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ABSTRACT 
High cycle fatigue is the major governing failure mode in 
aerospace structures and gas turbine engines. Different design 
tools are available to predict number of cycles to failure for a 
component subjected to fatigue loads. An energy-based fatigue 
life prediction framework was previously developed in recent 
research for prediction of axial, bending and torsional fatigue 
life at various stress ratios. The framework for the prediction of 
fatigue life via energy analysis was based on a new constitutive 
law, which states the following: the amount of energy required 
to fracture a material is constant. A 1-D ROD element for 
unixial fatigue, a BEAM element for bending fatigue and a 
QUAD-4 element for biaxial fatigue were developed by authors 
based on this constitutive law. In this study, the energy 
expressions that construct the new constitutive law are 
integrated into minimum potential energy formulation to 
develop a new HEX-8 BRICK finite element for fatigue life 
prediction. The newly developed HEX-8 BRICK element has 8 
nodes and each node has 3 degrees of freedom (DOF) in x, y 
and z directions. This element is further modified to add the 
rotational and bending DOFs for application to real world three 
dimensional (3D) structures and components. HEX-8 BRICK 
fatigue finite element has capability to predict the number of 
cycles to failure for 3-D objects subjected to multiaxial stresses. 
The new HEX-8 element is benchmarked with previously 
developed uniaxial tension/compression finite element in order 
to verify the new development. The comparison of finite 
element method (FEM) results to existing experimental fatigue 
data, verifies the new finite element development for fatigue 
life prediction. The final output of this finite element analysis is 
in the form of number of cycles to failure for each element in 
ascending or descending order. Therefore, the new finite 
element framework can predict the number of cycles to failure 
at each location in gas turbine engine structural components. 
The new finite element provides a very useful tool for fatigue 
life prediction in gas turbine engine components as it provides a 
complete picture of fatiguing process. The performance of the 
HEX-8 fatigue finite element is demonstrated by comparison of 
life prediction results for Al6061-T6 to previously developed 
multiaxial fatigue life prediction approach by the authors. 
Another set of comparison is made to results for type 304 
stainless steel data.  
 
 

1. INTRODUCTION 
Fatigue is the governing failure mode in rotating machinery 
components and structures subjected to cyclic loads. Most of 
the gas turbine engine blades are designed to be failure free; 
however, failure does occur and is commonly linked to fatigue. 
High cycle fatigue (HCF) is the main cause of failure in gas 
turbine engines [1].  Different design tools are available to 
analyze and determine the fatigue life. Stress versus cycles plot, 
or S-N curve is the most commonly used such tool. These 
curves provide fatigue strength with respect to cycles to failure.  
Other common tools for predicting fatigue properties are the 
Goodman diagram and the advanced Goodman diagram [2]. 
These diagrams are the popular choices for a failure-free 
aircraft engine design. In order for designers to make an 
accurate assessment, the applied cyclic loads are converted to 
equivalent stress and compared to S-N curve or Goodman 
diagram to obtain the number of cycles to failure. Most of data 
available in the form of these diagrams are based on uniaxial 
test data. It is sometimes seen: instead of uniaxial data, bench 
test data using components or blades also includes multiaxial 
results. This has led to search for a more realistic method for 
design comparison than the existing uniaxial design tools, 
which begins by observing the association between material 
failure/fracture and the energy dissipated during the process. 
 
Scientists and engineers have tried since 1940’s to relate energy 
conversion to fatigue life prediction of the material. These 
attempts resulted in minimal success [3].  The hypothesis used 
in this type of research implies: under cyclic loading or any 
bending, there exists a critical energy value for which failure 
occurs [4].  The continued research in this area later justified 
this hypothesis by displaying agreement between the theoretical 
and the experimental results on S-N curve.  Further 
investigation of the assumption made in [4] led to the 
introduction of a correlation between the fatigue life of a 
material and the strain energy dissipation during the process [3, 
5].  It is now believed that the strain energy required to fracture 
a material, monotonically, is the same as the strain energy 
during a cyclic fatigue procedure. Thus the critical energy value 
for each material is the monotonic strain energy.  Based on this 
constitutive law, an improved energy-based criterion has been 
developed in recent research to allow one to systematically 
determine fatigue life based on the amount of energy loss per 
fatigue cycle [6-10].  The research [6-10] includes a vibration 
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based test method for fatigue life data acquisition and a new 
failure criterion. The thought behind the vibration-based 
methodology is supplying a dynamic base excitation to a 
specimen at a specified high resonant frequency, between 1200-
1600 Hz, showing bending behavior.  This testing method 
provides a significantly faster means for acquiring 106 cycles 
(between 10 & 14 minutes), therefore making it a more 
efficient means for acquiring HCF based on uniaxial 
conditions. The new failure criterion [6] includes stress-strain 
relationship both for monotonic as well as cyclic loadings. This 
failure criterion is further used to develop fracture energy and 
cyclic energy expression. These expressions are used to 
determine the failure energy and energy dissipated per cycle. 
Comparison of total fracture energy to cyclic energy dissipated 
per cycle yields the number of cycles to failure.    
 
The previous research [11-15] by authors includes a 
development of a uniaxial 1-D rod, a bending beam element 
and a Quadrilateral 2-D element for uniaxial, bending and 
biaxial fatigue life prediction respectively. These elements are 
developed by integration of failure criterion presented in [6, 10] 
into minimum potential energy formulation. The rod, beam and 
QUAD-4 fatigue elements provide a useful tool for fatigue life 
prediction in gas turbine engine structural components. The 
accurate prediction of number of cycles with these new finite 
elements method and a good match of results to experimental 
data and analytical results [11, 15] signifies that the new finite 
element provides an estimation of number of cycles for axial 
and biaxial loading with sufficient accuracy. A multixial 
equivalent stress approach combining the energy methods and 
conventional fatigue finite element analysis procedure has also 
been developed [16]. 
 
This study presents the development of an eight-node 
Hexahedral (HEX-8) fatigue element. The constitutive 
equations presented by energy-based framework developed in 
[6, 10] are integrated into a minimum potential energy 
expression to develop the eight-node HEX element. This 
element has the capability to predict the number of cycles to 
failure for components subjected to stresses in x, y and z 
directions. The element is benchmarked with the previously 
developed uniaxial tension/compression solution [11] in order 
to verify the new development. The benchmarking procedures 
are discussed in detail in Section 3. 
 
The newly developed HEX-8 Brick element is further modified 
by adding the extra degrees of freedom of a beam element to 
obtain the rotational capability. With these added rotational 
degrees of freedom, the HEX-8 Brick element can be used to 
model the 3-D structures subjected to multiaxial fatigue loads. 
The analysis of a Curved Plate, a turbine blade like structure, is 
performed using the new HEX-8 element. The results are 
compared to the equivalent stress approach analysis results 
presented in [16]. Another set of comparison is made to results 
for type 304 stainless steel [17, 18]. 
 
The output from the analysis with HEX-8 fatigue element is 
plotted in the form of a colored contour plot where different 
colors represent the number of cycles to failure for each 
element depending upon the varying stress at different 
locations. Due to the discrete nature of finite element method, 

the new analysis approach can provide the number of cycles to 
failure for each element in the structure.     
 
The commercial finite element tools like ANSYS and 
MSC.NASTRAN involve a process of obtaining the vibratory 
stresses through dynamic analysis and using the Goodman 
diagram and modified Goodman diagram to predict the fatigue 
life. This approach does not incorporate the fatiguing process in 
the analysis procedure. The new finite elements developed in 
[11-15] and new HEX-8 element presented in this study are 
based on a fatigue constitutive law developed in [6, 10]. 
Therefore, the analysis through these elements directly 
incorporates the fatiguing process in finite element analysis in 
order to obtain stresses and ultimately capture the energy 
dissipated due to fatigue cycles. The difference of approach 
between conventional finite element analysis and the new finite 
element procedure developed in [11-15] and this study is 
discussed in detail in Section 4. 
 
2. BIAXIAL DATA FOR FATIGUE TESTS ON TYPE 
304 STAINLESS STEEL 
References [17, 18] present fatigue data on a specimen shown 
in Figure 1. The material of the specimen is type 304 stainless 
steel. The specimen is subjected to Tension-Torsion loading 
conditions. The experimental procedures are discussed in [17, 
18] in detail. The stress-strain and S-N data are shown in 
Figures 2 and 3.   

 
Figure 1:  The Geometry of the Specimen [17, 18] 

 
Figure 2:  Stress-Strain Experimental Data for Type 304 

Stainless Steel [17, 18] 
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Figure 3:  Fatigue Life Prediction Experimental Data for Type 

304 Stainless Steel [17, 18] 
 

3. DEVELOPMENT OF NEW HEX-8 FATIGUE 
ELEMENT 
The procedures followed for development of new HEX-8 
element are similar to presented by authors in [11-15] for 
development of uniaxial rod, beam and QUAD-4 fatigue 
elements.  
 
The following Equations present the uniaxial and shear 
constitutive laws [6, 10] both for uniaxial monotonic and cyclic 
loadings respectively. 

sinhmonotonic oE o

σ σε ε
σ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
              (1) 

1 sinhcyclic
PP
E C c

σ σ
ε

σ
⎛ ⎞

= + ⎜ ⎟⎜ ⎟
⎝ ⎠

PP               (2) 

Equations 3 and 4 represent stress-strain relationships for shear 
monotonic and cyclic loads respectively [10]. 

sinhmonotonic oG o

τ τγ γ
τ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
              (3) 

1 sinhcyclic
S

PP P
G C c

τ τ
γ

τ
⎛ ⎞

= + ⎜ ⎟⎜ ⎟
⎝ ⎠

P               (4) 

Where the parameters displayed in Equations 1-4 are defined as 
follows: σ is the value for stress at the surface of the specimen 
(in the bending case, max stress), ε and γ are the strain 
corresponding to the stress σ  and τ , σpp and τpp is the peak to 
peak stress (2σ when stress ratio is -1.0), E is the modulus of 
elasticity, and the variables σc, σo, εo, C, τc, τo, γo and Cs are 
curve fit parameters [10].  
 
As is evident from Equations 1-4, the stress-strain 
relationships consist of two parts: linear elastic and a non-
linear plastic expression. Integration of elastic part into 
minimum potential energy formulation is a classical finite 
element problem and is available in literature [19, 20]. 

Integration of non-linear parts of constitutive law is presented 
below.  
If a three dimensional (3-D) stress tensor is defined as 
following, 

{ }
    

    

          

    

    
xx xy xz

yx yy yzij

zx zy zz

σ τ τ

σ τ σ τ

τ τ σ

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

              (5) 

 
The corresponding stress elements for plastic part of Equations 
1 to 4 are given by the following equations.  

1sinh0
0

px
pm xx

ε
σ σ

ε
−=−

⎛ ⎞
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⎝ ⎠

                             (6) 

1sinh0
0

py
pm yy

ε
σ σ

ε
−=−

⎛ ⎞
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⎝ ⎠

              (7) 

1sinh0
0

pz
pm zz

ε
σ σ

ε

⎛ ⎞− ⎜ ⎟=− ⎜ ⎟
⎝ ⎠

              (8) 

1sinh0
0

pyz
pm yz

γ
τ τ

γ
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⎝ ⎠

⎟                (9) 

1sinh0
0

pxz
pm xz

γ
τ τ

γ

⎛ ⎞− ⎜=− ⎜ ⎟
⎝ ⎠

⎟             (10) 

1sinh0
0

pxy
pm xy

γ
τ τ

γ
−=−

⎛ ⎞
⎜⎜
⎝ ⎠

⎟⎟
            (11) 

 
The subscripts pm designate the plastic case for monotonic 
loading. An eight-node HEX element is shown in the following 
figure. The element has eight nodes with each node having 
three degrees of freedom, displacements in x, y and z directions. 

 
Figure 4: An Eight Node Hexahedral Element 
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The nodal displacement vector is denoted by d and ds are x , y 
and z displacements at each node. The displacement at any 
point within the element is denoted by u= [u(x,y,z), v(x,y,z), 
w(x,y,z)]T. 
 

 ,  ,  , ...................... ,  ,  , 1 2 3 22 23 24
Td d d d d d d⎡ ⎤⎣ ⎦=    (12) 

 
As stated earlier, the procedure followed for development of 
new HEX-8 fatigue element are similar to presented by the 
authors in [11-15]. HEX-8 element shown in Figure 4 is 
represented in ξ η ς− −  coordinates or natural coordinates and 
is brick shaped. These displacements are approximated using 
the Lagrange shape functions which satisfy nodal value and 
continuity requirements.  
 
Integration of Equation 5 into Equation 13 provides new K-
matrix for the plastic part of the fatigue constitutive. 

T dV u fdV uTdx u Pi iσ ε∏ = − − − ∑∫ ∫ ∫                              (13)  

Where  is the minimum potential energy, σ is the stress 
tensor, ε is the strain vector, u is the displacement,  f is the body 
force, T is the traction force, and Pi is the point load. V is the 
volume and x denotes the length of the element. 

∏

 
HEX-8 K-Matrices for linear elastic and non-linear plastic parts 
are represented by the following equations. 
 

1 1 1

1 1 1
 0.......24 and 0.......24

K k d d dijem Brick

for i j

ξ η ξ⎡ ⎤
⎣ ⎦= ∫ ∫ ∫− − − −

= =

             (14) 

1 1 1
( )

1 1 1
 0.......24 and 0.......24

K k d d d dijpmpm Brick

for i j

ξ η ξ⎡ ⎤
⎣ ⎦= ∫ ∫ ∫− − − −

= =

          (15) 

Where subscripts em and pm denote the elastic and plastic cases 
respectively. The elements of Kpm-Brick are given in the 
following Equations.  
 

1 i j       for 1, 4,7......22 and  1, 4,7......22
8 11

Q S Qij
k i jij pm R

⎡ ⎤
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1 i j      for 1, 4,7......22 and  3,6,9......24
8 13

Q S Qij
k i jij pm R

⎡ ⎤
⎢ ⎥= = =− ⎢ ⎥⎣ ⎦

  (20) 

1 i j      for 2,5,8......23 and  1, 4,7......22
8 11
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Q S Qij
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Q S Qij
k i jij pm R

⎡ ⎤
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Where Qi , Q j , Sij , R11 , R12 and R13 are given in the following 
table. 

Table 1: Constants for Equations 16 to 24 
 

i / j
 

Qi / j 
 

Sij 
 
R11 , R12 and 
R13 

1 
( )

2
(1 ) 1

L
η ς− − −

2 2
(1 )(1 )

W
ξ ς− − −

3 
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2
1 (1 )

H
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1sinh   0
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i
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Table 1 Continued 
Table 1: Constants for Equations 16 to 24 
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Table 1 Continued 
Table 1: Constants for Equations 16 to 24 
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L and W are length and width of the element respectively. 
Similar equations are developed for cyclic loads. The resulting 
K-matrices are shown in the following equations. 

1 1 1

1 1 1
0.......24 and 0.......24

K k d d dijec Brick

for i j

ξ η ξ⎡ ⎤
⎣ ⎦= ∫ ∫ ∫− − − −

= =

             (25) 

1 1 1
( )

1 1 1
 0.......24 and 0.......24

K k dijpcpc Brick

for i j

d d dξ η ξ⎡ ⎤
⎣ ⎦= ∫ ∫ ∫− − − −

= =

          (26) 

The elements of Kpc-Brick  are the same as given in Equations 16 
to 24 except that the parameters oσ  changes to cσ , εo  changes 
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to 1/C , oτ changes to cτ , γo  changes to 1/Cs and the applied 

stress σ and τ change to peak to peak stress PPσ  and PPτ .  
 
Equations 15 and 26 are non-linear due to presence of “ds” in 
the resulting K-matrices. To account for the non-linear 
behavior, the Newton-Raphson iteration method is applied to 
the analysis [21-23]. These K-matrices are used in Equation 27 
to determine the unknown degrees of freedom.  
[ ]{ } { }K d F=                 (27) 
In order to develop HEX-8 fatigue element with rotational 
capability, the HEX-8 element is modified to have additional 
degrees of freedom per node to include rotation. The Brick 
element developed in Equations 14, 15 and 25, 26 has 8 nodes 
with three translational degrees of freedom assigned to each 
node. The modified element is obtained by adding three 
rotational DOFs in x, y and z direction to each node. This 
modification provides the enhanced HEX-8 Brick element 
with translational as well as rotational capability. The 
procedures for developing the modified HEX-8 Brick element 
are the same as presented in [12] for obtaining QUAD-4 
(Plate) element. Figure 5 shows the modified HEX-8 Brick 
element with 6 DOFs per node. 

 
Figure 5: Modified HEX-8 Brick Element 

  
The new HEX-8 Modified Brick element has the capability to 
model three dimensional components with all the translational 
and rotational degrees of freedoms. The Modified element is 
given by Equation 28. 

                                                                       

K
Kpm BrickPart o

=
−

                                                                                                    

pm Brick Mod o− −
                                                    Kpm BeamPart

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

 

(28) 
 
 
 

4. FINITE ELEMENT PROCEDURES 
A traditional HCF turbine blading system design procedure 
based on conventional fatigue life prediction approach is shown 
schematically in Figure 6. This design process usually consists 
of a structural dynamics analysis to determine natural 
frequencies and mode shapes at certain operating speed ranges 
and a stress analysis using a finite element based tool such as  
MSC NASTRAN and ANSYS [24-26] to calculate the dynamic 
stress distribution for identifying the maximum vibratory stress 
location or area under a series of given excitations. Once the 
maximum stresses for each vibration mode are determined, 
high cycle fatigue assessment can be achieved by measuring the 
margin between the maximum vibratory stress and the material 
fatigue capability which is a straight line drawn between the 
mean ultimate strength at zero vibratory stress and mean fatigue 
strength at 107 cycles (or infinite life). A typical Goodman 
diagram for the titanium alloy Ti-6Al-4V is shown in Figure 7 
[27], constructed using uniaxial fatigue data.  
 

 

Goodman Diagram 

Aerodamping 

Finite Element 
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Good Design
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Figure 6: Conventional Finite Element Analysis approach to 
Fatigue Life Prediction  

 

Goodman Diagram for Ti-6Al-4V for 107 cycles
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Figure 7:  Typical Goodman (or Haigh) Diagram for Ti-6Al-4V 

for 107 cycles [27] 
 
The analysis procedure developed for uniaxial rod and bending 
beam element involves application of cyclic loads and the 
process captures the energy dissipated for each cycle in the 
form of loading and unloading curves. Theses curves form a 
hystresses loop and the area inside this loop provides energy 
dissipated per cycle [11, 12]. A similar procedure is adopted for 
analysis with new HEX-8 Brick element. The loads are applied 
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from 0 to peak to peak. The results are post-processed using 
classical FEA techniques. The nodal displacement results are 
further used to obtain stresses and strains for each element in 
the structure. The 3-D stresses and strains are converted to 
equivalent von-Mises stress and strain. These stresses and 
strains are used to calculate the energy dissipated per cycle and 
ultimately the number of cycles to failure for each element is 
obtained through comparison of cyclic energy to total fracture 
energy of the material. The calculations of energy and 
postprocessing procedures are the same as [11] for 
development of uniaxial rod fatigue element. 
 
In order to verify the HEX-8 element, this element is 
benchmarked against the uniaxial rod element developed in 
[11]. A 3-D beam is meshed with the new HEX-8 elements and 
subjected to uniaxial tension in the x-direction in the form of 
displacement. The mesh discretization of this beam is shown in 
Figure 8. The displacement solution is compared to the solution 
of a 1-D bar meshed with the rod element and subjected to 
uniaxial tension. The beam and rod are fixed at left end and a 
unit displacement is applied at the right most end of rod and 
beam. The linear HEX-8 fatigue K-matrix results are compared 
to the linear 1-D rod solution as well as an ANSYS solution of 
the same problem.  
 

 
 

Figure 8: 3-Element Mesh for 3-D Beam  
(Dimensions in Inches) 

 
The displacement results for linear verification from the HEX-8 
element are shown in the following Figures and are compared 
in Table 2. 

 

 
Figure 9: Displacement Results using HEX-8 Element 

(Dimensions in Inches) 
 

 
Figure 10: Displacement Results using HEX-8 Element in 

ANSYS  (Dimensions in Inches) 
 

Table 2:  Linear Analysis Benchmarking of HEX-8 Element. 
Node 2 Node 3 Node 

4 

1-D 

Bar 

(in) 

ANSYS 

(in) 

Linear 

Code 

HEX-8 

(in) 

1-D 

Bar 

(in) 

ANSYS 

(in) 

Linear 

Code 

HEX-8 

(in) 

 

(in) 

0.333 0.333 0.333 0.666 0.666 0.6666 1.000 

 
As stated earlier, the non-linear analysis requires an iterative 
approach. The non-linear HEX-8 Fatigue K-matrix results are 
compared to the linear 1-D rod solution. The results for non-
linear analysis are shown in the following Figure and a tabular 
comparison is made in Table 3. 
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Figure 11: Displacement Results using Non-linear HEX-8 

Fatigue Element (Dimensions in Inches)  
 
Table 3:  Non-Linear Analysis Benchmarking  
               of HEX-8 Element. 

Node 2 Iteration 
No. Non-Linear 

Axial 
(in) 

Non Linear  
3D  

HEX-8(in) 
1 0.0636458 0.0636162 
2 0.0815309 0.0815113 
5 0.1003474 0.1003213 
9 0.1102611 0.1102112 
10 0.1182828 0.1182121 
12 0.1277408 0.1277129 
35 0.2125675 0.2125277 
49 0.3333354 0.3333911 

Node 3 Iteration 
No. Non-Linear 

Axial 
(in) 

Non Linear  
3D  

HEX-8(in) 
1 0.1351291 0.1351901 
2 0.1731019 0.1731111 
5 0.2130519 0.2130125 
9 0.2341001 0.2341112 
10 0.2511314 0.2511192 
12 0.2712119 0.2712105 
35 0.4513112 0.4512145 
49 0.6666702 0.6665117 

Node 4 Iteration 
No. Non-Linear 

Axial 
(in) 

Non Linear  
3D  

HEX-8(in) 
1-49 1.0000 1.0000 

 
As is evident from the results of Figure 9, 10 and 11 and the 
Tables 2 and 3, the HEX-8 fatigue element analysis compares 
exactly with the 1-D rod fatigue element. These results 
successfully complete the benchmarking of the new HEX-8 
fatigue element. The analysis results performed using this 
element are presented in the following Section.  

5. RESULTS AND DISCUSSION 
The curved plate discussed in [16] is shown in the Figure 
below. This plate is discretized with HEX-8 Modified Brick 
elements. The plate is fixed at one end and is subjected to 
bending load at the other end. The analysis is performed to 
verify that the stress results and the fatigue life prediction with 
the new HEX-8 element correlate with each others. 

 

 
Figure 12: Curved Plate Meshed with Modified Brick Elements 

 
The following Figures present the stress and fatigue life 
analysis results. The stresses are high in the area closer to the 
fixed end. The low fatigue life is predicted at the same 
locations where high stresses are present.   
 

 
Figure 13: Stress Results with Modified Brick Elements (Psi) 
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Figure 14: Fatigue Life Prediction with Modified Brick 

Elements 
 

In order to have a comparison of results from analysis with the 
new brick element to those presented in [16], the curved plate 
meshed with the new brick element is excited to a stress level 
of 25 ksi for 3rd stripe mode and the stress and prediction results 
are compared to the equivalent stress approach prediction 
performed in [16]. Equation 27 is modified for this analysis for 
dynamic analysis [28] as given by Equation 29. 

[ ]{ } [ ]{ } { }
..

M d K d Fcos tω+ =   (29) 

Where M is the mass matrix and ω is the frequency. The 
displacement and stress contours from both the analysis match 
with each other and the maximum stresses are located away 
from the fixed end.  The Figures 15-17 show the displacement, 
vibratory stress and the fatigue life prediction results, 
respectively, for this analysis. 

 

 
Figure 15: 3rd Stripe Mode Shape Results (Brick Element) 

 

 
Figure 16: 3rd Stripe Mode Shape Stress Results (Psi) 

(Brick Element) 
 

 
Figure 17: 3rd Stripe Mode Shape Fatigue Life Results  

(Brick Element) 
 

Table 4 shows a comparison of results from the vibration 
analysis performed on the curved plate meshed with the new 
Brick element. The results match well with the equivalent stress 
approach presented in [16]. 
 
Table 4: Comparison of Brick Element Results with Equivalent 
              Stress Approach 

 Stress 
(ksi) 

FE Analysis 
Equivalent Stress 

Approach 

FE Analysis 
Brick 

Element 
Curved 
Plate 20 9.16 x E5 8.99 x E5 

 
Another set of comparison is made for type 304 stainless steel 
experimental data [17, 18] discussed in Section 2, the 
equivalent stress fatigue life prediction performed in [16] and 
the fatigue analysis results performed using the new HEX-8 
element. The results are shown in Figure 18 and a comparative 
data is presented in Table 5. The life prediction results 
performed using the HEX-8 element show a good match to the 
experiential data as well as equivalent stress approach.  
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Figure 18: Comparison for Fatigue Life Prediction Results for 

Type 304 Stainless Steel  
 

Table 5:  Fatigue Results for Type 304 Stainless Steel 
 Stress 

(ksi) 
Life Cycles 

Experiment 
 

Life 
Cycles 

Eqv. Stress 

Life 
Cycles 
HEX-8 

Percent 
Difference 

(%) 
1 43.5 5044 5250 5235 3.79 
2 46.4 4234 4401 4388 3.65 
3 50.75 3767 3915 3904 3.64 

 
The equivalent stress fatigue analysis discussed in [16] follows 
part of the conventional analysis approach [24-26] as it obtains 
the stresses through dynamic analysis using ordinary HEX-8 
elements. When performing the analysis with the new fatigue 
element developed in this study, the mode shapes and stresses 
are obtained from direct analysis of the component meshed 
with the HEX-8 fatigue elements. Therefore, this analysis in 
comparison to equivalent stress approach skips multiple 
analysis steps and makes the prediction a one step procedure. 
Furthermore, the prediction results with the HEX-8 fatigue 
elements show closer comparison to experimental results as 
compared to the equivalent stress approach.  
 
6. CONCLUSIONS  
The newly developed HEX-8 (Brick) and Modified Brick 
elements provide useful tool for multiaxial fatigue life 
prediction. The results presented in Section 5 show that the new 
Brick element can predict the fatigue life in gas turbine engine 
structural component with improved accuracy. As these 
elements are developed from the energy-based constitutive law 
for fatigue life prediction, analysis with these elements directly 
incorporates the fatigue mechanism into fatigue analysis. Due 
to the discrete nature of finite element analysis, new fatigue 
elements can predict number of cycles to failure at each 
location in a component. The capability of HEX-8 element to 
predict varying fatigue life can provide visual picture of 
fatiguing process across the component. As in the case of 
uniaxial and QUAD-4 elements, the new HEX-8 elements 
developed in this study predict crack initiation whereas most 
research in this area [29-35] is related to crack propagation. 
This fact, along with integration of the fatigue constitutive law 
into the fatigue analysis mechanism, establishes the difference 
of the newly developed HEX-8 element from the existing 
fatigue FEA software and related research.  
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