [5], but 
modifications have been made to apply the method in the 
frequency domain (instead of the time domain) in order to 
increase computational speed and robustness of the method to 
experimental noise. 

First, this section builds upon the concept of the POD as a 
modal sum by using mode summation theory to (1) derive an 
analytical expression for the POCs of a forced system starting at 
rest and (2) develop a method for dynamic response prediction 
by modifying the measured POC histories based on their 
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analytical form. The strain response ( )txs ,  of a general 
vibratory system is governed by the boundary value problem 

 { } { } { } ( )txfsss sss ,=++ KDM  , (5) 

where sM , sD , and sK  are linear operators similar to the 
mass, damping, and stiffness operators obtained for the strain 
displacement response of the system, and ( )txf ,  is a 

distributed forcing function. The bracket notation (e.g. { }ss M ) 
indicates that the operator acts on variable within brackets.  
More details regarding operator notation can be found in 
Chapter 7 of [10]. The solution to Eq. (5) may be computed by 
approximating the strain variable with a modal sum: 

 ( ) ( ) ( )∑
=

≈
k

i
ii tvxutxs

1

ˆ, . (6) 

In this paper the authors assume that the POMs are used as the 
modes ( )xui . If this is the case then the modal coordinates 

( )tviˆ are equivalent to the POCs scaled by the POVs. In other 

words, the scaled POC histories iii vv γ=ˆ  are time-sampled 
forms of the modal coordinates. We may then combine Eqs. (5) 
and (6) to obtain a matrix ordinary differential equation for the 
POCs: 

 ( ) ( ) ( ) ( )ttKtDtM sss qvvv =++ ˆˆˆ  . (7) 

In Eq. (7), the elements of vector ( )tv̂  are the POCs 

corresponding to each POM, and sM , sD , and sK  are the 
strain response equivalents to traditional modal mass, damping, 
and stiffness matrices and are formed by taking inner products 
of the POMs with the respective operators (for more 
information regarding the conversion of operators to matrices, 
see [10]). The quantity ( )tq  is a vector of modal forces 
obtained by forming the inner product of the POMs with the 
applied load ( )txf ,  over the spatial domain D: 

 ( ) ( )dDtxfxutq
D ii ,)( ∫= . (8) 

In general, the matrices in Eq. (8) are full and an expression for 
the POCs is found by converting Eq. (8) to state form: 
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In Eq. (9), A  and B  are state matrices formed from sM , 

sD , and sK : 
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The solution to Eq. (9) is given by the following equation [10]: 
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where τ  is an integration variable and ( )tΦ  is the state 
transition matrix. For time-invariant systems, the state transition 
matrix is defined as [10]: 

 ( ) Atet =Φ . (13) 

If the system starts at rest, the POCs are found from the upper 
half of the second term in Eq. (12): 

 ( ) ( ) ( ) ( ) ( )ttCdtCt
t

qqv ∗=−= ∫
0

ˆ τττ . (14) 

In Eq. (14), the square matrix ( )tC  is of dimension k and is 
defined as the upper-half partition of the matrix product 
( ) ( )tBtΦ , i.e. we partition ( )tΦ  into four equally-sized 

submatrices 
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and define ( )tC  as 

( ) ( ) ( )[ ] ( ) ( ) ( )tMt
tM
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Eq. (14) shows that the POC histories are the result of a matrix-
vector convolution.  
 Now that the form of the POC histories is clearly 
understood, a strategy for using measured POMs and POC 
histories to perform response predications is formulated. The 
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proposed method begins by calculating the matrix ( )tC at each 

measurement time step through deconvolution. Once ( )tC  has 
been calculated, the response of the system to new loads may be 
predicted by convolving ( )tC  with a new modal force vector. 

First, the thi  row of Eq. (14) is expressed in time-sampled 
form to express the thi scaled POC history as a sum of 
convolutions 

 ( ) kikiii t qcqcqcv ∗++∗+∗= 2211ˆ , (17) 

where the n-vectors ijc  and jq  are the time-sampled forms of 

( )tCij  and ( )tq j , respectively. Next, we sample the applied 

load ( )txf ,  at the same locations and time steps used to form 
S  in Eq. (1) and store the data in a force matrix F . The modal 
forces are computed by taking the inner product of the POMs 
with the force matrix: 

 ( ) kiFT
ii ,,2,1, == uq . (18) 

In a previous paper [5], a time-domain deconvolution 
method was presented to solve for ( )tC  using response and 
load data from multiple load cases (the number of load cases is 
equal to k, the number of POMs). This method requires the 
inversion of a nknk ×  matrix, resulting in ( )3nk  operations. 
For a large number of time samples, this computation requires 
significant processing time. The method was also shown to be 
highly sensitive to measurement noise and produced inaccurate 
results. 

In this paper, an alternative frequency-domain method is 
proposed for solving for the matrix C. First, Eq. (17) may be 
transformed to the frequency domain and written at a single 
frequency bin as 

( ) ( ) ( ) ( ) ( )ωωωωω kikiii qcqcqcv +++= 2211ˆ , (19) 

or in matrix form for all k modal coordinates as: 
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In Eq. (20), the matrix ( )ωC  is a matrix of modal 

frequency response functions. The vectors ( )ωv̂ and ( )ωq  are 
discrete Fourier transforms of the time-sampled POC histories 
and modal forces, respectively, evaluated at a particular 

frequency. As in the time domain formulation, we use k load 
cases to add sufficient equations to solve for ( )ωC : 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]ωωωωωωω qqqvvv kk C  22 ˆˆˆ = . (21) 

The additional columns ( )ωv̂i  and ( )ωqi  are discrete 
Fourier transforms of POC histories and modal forces for the 
additional load cases in terms of the original modal coordinates. 
It is necessary to express the new data in terms of the original 
POMs because only one set of POMs was used to derive an 
expression for ( )ωC . The response data measured from a 
second applied load may be approximated using the original 
POMs (see [11]) as 

 ( ) ( )TT VUSUUS ˆ222 =≈ . (22) 

The term TV̂2 in Eq. (22) indicates the time-sampled POC 
histories for the second load case. The discrete Fourier 
transform of each POC history can be calculated and evaluated 
at a particular frequency for use in Eq. (21). The modal forces 
are also computed for the second load case using the original 
POMs: 

 ( )FT
ii

22 uq = . (23) 

In Eq. (23), F2 is a matrix containing force data for the 
second load case. Next, the transformations shown in Eq. (22) 
and (23) for the second load case are applied to k separate load 
cases. Once the modal forces and POC histories are available 
for all load cases, Eq. (20) may be used to solve for ( )ωC . 

Solving for ( )ωC  at all frequency bins requires 35.0 nk  
operations, or 22n  fewer operations than in the time domain. 
 Finally, once ( )ωC has been computed from Eq. (21) the 
response to a new load may be predicted by calculating new 
modal forces from Eq. (18) and transformed into the frequency 
domain using an FFT algorithm. New POC histories are then 
calculated by convolving the new modal forces with ( )ωC : 

 ( ) ( ) ( )ωωω qv ~~̂
C= . (24) 

Once the new POC histories have been calculated, the 
predicted response (in the frequency domain) of the system to 
the new load may be calculated: 

 ( ) ( )ωω TVUS
~̂~

= . (25) 
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Once the strain response is known, the stress response may 
be predicted by applying Young's modulus for the material at 
the operating temperature: 

 ( ) ( )ωωσ sE ⋅= . (26) 

 For clarity, the entire procedure of the POD-based method 
is shown in Table 1. One advantage of the POD-based empirical 
method is that the modal reduction with a limited number of 
POMs serves to filter out noise and keep only the dominant 
signal components. The method is also able to apply a separate 
load at all excitation points and produces the strain response at 
every point. Disadvantages of the method include significant 
instrumentation requirements (a strain gauge must be placed at 
every point in the empirical model) and some projection errors 
associated with using a limited number of POMs from one 
response to predict the response to a new load [11].  

It should be noted that the accuracy of any empirical method 
depends on how closely the test setup matches operating 
conditions of the blade. For example, boundary conditions must 
be carefully chosen to approximate operating conditions. The 
damping in the stationary test may be significantly different 
than damping experienced during operation due to changes in 
friction and aerodynamic damping. Although empirical methods 
do include the effects of mistuning during the stationary effects, 
the effects of mistuning may vary somewhat with speed.  

Table 1. POD-Based Method Procedure 

Step 
# 

Comments Equation 

1 Calculate POVs, POMs, and POC 
Histories from first load case 

(2) 

2 Determine k from signal energy criterion (3) 
3 Scale the POC histories for first load case 

by their corresponding POV and calculate 
discrete Fourier transforms 

iii vv γ=ˆ  

4 Calculate modal forces for first load case 
and calculate discrete Fourier transforms 

(18) 

5 Calculate scaled POC histories for other 
load cases and calculate discrete Fourier 
transforms 

(22) 

6 Calculated modal forces for other load 
cases and calculate discrete Fourier 
transforms 

(23) 

7 Solve for ( )ωC  (21) 

8 Calculate new modal forces for 
prediction 

(18) 

9 Calculate predicted scaled POC histories (24) 
10 Calculate predicted strain response (25) 
11 Calculate predicted stress (26) 

METHOD II: STRAIN FRF SUPERPOSITION 
This section describes the method introduced in [6] for 

predicting dynamic stresses via a superposition of measured 
strain Frequency Response Functions (FRFs). Most modern 
data acquisition systems are able to take time-sampled strain 
and force data (e.g. from a modal test with strain gauge 
instrumentation) and compute the experimental frequency 
response function between force and strain. Conceptually, the 
strain FRFs relating a load at point q to a strain response at 
point p on a blade may be expressed as 

 ( ) ( )
( )ω
ω

ω
q

p
pq F

S
H = , (27) 

where ( )ωpS  is the frequency transform of the stress 

response and ( )ωqF  is the frequency transform of the applied 
load. If loads are applied separately at r locations in a grid 
pattern across a blade surface, the stress to pulsation spectrum 
for a response point p can be defined as: 

 ( ) ( ) q

r

q
pq

p

EAH
P ∑

=

=







1
ωωσ . (28) 

In Eq. (28), E is the Young's modulus for the blade material 
and qA is the grid area that corresponds to grid location q. Once 
the stress to pulsation spectrum is obtained, the stress at point p 
and at a frequency of interest sω  due to a dynamic pressure 
load across the blade can be estimated by 

 ( ) ( ) ( )s
p

ssp P
PS ωσωω 






= , (29) 

where ( )sP ω  is the amplitude of pressure loading at the 
frequency of interest. 

Advantages of the strain FRF superposition method are that 
its underlying theory is straightforward and has low 
computational requirements. Disadvantages include the fact that 
it has no inherent noise filtering feature and that the method as 
formulated in [6] requires application of a uniform load across 
all grid points (although the method can easily be modified to 
accommodate spatial variation in pressure loads). Finally, the 
accuracy of this method is subject to the same considerations 
regarding boundary conditions, damping, and mistuning that 
were discussed in the previous section. 

EXPERIMENTAL TESTING 
This section describes the test impeller used to validate the 

empirical methods, as well as stationary and rotating tests 
performed on the impeller. The impeller is from a centrifugal 
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compressor which was designed for research purposes. The 
compressor is machined from 15-5ph stainless steel and is an 
open design, where the shroud is mounted on the stationary 
section of the test rig. The impeller, shown in Figure 1, contains 
twelve (12) main blades and twelve (12) splitter blades and is 
0.300 inches in diameter. 

Two types of tests were performed on the impeller. 
Stationary impact hammer tests were performed in order to 
develop the POD-based model and stress to pulsation spectrum 
for the empirical methods. Stationary tests also aided in design 
of the rotating test by identifying the natural frequency of the 
first bending mode of the main blades. The rotating test was 
performed to allow measurement of dynamic strains during 
operation to provide a validation data set for the empirical 
method predictions. 

 

 
Figure 1. Centrifugal Compressor Impeller  

Stationary Test 
The POD-based method requires input (force) and response 

(for this project, strain) data in the time domain to form a 
predictive model. The model is only defined at the strain gauge 
locations, and the response of the system may only be simulated 
for loads applied at these locations. Thus, strain gauges must be 
placed at multiple locations across the blade. A single blade was 
instrumented with five strain gauges as shown in Figure 2 (thus 
m=5 for this application). Strain gauges 1-4 were placed at 
locations where aerodynamic loading would be applied to the 
model, and strain gauge 5 was located at the blade root to 
provide response data for validation of the method using 
running test data. 

 

 
Figure 2. Strain Gauge Setup of Impeller for Impact 

Hammer Testing 

Impact loads were applied to points 1-4 with a miniature 
instrumented hammer in order to obtain all data required for the 
POD-based method. The data were acquired at a sample rate of 
51.2 kHz for a duration of 0.08 seconds, resulting in a value of 
n=4096 for this application. The PO modes for impacts at point 
2 were used since this impact location was considered to 
provide the most excitation for the first blade bending mode. 
The POVs (normalized with respect to the first POV) 
corresponding to these modes are shown in Figure 3. As 
expected, the POVs decay rapidly and most of the signal energy 
is contained in the first two modes. Since four load cases were 
available for this prediction, the first four POMs were kept for a 
total of 93.3% of the original signal energy. 

 
Figure 3. POV Decay for Impeller Test 

 
As a preliminary validation step, the procedure described in 

Table 1 was applied to predict the response to the impact load 
applied at point 4. The measured and predicted responses 
measured by strain gauge 5 are shown in Figure 4 below. These 
results show that the model was able to accurately predict the 
strain response of the blade to one of the load cases used to 
form the model. 

SG1 

SG3 

SG2 
SG4 

SG5 
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Figure 4. Predicted SG5 Response to Load at Point 4 

 
Data from the bench test were also used to calculate a 

stress to pulsation spectrum for the impeller blade. Strain FRFs 
from impacts at points 1-4 to strain measured at point 5 were 
used in Eq. (28). The grid areas surrounding each excitation 
point were measured to be 0.7955, 1.036, 0.8168, and 0.9039 
cm2 for points 1, 2, 3, and 4, respectively. The impeller was 
constructed from 15.5PH stainless steel with a modulus of 
194.98 GPa. The resulting stress to pulsation spectrum is shown 
in Figure 5, with the blade resonance clearly visible at 4425 Hz. 

 
Figure 5. Stress to Pulsation Spectrum 

 
Rotating Test 

The rotating test rig is in an open loop configuration 
utilizing an un-shrouded (i.e. the shroud is not attached to the 
compressor but is attached to the stationary frame) centrifugal 
compressor and a vaneless diffuser. The shroud is made from a 
nylon material to prevent damage in a rub event. Air enters 
through the inlet consisting of fifteen (15) inlet guide vanes, 
flows through the compressor and is then discharged into an 
open box. Figure 6 shows a diagram of the test rig. The rotor is 

mounted using two sets of ball bearings, one on the drive end 
and the other on the non-drive end of the compressor.  

  

 
Figure 6. Cross section of test rig. 

The test rig is powered by a 150 kilowatt electric motor 
controlled by a variable frequency drive and is connected to a 
eleven-to-one (11:1) speed increasing gearbox capable of 
driving the centrifugal compressor to 40,000 rpm (see Figure 7 
below).  

 

 
Figure 7. Experimental test rig with motor and 

gearbox. 

Each time a compressor blade passes an inlet guide vane it 
experiences an excitation caused by the wake from the IGV. 
Since there are fifteen (15) IGV’s, a compressor blade will 
receive fifteen (15) excitations per a revolution. Thus the 
running speed necessary to excite the blade mode is 
approximately 17,700 rpm (the blade resonance increases 
slightly with speed). 

For the rotating test, the strain gauges shown in Figure 2 
were removed and two of the blades (including the blade 
instrumented during the stationary test) are instrumented with 
two strain gauges in a half-bridge configuration where a strain 
gauge is mounted on each side of the blade, directly opposing 
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each other. This configuration allows measurement of the 
bending stresses, so that strains due to centrifugal effects will 
not affect the measurement.  

The strain gauges are mounted on the blade so that the 
direction of measurement is parallel with the leading edge of the 
blade. The gauges are close to the leading edge of the blade 
near the blade root, where stresses are the largest. The wires to 
the strain gauges are then passed through radial holes in the 
compressor and routed out an axial hole through the non-drive 
end of the compressor where they are connected to an amplifier. 
The signals from the amplifier are then passed to the data 
acquisition system by the use of a slip ring. A rotating strain 
amplifier is necessary because the anticipated values of strain 
being measured are small and also because the signals are being 
passed through a slip ring, which introduces noise. Figure 8 
below shows a strain gauge mounted on one of the compressor 
blades. 

 

 
Figure 8. Photograph of strain gauge on suction side 

of one of the compressor blades.  

EXPERIMENTAL RESULTS 
This section presents strain data obtained during the 

rotating impeller test and compares the data to predictions from 
both the POD-based and FRF superposition methods. 

 
Rotating Test Data 

Blade strain data were collected using an ADRE 408 
Dynamic Signal Processing Instrument by Bently Nevada. The 
strain response was monitored using a bode plot which showed 
the response magnitude and phase versus the speed. In this case, 
the blade resonance was excited by the fifteen inlet guide vanes, 
which meant that the blades saw fifteen excitations in one 
revolution. When this excitation frequency was the same as the 
blade natural frequency, it experienced resonant vibration. This 
resonant condition occurred at approximately at 4,430 Hz or 
17,730 rpm. Since the 15X (fifteen cycles per a revolution) 
response was of primary interest, a 15X band pass filter was 
used on the bode plot so that no other excitation orders were 
included in the response. Figures 9 and 10 show the 15X 
response for Blade A and Blade B, respectively. A total of seven 

(7) speed sweeps were performed to demonstrate repeatability 
of the results. 

Figure 9 shows the Blade A resonant response with a large 
peak at approximately 17,730 rpm and a smaller peak at 
approximately 17,550 rpm. The peak response was 300 
microstrain at 17,730 rpm or 4,433 Hz. The smaller peak was 
54 microstrain at 17,630 rpm or 4,408 Hz. 

 

Second Peak

First Peak

 
Figure 9. Bode Plot Showing Strain Response of 

Blade A for Nominal Flow Case 

 
Figure 10 shows the Blade B resonant response. There 

were three distinct peaks. The largest peak was 280 microstrain 
at 17,720 rpm or 4,430 Hz. The smaller two peaks were 244 
microstrain at 17,630 rpm or 4,408 Hz and 146 microstrain at 
17,810 rpm or 4,453 Hz. 

Third Peak
Second Peak

First Peak

 
Figure 10. Bode Plot Showing Strain Response of 

Blade B for Nominal Flow Case 

The various peaks represent mistuning in the blades as a 
result of manufacturing variances and modifications to the two 
instrumented blades for instrumentation.  

Since seven sweeps were performed, the maximum 
response amplitude and corresponding rotational speed was 
recorded for each sweep and then averaged. Table 2 shows the 
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mean peak response and frequency with corresponding standard 
deviation for Blades A and B on the nominal flow case. 

Table 2. Mean and Standard Deviation of Blade 
Response 

Mean 
Resonant 

Speed

Standard 
Deviation 

Speed
Mean 

Amplitude

 Standard 
Deviation
Amplitude

Blade A 17726 5.3 298.9 4.49
Blade B 17721 30.2 279.3 1.80

[microstrain, pk-pk][rpm]

 
 

POD-Based Method Results 
The results of the stationary tests were applied to create an 

empirical model of the blade using four load cases. Each load 
case was represented using POMs from the impact at point 2 in 
Figure 2. Next, the POD-based method was applied to predict 
the resonant dynamic stress level at the base of the blade by 
discretizing the aerodynamic loading onto locations 1-4. 
Pressures at each strain gauge location were determined from 
fluid-structure interaction simulations [12] and were multiplied 
by the grid area corresponding to each gauge to provide a 
sinusoidal excitation force amplitude at each location. The 
pressures, areas, and resulting force amplitudes applied at each 
location are shown in Table 3. 

Table 3. Impeller Blade Excitation Data for POD-Based 
Empirical Method 

Location 
Number 

Pressure 
(Pa) 

Grid Area 
(cm2) 

Force 
Amplitude 

(N) 

1 828.1 0.7955 0.0658 

2 696.4 1.036 0.0721 

3 1045 0.8168 0.0854 

4 2293 0.9039 0.2073 
 
The force amplitudes shown in Table 3 were applied to the 

POD model at the stationary natural frequency of the blade 
(4,425 Hz) to predict the resonant response. The predicted 
strain response spectrum is shown in Figure 11. The predicted 
response at the blade root (SG5 location) was 278 microstrain, 
which was very close to the measured values. These data show 
that the POD-based method was able to predict dynamic 
stresses in the impeller to within approximately 0.5% and 7.1% 
of the measured values for blades A and B, respectively. 

 

Figure 11. Predicted Strain Response for Impeller 
Blade 

 
Strain FRF Superposition Method Results 

The total dynamic pressure load on the impeller blade was 
estimated by dividing the total force amplitude by the total area 
in Table 3. The resulting pressure (0.1758 psi) was used along 
with the peak (resonant) value in the pulsation spectrum to 
predict a resonant stress of 6871 ksi, which corresponds to a 
strain value of 242.9 microstrain, which is within 13% and 
18.7% of the measured values for blades A and B, respectively. 
If Eq. (28) is multiplied on both sides by pressure and the 
pressure terms for each grid point in Table 3 are grouped in the 
sum with their corresponding areas, the predicted stress is 7980 
ksi, which corresponds to a strain of 282.2 microstrain (within 
1.0% and 5.6% of the measured values). 

CONCLUSIONS 
The results displayed in the previous section demonstrate 

good agreement  (within 8%) between the strains measured 
during the rotating test and strains predicted by the POD-based 
method and strain FRF superposition method with a spatially 
varying load profile. When an average load profile was applied 
to all points for the strain FRF superposition method, the results 
were still within 20% of measured values. These results suggest 
that the methods proposed in this paper are suitable for 
prediction of dynamic strains and stresses in turbomachinery 
blades. The methods did not require detailed geometry models 
and the total computational time for each method was negligible 
(less than 1 second) on a desktop computer once the raw data 
were available and organized into the correct format. 

It is important to note that the accuracy of these methods 
may vary depending on the particular application. The methods 
do not account for changes in damping or mistuning when the 
disk is rotating, and experiments required to establish the 
empirical models must be carefully planned and performed. 
However, the results for this particular experiment show  
However, the results from this experiment show that the 
methods can be an inexpensive and accurate way to predict 
dynamic stresses in turbomachinery blades. 
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