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ABSTRACT
A fully probabilistic high-cycle fatigue (HCF) risk assess-

ment methodology for application to turbine engine blades is de-
scribed. The assessment uses the Bayesian paradigm of prob-
ability theory in which probability distributions are used to en-
code states of knowledge. Multi-level (or hierarchical) models
are employed to capture engineering knowledge of the factors
important for assessing HCF risk. This structure allows us to use
standard probability distributions to adequately represent uncer-
tainties in model parameters. The model accounts for engine-
to-engine, run-to-run, and blade-to-blade variability as well as
uncertainty in material capability, usage (flight conditions, time
at resonance), and steady and vibratory stresses. Markov chain
Monte Carlo (MCMC) simulation is used to fit observed data to
the engineering models, then direct Monte Carlo simulation is
used to assess the HCF risk.

INTRODUCTION
Turbine engine airfoil high cycle fatigue (HCF) failures have

been a systemic issue for all turbine engine manufacturers and
operators. High cycle fatigue results from vibratory stress cycles
induced by various aeromechanical sources, and has led to the
premature failure of major engine components with substantial
cost and readiness impacts. New probabilistic-based tools and
validation strategies that recognize both the uncertainty of, and
inherent variability in manufactured part, component and engine
geometries, material capability, and usage, are needed now to
ensure the success of future lightweight, robust and competitive

designs.
One such process for applying probabilistic methods to as-

sess HCF risk in the validation phase of engine development is
discussed. The probabilistic HCF risk assessment augments the
deterministic Goodman assessment by explicitly modeling and
quantifying the uncertainties in steady stress, vibratory stress,
and capability. In most cases, the deterministic Goodman-based
approach is an effective means for quantify HCF risk. The pro-
posed approach improves the quantification of HCF risk in cer-
tain situations.

The approach is based on the Bayesian paradigm of proba-
bility theory because it provides a unified, logical, and rationally
consistent approach to reasoning in the presence of uncertainty.
Laplace [1] was the first to employ the theory in a way that could
be appreciated by modern engineers and scientists. His work
was augmented by Jeffreys [2], Cox [3], and Jaynes [4]. More
recent scientific and engineering-based introductions to Bayesian
probability theory and its applications include the works of Bret-
thorst [5], Sivia [6], and Gregory [7]. Advancements in hierar-
chical models and Markov chain Monte Carlo computation as
described by Gilks, et al. [8], Gelman, et al. [9], Gelman and
Hill [10] and Liu [11] have made it practical to analyze more
sophisticated probabilistic models.

LEGACY APPROACH
The legacy process for HCF validation compares a worst-

case vibratory stress to a conservative measure of the material
capability. The limiting stresses are identified and plotted on a
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FIGURE 1. EXAMPLE GOODMAN DIAGRAM FOR DETER-
MINISTIC VALIDATION.

Goodman diagram [12]; a simple example is shown in Fig. 1.
When the responses are below the working limit, the design is
acceptable. Conversely, when stresses are observed at levels ex-
ceeding the Goodman criteria the design must be improved.

PROBABILISTIC APPROACH
In practice, it is not uncommon for a few observed responses

to be near to the allowable working limit. The probabilistic ap-
proach described herein is intended to be used for these responses
to more accurately quantify HCF risk.

The major elements of the probabilistic HCF risk assess-
ment are a: damage accumulation model, component capability
model, usage model, steady stress model, and vibratory stress
model. The elements fit together as shown in Fig. 2 to calculate
the probability of a failure due to high cycle fatigue. The cal-
culated failure probability is compared to an allowable limit to
determine acceptability of the design.

Probability distributions are used to describe states of
knowledge. The notation p(A|BI), read the probability of A given
B and I, characterizes the state of knowledge regarding the plau-
sible values for the proposition A. The vertical bar in p(A|BI) is
referred to as the conditioning bar and all quantities to the right
of it are assumed true, or given as known, when assessing the
probability of propositions. Following the lead of Jeffreys [2]
and Jaynes [4] the symbol I is included in the conditioning list
of all probability statements. This is used to represent all the
other information that defines the problem and led to the current
formulation. It serves as a reminder that no probabilities are ab-
solute.

Cox [3] demonstrated that the simple rules of probability
theory are the uniquely valid principles for ensuring rational
and logically consistent reasoning in the presence of uncertainty.
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FIGURE 2. MAJOR ELEMENTS OF THE PROBABILISTIC HCF
RISK ASSESSMENT.

These rules are the sum rule

p(A|I)+ p(A|I) = 1

and product rule

p(AB|I) = p(A|I)p(B|AI) = p(B|I)p(A|BI)

where the value 0 denotes impossibility and the value 1 certainty.
The notation A is the negation (or denial) of the proposition A;
Tribus [13] discusses the value of explicitly formulating the de-
nial statement A for each proposition A.

Bayes’ theorem is obtained immediately from the product
rule of probability theory

p(B|AI) =
p(B|I)p(A|BI)

p(A|I)

and is frequently expressed as p(B|AI) ∝ p(B|I)p(A|BI). In a
typical scenario, B is a proposition describing a hypothesis and
A a proposition representing the data. Then Bayes’ theorem
quantifies p(B|AI), the posterior probability for the hypothesis
B, as proportional to the prior (to observing the data) probability
p(B|I) and the sampling distribution for the data p(A|BI) (also
known as the likelihood function for B). The sum and product
rules (including Bayes’ theorem) are applied repeatedly to de-
rive the posterior distributions for the parameters of interest. The
works of Sivia [6] and Gregory [7] are two recent, scientifically-
oriented introductions to probability theory as employed herein.

REQUIREMENTS
Specific requirements must be worked out with the appro-

priate government agencies. The Engine Structural Integrity
Program (ENSIP) handbook, MIL-HBDK-1783B [14] recom-
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mends1 that “The probability of failure due to high cycle fa-
tigue (HCF) for any component within or mounted to the en-
gine should be below 1x10-7 per engine flight hours (EFH) on
a per-stage basis, provided the system-level safety requirements
are met.” Similarly, the Federal Aviation Administration (FAA)
regulations specify allowable failure rates for engine-related fail-
ures in Section 33.75 (FAR 33.75 [15]). The allowable rates de-
pend on the severity of the failure; “hazardous engine effects”
must demonstrate a rate less than 10−7 to 10−9 failures per en-
gine flight hour with a clause indicating that “compliance may
be shown by demonstrating that the probability of a hazardous
engine effect arising from an individual failure can be predicted
to be not greater than 10−8 per engine flight hour.”

p(HCF) CALCULATION
For each occurrence of a resonance in the probabilistic as-

sessment, an exposure based on predicted stresses, duration, and
capability is calculated. As more events are accumulated, the
exposure grows and the probability of fracture increases.

After simulating an entire engine lifetime and assessing the
probability of fracture for each blade in the wheel, the results are
combined to determine the overall risk of fracture for the stage.
If multiple failure modes are of concern the results from each
are again combined. The entire process is repeated to assess the
overall risk of a fleet.
For each engine:

• Select a blade set (room temperature frequencies), fr,b
from Eqn. (3).
• Calculate blade mistuning pattern, {α}.
• Select forcing model parameters, σ

(i)
v ,v(i)

0 ,A(i) from the
MCMC sample, Eqn. (9).
• For each blade:

- Select material model parameters (S-N curves),
A(i),B(i),σ

(i)
N from the MCMC sample, Eqn. (12).

- Select “nominal” steady stress value, s0 from
Eqn. (1).

• For each mission (and blade):
- Identify / select performance parameters
- Calculate resonant frequency and crossing speed (ad-
justed by temperature), Eqn. (2).
- Calculate speed-squared adjustment for steady stress,
Eqn. (4).
- Calculate vibratory stress from the forcing model,
Eqn. (8).
- Calculate exposure based on blade frequency and
time at resonance, Eqn. (14)
- Update cumulative exposure, Eqn. (15).

1The handbook is for guidance only and is not to be cited as a requirement.

FIGURE 3. FINITE ELEMENT MODEL OF PURDUE IBR USED
FOR DEMONSTRATING PROBABILISTIC HCF RISK ASSESS-
MENT PROCESS.

Calculate probability of failure for each blade, Eqn. (17).
Calculate probability of failure for stage, Eqn. (18).
Calculate the fleet risk, Eqn. (19).

Example Application
The discussion is presented in terms of the “Purdue”

integrally-bladed rotor (IBR), a test article with 18 blades which
was part of the GUIde program [16, 17]. A finite element model
of the IBR is shown in Fig. 3. The analysis is based on hypothet-
ical strain gage data for a 24 count (24E) vane-pass excitation of
the fifth airfoil-dominated, second torsion (2T) mode. Lab test
data from two IBRs identifies the mean and standard deviation
of the mode frequency as 8070 Hz and 100 Hz, respectively.

Steady Stress Model
The steady stress (at resonance) model is composed of two

pieces. First is a distribution of “nominal” steady stresses that are
expected as a result of the within-tolerance geometric variations
of the blades. Second is a model that describes how the steady
stress varies with crossing speed. This latter model accounts for
both the influence of temperature on resonant crossing speed as
well as the natural scatter in the as-manufactured blade frequen-
cies.

The deterministic model for the steady stress at resonance
is s = s0(N/N0)2 where s0 is the steady stress at the nominal
resonance speed N0 and N is the actual resonance speed. Based
on finite element analyses of various, within-tolerance geometric
data, a Gaussian distribution for the nominal steady stress s0 is
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identified

p(s0|µs0 ,σs0 , I) =
1√

2πσs0

exp

[
−

(s0−µs0)
2

2σ2
s0

]
(1)

where µs0 is the expected value and σs0 the standard deviation of
stress.

The relationship f = EN/60 is used to calculate the reso-
nant speed N (in revolutions per minute) given the engine-order
excitation E (in cycles per revolution) and the frequency of vi-
bration f (in Hz). The dependence of frequency on temperature
is modeled as

f = fr +A(T −Tr) (2)

where T is a temperature (e.g., inlet temperature), Tr a reference
temperature (such as standard day), A a constant, assumed known
for the present analysis, and fr the frequency at the reference
temperature.

In this model, only the reference frequency is treated as un-
certain and modeled with a Gaussian distribution

p( fr|µ fr ,σ fr , I) =
1√

2πσ fr
exp

[
−

( fr−µ fr)
2

2σ2
fr

]
(3)

where the mean µ fr and standard deviation σ fr are estimated
from lab test data; both are treated as known with certainty
in the present analysis. The principle of maximum entropy
[4, 6, 7, 18, 13] shows that the Gaussian distribution is one that
makes a minimal number of assumptions regarding the possible
values of an unknown quantity and one that is frequently consis-
tent with what is known before data are collected. Furthermore,
the Gaussian distribution is a good description of the observed
data.

The conditional probability distribution for steady stress at
resonance is

p(s|s0, fr,A,T,Tr, f0, I) = δ

(
s− s0

[
fr +A(T −Tr)

f0

]2
)

(4)

where δ (x) is the Dirac delta function. This probability distribu-
tion says that, given the value of all of the parameters to the right
of the conditioning bar, the value of stress is unambiguously de-
fined. See Bretthorst [19] or Tribus [13] for more information on
using delta functions as a means of incorporating deterministic
statements into a probability formulation.
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FIGURE 4. SIMULATED VALUES FROM THE STEADY-STRESS
MODEL (DOTS) ALONG WITH THE MEAN (SOLID LINE) AND
90% RANGE (DASHED LINES).

To determine the range of plausible stress values at any given
temperature, the nominal stress s0 and the frequency fr of in-
dividual blades are nuisance parameters and eliminated through
marginalization. This gives

p(s|T,θ , I) =
∫∫

p(ss0 fr|T,θ , I)ds0 dfr

=
∫∫

p(s0|θ I)p( fr|θ I)p(s|s0, fr,T,θ , I)ds0 dfr

(5)
where θ =

{
E,A,Tr, f0,µs0 ,σs0 ,µ fr ,σ fr

}
is short-hand for the

model parameters taken as known in the present analysis. A nu-
merical approximation is obtained via Monte Carlo integration
as

p̂m(s|T θ I) =
1
m ∑

i
p(s|s(i)

0 f (i)
r T θ I)

where s(i)
0 and f (i)

r are independent draws from Eqn. (1) and
Eqn. (3) and the distribution appearing in the summation is
Eqn. (4). For more details on Monte Carlo integration, consult
the works of Liu [11] or Robert and Casella [20].

An example of draws from the distribution Eqn. (5) of steady
stress as a function of temperature is shown in Fig. 4. The black
dots are the simulated values and the red lines show the mean and
90% range of the data as a function of temperature. To highlight
some of the interesting features of the model some of the param-
eter values were artificially set to unrealistic values (the values
used were E = 24,A = −17,Tr = 70, f0 = µ fr ,µs0 = 50,σs0 =
5,µ fr = 8070,σ fr = 100) for the figure.
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Vibratory Stress Model
The vibratory stress model is composed of mistuning and

nominal-blade forced-response sub-models. A distribution of
predicted stresses is produced that includes blade-to-blade, run-
to-run, and engine-to-engine variability. The form of the vibra-
tory stress model is motivated by linear vibration theory [21]
which specifies that the peak vibratory stress µv in a resonant
response is given by

µv ∝
φ T F
2ζ

(6)

where φ is the mode shape, F the unsteady forcing, and ζ the
damping ratio. The notation φ T represents the transpose of the
mode shape vector φ .

Small, within-tolerance geometric variations of airfoils can
cause significant variation in the individual blade mode shapes
and hence peak vibratory stresses [22, 23]. Presently, this mis-
tuning is modeled as φb = αbφ0, b = 1,2, . . . ,18, where φb is the
mode shape of blade b, αb is a mean-normalized mistuning scale
factor and φ0 is the nominal mode shape. The forced-response
amplitude of each blade b is obtained by substituting φb for φ

into Eqn. (6). The mistuned mode shape is a property of the
structure and does not vary with usage.

The forcing F is the same for all blades, but varies with op-
erating condition. For the present example, a linear relationship
between forcing amplitude and pressure is sufficient. The forcing
model is F = β ∗(p)F0 where F0 is the nominal forcing “shape”
and β ∗(p) describes how the amplitude of the forcing varies with
pressure. In practice, not only the forcing amplitude, but also
the shape, or distribution of unsteady pressure across the airfoil
surface, may vary with conditions.

In general, the damping ζ varies from blade-to-blade and
also with conditions (e.g., pressure). Frequently, wide variations
are observed in reported damping values, both between blades
as well as from run-to-run. For this illustration, variations in
damping are ignored and it is treated as a constant, common to
all blades.

Combining all of this information results in the deterministic
model

µv,b = cαbβ
∗(p)

φ T
0 F0

2ζ

= αbβ (p)
= αb [v0 +A(p− pr)]

(7)

for the expected value of the peak vibratory stress µv,b of blade b.
The constants have been absorbed into the force scaling function
β (p) = cφ T

0 F0/(2ζ )β ∗(p). The Gaussian distribution is again

used to describe the knowledge regarding the differences be-
tween the model predictions and the measured data to obtain the
probabilistic model

p(vb|σvαbv0ApI) =
1√

2πσv
exp
[
−

(vb−µv,b)2

2σ2
v

]
(8)

for the vibratory stress vb of blade b with µv,b given by Eqn. (7).
The model parameters αb (all 18 of them), v0, A, and

σv are estimated from the experimental data. Let D ≡
{(v1, p1), (v2, p2), . . . (vn, pn)} represent the measured pressure
pi and vibratory stress vi data from all blades and resonant
crossings collected during engine test. Further, let {α} =
{α1 α2 . . . α18} denote the set of the mistuning coefficients for
each blade on the IBR obtained either from lab testing or time-
of-arrival data from engine test. Assuming that the discrepancies
between the model predictions and the measured responses for
each data point are independent, the posterior distribution for the
unknown model coefficients is

p(σv {α}v0A|DI) ∝ p(σv|I) p({α}|I) p(v0|I) p(A|I)
×∏

i
p(vi|piσvαbv0AI). (9)

The first four quantities on the right hand side are the prior proba-
bility distributions for the model parameters and the final product
represents the data likelihood.

Markov chain Monte Carlo (MCMC) analysis is used to gen-
erate simulations from the joint posterior distribution. The sim-
ulated values

(
A(i),v(i)

0 ,{α(i)},σ (i)
v

)
are used both to summarize

the posterior distribution as well as directly in the Monte Carlo
simulations of fleet risk. This ensures that the structure and all
correlations of the posterior probability density are accurately
captured.

Figure 5 shows example results from the analysis. The top
graph is the fitted mistuned mode shape corresponding to the ex-
perimental data (that is, the values of αb) with the error bars indi-
cating the 95% highest posterior density interval. Note that these
mistuning coefficients are only used to validate the physics-based
mistuning model which is used to predict modes shapes of sim-
ulated wheels. The bottom graphs shows the marginal posterior
probability densities for the parameters A and v0. This is just one
summary of the posterior distribution; a scatterplot of A versus v0
would show the correlation of the two parameters (approximately
-0.7).

Figure 6 is a plot of the measured vibratory stresses versus
the model predictions for three of the observations. The full pos-
terior distribution for the predicted stresses shown in the figure
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FIGURE 5. (TOP) POSTERIOR MEAN AND 95% CONFI-
DENCE REGION FOR MISTUNED MODE SHAPE AND (BOT-
TOM) MARGINAL POSTERIOR DISTRIBUTIONS FOR VIBRA-
TORY STRESS MODEL COEFFICIENTS.

are given by

p(v|pDI) =
∫∫∫∫

p(vσvαbv0A|DI)dσv dαb dv0 dA

=
∫∫∫∫

p(σvαbv0A|DI) p(v|σvαbv0ApI)dσv dαb dv0 dA

where the first term in the integral is given by Eqn. (9) and the
second by Eqn. (8). Again, the integral is readily approximated
with Monte Carlo integration as

p̂m(v|pDI) =
1
m ∑

i
p(v|σ (i)

v α
(i)
b v(i)

0 A(i) pI)

using the MCMC simulated values from Eqn. (9).

Capability Model
The component capability model describes the stress-life (S-

N) characteristics of the part across the HCF range of stresses and
cycles (i.e., 105 cycles and above). This contrasts with the tra-
ditional approach which seeks only to describe a min-capability

M
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s

Predicted Stress

●

FIGURE 6. ACTUAL VERSUS PREDICTED PLOT FROM VI-
BRATORY STRESS MODEL.

lower bound for the strength at a specified number of cycles, usu-
ally 107 or 109, depending on the application.

The following relationship describes the correspondence be-
tween the median number of cycles to failure N and the applied
stress level s

logN = A+
B
s

(10)

The model parameters A and B are initially unknown and must be
estimated from lab testing. The data D from the testing consists
of n pairs of observed values D≡{(N1,s1),(N2,s2), . . . ,(Nn,sn)}
and the observed cycles to failure Ni are related to Eqn. (10) by

logNi = logN + ei.

where ei is the “error” which includes both the imperfections of
the data collection as well as the inadequacies of the simple as-
sumed model. The measured stresses si are assumed to be known
with certainty. Zellner [24] provides a comprehensive treatment
of making inferences with uncertainty in both dependent and in-
dependent parameters (N and s in the present model) and dis-
cusses the limitations of what can be learned from the data alone
in these situations.

The errors ei are assumed to be logically (i.e., statistically)
independent and described by a Gaussian distribution with zero

6 Copyright c© 2011 by ASME



mean and and standard deviation σN . The sampling distribution
for the data that successfully initiate cracks during the S-N test-
ing is

p(Ni|ABsiσNI)=
1

NiσN
√

2π
exp

{
− 1

2σ2
N

[
logNi−

(
A+

B
si

)]2
}

(11)
which is a log-normal distribution in terms of life N. For speci-
mens that do not initiate cracks (also called right-censored, sus-
pensions, or runouts), the sampling distribution is

p(N > Ñi|ABsiσNI) =
∫

∞

Ñi

p(N|ABsiσNI)dN

which is the area under the curve to the right of the censoring
time Ñi.

Direct application of the sum and product rules of probabil-
ity theory provide the posterior distribution for the model param-
eters

p(ABσN |DI) ∝ p(A|I)p(B|AI)p(σN |I)
×∏

i
p(Ni|ABsiσNI)∏

i′
p(N > Ñi′ |ABsi′σNI) (12)

where p(A|I), p(B|AI), p(σN |I) are the prior (to observing the
data) probabilities for the model parameters, i indexes the ob-
served failures, and i′ indexes the runouts.

Markov chain Monte Carlo (MCMC) simulation is used to
approximate the posterior distribution defined by Eqn. (12). The
JAGS (an acronym for Just Another Gibbs Sampler) open-source
software package [25] is one convenient tool for the analysis of
these problems. The result of the MCMC simulation are samples
of A, B, and σN from the joint distribution defined by Eqn. (12).

An illustration of S-N data and Bayesian analysis fits are
shown in Fig. 7. The dots are the test data (open circles represent
runouts). The thick black line is the best fit through the data
and the thin gray lines show other plausible fits based on the
posterior probability distribution for the model parameters given
by Eqn. (12). In addition to visual checks, specific goodness of
fit tests as described by Gelman, et al. [9] are employed to ensure
that the model adequately captures the important aspects of the
observed data.

Shown in Fig. 7 as blue curves are the distributions of ca-
pability at 107 and 108 cycles. The derivation of these curves
follow from straight-forward application of the sum and product
rules of probability theory and these curves are useful for com-
parisons to legacy data analyses that base Goodman curves on
“min-capability” properties at a prescribed number of cycles to
failure.
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FIGURE 7. COMPONENT S-N DATA (DOTS) AND FITS TO CA-
PABILITY MODEL.

The posterior distribution for the number of cycles to failure
at a specified stress level given all of the available information
is obtained by averaging over the plausible values of the model
parameters. The result is

p(N|sDI) =
∫∫∫

p(NABσN |DsI)dAdBdσN

=
∫∫∫

p(ABσN |DI)p(N|sABσNI)dAdBdσN .

While it is difficult to further simplify the above result analyt-
ically, it is easy to approximate the integral using the MCMC
simulations as

p̂m(N|sDI) =
1
m

m

∑
i=1

p(N|A(i)B(i)
σ

(i)
N sI)

where A(i), B(i), and σ
(i)
N are independent, but possibly corre-

lated, draws from the distribution p(ABσN |DI), that is, the result
of the MCMC simulations above.

The posterior distribution for the number of cycles to failure
is a weighted average (or mixture) of log normal distributions.
Figure 8 shows the posterior distribution for the number of cy-
cles to failure for a particular stress level (solid black line) and
the equivalent distribution obtained using the best-fit parameter
values (dashed blue line). The latter curve is a log normal distri-
bution.

Usage Model
The usage model accounts for the variations in operating

conditions of engines. The simplest approach assumes that each
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engine receives unlimited exposure at the worst possible flight
condition. This is similar to Goodman-based approaches used
today and it requires that a fatigue limit be defined. If the un-
limited exposure model predicts an acceptable level of risk of
fracture due to HCF, then no further work need be done.

For illustration, a simplified design mission (duty cycle) is
considered. Full life is 25000 cycles (flights) and the usage is
characterized by two duty cycles, an average flight and heavy,
long-haul mission. The average flight profile is 1.7 engine flight
hours in duration and occurs 85% of the time (≈ 21250 cycles
and 35870 EFH) while the heavy, long-haul profile is a 3 hour
flight occurring the remaining 15% of the time (≈ 3750 cycles
and 11250 EFH). The mission profiles define all engine param-
eters, such as station temperatures, pressures and corrected rotor
speeds.

Variation in sea-level ambient temperature at takeoff is mod-
eled using a Gaussian distribution,

p(Ta|µT ,σT ) =
1√

2πσT
exp
[
− (Ta−µT )2

2σ2
T

]
(13)

with mean temperature µT = 68◦F and the standard deviation
σT = 25◦F. Combining the ambient takeoff temperature with the
mission profile temperature variations defines the temperatures
throughout the mission (specifically, the temperature parameter
as required by Eqn. (4)).

The temperature-time history is combined with the time his-
tory of corrected rotor speed Nc to obtain mechanical speed for
the mission from N = Nc

√
T

Tre f
. Similarly, the resonant fre-

quency versus time using Eqn. (2) and then the associated res-
onant crossing speed is calculated. Each resonant crossing in the

mission is thus identified.

Damage Accumulation Model
The probabilistic analog to Miner’s rule as described by Nel-

son [26, 27] is employed for damage accumulation modeling.
In a deterministic approach, a stress level (typically the peak
value) is associated with each passage through resonance. Ad-
ditionally, a speed (or frequency) bandwidth is assumed, which,
for single-degree-of-freedom (SDOF) responses, is a measure of
the damping. These assumptions approximate the frequency re-
sponse function by a square wave; when appropriate, more ac-
curate SDOF approximations can be used. Combining the stress
level and speed bin with the speed-time history curve, the expo-
sure (or damage fraction) is

εi =
Ni

N0,i
(14)

where Ni is the calculated number of vibratory cycles accumu-
lated and N0,i is the median number of cycles to failure as given
by Eqn. (10) during the ith resonant crossing. The cumulative
damage is

ε(N) =
N1

N0,1
+

N2−N1

N0,2
+ · · ·+ N−Ni−1

N0,i
(15)

and failure is assumed when ε ≥ 1.
The probability model uses the same approximations to cal-

culate the exposure ε (despite some obvious opportunities to
quantify uncertainty). The difference from the deterministic ap-
proach is that rather than defining failure as a cumulative expo-
sure that meets or exceeds 1.0, the exposure function is used to
determine the probability of failure [26, 27] as

p(N|ABεσNI) =
ε ′(N)

ε(N)σN
√

2π
exp
{
− [logε(N)]2

2σ2
N

}
(16)

where ε ′(N)≡ dε

dN = 1/N0,k. The result is still a log normal dis-
tribution and equivalent to equation Eqn. (11) when the specimen
is subjected to a single test. The exposure function ε(N) is sim-
ply a device that modifies the probability distribution parameters
to account for the changing dynamic stress.

Risk Calculation
Define the propositions

Hi ≡ blade i has fractured due to HCF.
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for i = 1,2, . . . ,Nb where Nb is the number of blades (18 in the
present case). Then

p(Hi|N̂ABεσNI) =
∫ N̂

0
p(N|ABεσNI)dN (17)

is the cumulative probability of fracture for a single blade
through vibratory cycle N̂ given the complete stress-time history
as encoded by the exposure function ε(N).

The requirements are specified on a per-stage basis, not a
per-blade basis. Define the proposition

H0 ≡ one or more blades in the stage has fractured
= H1 +H2 + · · ·+HNb .

Then, the rules of probability theory give

p(H0|θ I) = 1−
Nb

∏
i=1

[1− p(Hi|θ I)] (18)

as the probability of fracture due to HCF for the stage per engine
lifetime (θ represents the conditioning parameters of Eqn. (17)).
For very small individual blade risks p(H0|θ I)≈∑ p(Hi|θ I). Di-
viding the result by the number of engine flight hours (EFH)
yields a value appropriate for comparing to the allowable rates
specified by the appropriate regulations.

The fleet risk is estimated as

R =
1

Ne

Ne

∑
k=1

rk (19)

where rk = p(H0|θ I) is the risk of failure for the kth simulated en-
gine. The value R is compared to the requirements to determine
the acceptability of the design. Cruse and Brown [28] suggest
that the risk R be acknowledged as uncertain. Using the samples
rk, the complete posterior distribution for knowledge of the HCF
risk can be quantified and similarly the samples can also be used
to define Bayesian credible intervals [7] of any desired size.

It is useful to also depict the simulation results graphically
as shown in Fig. 9. For this hypothetical example, the red dot
represents the maximum measured vibratory stress and the cloud
of gray the maximum predicted vibratory stress for each of the
simulated engines. The cloud can be thought of as what might
have been reported on a Goodman diagram had different engines
been tested.

In this example, the measured data point falls somewhat be-
low the mean of the simulated values. This result is explained by
the mistuning model which indicates that the IBR used to obtain
the measured data is less responsive than typical.

Steady Stress
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FIGURE 9. OVERLAY OF PROBABILISTIC HCF RISK ASSESS-
MENT SIMULATION DATA WITH LEGACY GOODMAN VALIDA-
TION DATA.

CONCLUSIONS
A methodology for probabilistic HCF risk assessments

based on Bayesian probability theory, in which probability dis-
tributions are used to encode uncertainty in states of knowledge,
has been presented. The methodology was demonstrated via ap-
plication to a simple integrally-bladed rotor using notional data
from laboratory and rig testing. The demonstrated approach de-
scribes the implementation for engine validation and certifica-
tion, but the same framework applies to the engine design and
development phase (with suitable updates to the sub-models).
The validation methodology is intended to be used for cases near
to existing legacy Goodman criteria to better quantify the risk of
HCF fracture. For designs well-below or well-above criteria, the
legacy Goodman-based approach is a simple, prescriptive, and
effective means of quantifying risk.
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