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ABSTRACT 
 

This paper provides a comparative study on accuracy and 

efficiency of metamodels constructed from large datasets. Two 

examples inspired by large industrial applications are used to 

identify the best metamodeling technique. Artificial Neural 

Networks, Radial Basis Functions, Gaussian Process and Non-

linear regression are used to build metamodels. The examples 

used showcase a broad range of industrial applications in 

aircraft engines and gas turbines. Although Radial Basis 

Functions and Gaussian Process models are robust for small 

data sets, their high computational cost for large datasets 

reduces their practical application. ANN models are found to 

perform optimally when large number of training points are 

readily available and the accuracy requirements are high. 

 
INTRODUCTION 

 Simplified approximate models of data generated by 

experiments and high-fidelity simulation models are called 

metamodels. Metamodels are now widely accepted and used in 

many industries for complex engineering system design studies 

where many design-evaluate-redesign cycles are required [1, 2]. 

When accurately built, metamodels can be used to replace 

expensive simulation models to enable practical and affordable 

optimization and probabilistic design studies [3, 4]. Most of the 

existing studies describe replacing slow running simulations as 

the primary use of metamodels [5, 6, 7]. Thus, the comparative 

studies on accuracy and efficiency of the metamodeling 

techniques have been performed based on a limited number of 

training data generated from expensive simulations [8]. The 

construction and usefulness of metamodels built using large 

datasets has not been studied in detail. However, there are many 

engineering applications where thousands (or more) of data 

points are readily available.  These situations include field test 

data such as engine flight data, existing data from past 

simulation runs, etc. If processed correctly, these datasets can 

be used to build very useful metamodels for fast executing 

prediction of the relationships between engineering system 

inputs and outputs. Some typical applications include 

prognostics and health monitoring (PHM), onboard control 

systems requiring high accuracy and fidelity, etc.  

 

This paper provides a comparative study on accuracy and 

efficiency of metamodels constructed from large datasets. 
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“What is the best metamodel to use?” is a highly subjective 

question that depends on many factors such as the number of 

design parameters, the size of training data set, presence or 

absence of noise and outliers, required accuracy for predictions, 

speed of execution, etc. For example, some applications require 

very high accuracy (~0.1% error) for predictions but the data 

set may not have any noise or outliers. Other applications have 

very noisy data, however, the metamodels are required to 

predict only the trends and shifts accurately rather than actual 

values. The above examples are at two opposite ends of the 

requirements spectrum. Clearly, the same metamodeling 

technique may not be able to satisfy both requirements. The 

goal of this study is to identify the best metamodeling technique 

for the former case, i.e., large dataset with high accuracy and 

smoothness requirements. The metamodeling techniques to be 

compared include Artificial Neural Networks (ANN) [9, 10, 

11], Radial Basis Functions (RBF) [12, 13], Gaussian Process 

(GP) [14, 15] and Nonlinear Regression (N-LR) [16, 17]. A 

brief introduction of some of the above metamodeling methods 

is given below. 

 

Gaussian Process (GP) Metamodels 
 

Gaussian process is a non-parametric metamodeling 

technique. GP models are built by first calculating a stationary 

or non-stationary covariance matrix of the training data. The 

stationary and non-stationary covariance functions are listed in 

Equations (1) and (2). 
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where 1θ is the vertical scale amplitude, 2θ  is the vertical 

offset (mean), lr is the “radius of influence” of each lx ,  L is 

the number of input variables and 3θ  is an independent noise 

parameter. 

 

The hyper parameters of the GP model are calculated by 

minimizing the following objective function: 
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where Ny   is the vector of the output variable Y from the 

training data set, )(θP  is the prior distributions of the 

optimized parameters, NC is the covariance matrix. Since the 

objective function is generally complex with many local 

minima, global optimization techniques such as genetic 

algorithms are used to solve the optimization problem. 

 

Based on the covariance matrix and the inverse of the 

covariance, the Gaussian process computes the predictions as 

listed below. 
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Radial Basis Function Metamodels 
 

Radial Basis Functions (RBF) are non-parametric models 

similar to GP models [18, 19]. This method uses linear 

combinations of radially symmetric functions based on 

Euclidean distance or other such metric to approximate 

response functions. A simple RBF kernel can be written as: 
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where iλ  are interpolation coefficients to be determined, N is 

the number of sample or training data points. The radial basis 

functions ϕ are functions of the Euclidean norm 

2ixx − from node i,  which is the radial distance r of the 

point x from the center  ix .  

 

The unknown interpolation coefficients iλ can be determined 

by minimizing the norm J [20,21] given in  
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Artificial Neural Network (ANN) Metamodels 
 

ANNs used for building meta-models that fit data consist of 

two layers: a sigmoid layer followed by a linear output layer. It 

is known that neural networks with a sigmoid layer along with a 

linear output layer can be trained to approximate functions with 

finite number of discontinuities [22]. The process of training a 

multi-layer network by changing its weights and biases is called 

backpropagation [23]. The hidden sigmoid layer consists of p 

neurons and the input vector {x} has m elements. The weight 

matrix W1 of the hidden layer is of size p x m. In general, the 

layer names are given based on the functions used in the layer. 

 

 

In the case of a multi-layer network, the output of a 

preceding layer becomes the input for the next layer. Thus, the 

output from a two layer network is calculated in two steps as 

listed below. 
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where  W is the weight matrix of the hidden layer 

  x is the input vector 

  f  is the function in the hidden layer  

  b is the bias vector in the hidden layer 

             { }y′  is the output of the hidden layer 

  Lf is the output function 

  OW is the output layer weight vector 

  Ob is the output layer bias 

  y is the ANN prediction (output) 

 

 

 Large data sets inspired from industrial applications with 

varying degrees of nonlinearity are used to assess the modeling 

techniques. Although there is no “silver bullet” that satisfies all 

requirements, a clear winner emerges for particular set of 

requirements and available datasets.  

 

It should be noted that the examples are only inspired by 

industrial applications and bear no resemblance to actual 

datasets used in GE aircraft engine or gas turbine applications. 

 

APPLICATION-A 
 

This first application is an example dataset that reflects the 

size and non-linearity of many datasets used in control systems. 

The data contains three independent variables and one 

dependent variable. The scaled dataset is shown in Figure 1. 

Note that the response is plotted on the vertical axis with the 

third independent parameter (X3) shown as colors. This rather 

unusual plot was chosen to highlight the variation in both the 

independent and dependent variables. 

 

 
Figure 1 Non-linear dataset with three independent 

parameters (Y axis values removed intentionally). 

 

The above dataset is medium sized with ~1400 points. The 

requirements for the metamodels are the following: 

 

• Maximum absolute prediction error 0.5 % 

• Predictions between grid locations and off-grid 

locations should be smooth 

 

Although the nonlinearity in the dataset is uniform for most of 

the data range, the strict accuracy requirements over the entire 

range of independent parameters coupled with the smoothness 

requirement make this problem challenging. 

 

The following metamodeling techniques were used to compare 

their performance in modeling the above dataset: nonlinear 

regression, Radial Basis Functions (RBF), Gaussian Process  

(GP) and Artificial Neural Networks (ANN).  

 

All the available points (1441) were used to build the nonlinear 

regression model. The RBF and GP models were built using 

100 points extracted from the original dataset using points that 

are closest to an optimized Latin-hypercube (OLH) design with 

the same range for the independent parameters. Fewer points 

were used for GP and RBF models because the computational 

cost for building GP and RBF models with greater than 300 

points is prohibitive. Since there are three independent 

parameters, ideally training points greater than 30 should 

suffice to produce accurate RBF and GP models. Ten points 

were used to cross-validate the RBF model. The RBF constant 

was optimized to reduce the cross-validation error. A genetic 

algorithms (GA) based optimizer was used to optimize the 

hyperparameters for generating an interpolant GP model.  
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Two ANN models were built: one with the same training points 

as the GP and RBF models and another ANN model was built 

using 70 % (1008) of the dataset as training points and 15 % 

(216) each for validation and testing. A two layer ANN with 

hidden sigmoid layer combined with a linear output layer was 

used. Forty nodes were used in the sigmoid layer. The 

Levenberg-Marquardt [24, 25, 26] algorithm was used to 

optimize the weight matrices and bias vectors of the ANN nodes 

with an objective to minimize the root-mean-square (RMS) 

error of predicted values.  

 

Metamodel Accuracy 
 

The quality metrics for model predictions of the above models 

are listed in    Table 1. The mean (L1 norm), root mean-squared 

error (RMSE) and maximum absolute errors were calculated 

from predictions at all available data points using the following 

formulae. 
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where  
pred

iY  are the predicted values 

 
actual

iY  are the actual values 

 n  is the total number of data points 

 

   Table 1 Prediction errors of various metamodels. 

Model Mean 

Error 

RMSE 

 

Max. Abs. 

Error 

(%) 

ANN (100 pts) 5.92 8.65 1.83 

RBF (100 pts) 5.53 8.78 3.31 

GP (100 pts) 6.65 12.33 4.77 

N-LR (1440 pts) 10.76 13.67 2.95 

ANN (1000 pts) 1.23 1.62 0.48 

 

 

The metrics in   Table 1 alone are insufficient to assess whether 

the metamodels have satisfied the requirements stated above. 

Figures 2-6 show regions in the dataset with errors greater than 

0.25 % (maximum allowable error is 0.5 %).  

 

 

 

 
Figure 2 Points with ANN prediction error > 0.25 % (1000 

training points). 

 

 

 
Figure 3 Regions with ANN prediction error > 0.25 % (100 

training points) 
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Figure 4 Data regions with RBF prediction error greater 

than 0.25 %. 

 
Figure 5 Regions with GP prediction error > 0.25 %. 

 
Figure 6 Data regions where non-linear regression 

predictions have error greater than 0.25 %. 

 

The performance of ANN, GP and RBF models with 100 

training points are very similar. However, ANN models were 

fastest to build followed by RBF models. GP model building 

was the most computationally costly. For example, on a dual 

core 2 GHz PC with 3 GB of RAM, the ANN models were built 

under a minute, RBF models were built in 3 minutes and GP 

model building took 6 minutes. 

 

Clearly, the ANN model with 1000 training points has excellent 

performance with only 6 points having prediction errors greater 

than 0.25 %. The points with high error (>0.25%) lie on the 

boundaries of the dataset suggesting that the accuracy can be 

improved by extending the range of the data used to build 

models beyond the required limits.  

 

The comparison between ANN with 1000 training points and 

GP, RBF models is not entirely fair because the ANN model 

used 1000 training points whereas the GP and RBF models only 

used 100. However, lower number of points was used for GP 

and RBF models due to their inefficiency in handling large 

datasets. Comparing RBF and GP models, GP performs better 

even though the maximum errors predicted by GP are higher 

than RBF predictions. This is because, GP predictions have 

very good accuracy in the central portion of the dataset 

compared to the RBF predictions with ~1% error in the same 

region (near 0.5,0.5,0.5). Also, the GP models perform poorly 

near the border of the data region. If we restrict the model 

predictions to near the central region, GP’s performance would 

be comparable to ANN. This is a significant advantage in 

applications where evaluating each point is expensive and 

applications with detectable noise. If the signal to noise ratio in 

the dataset is low, one can use GP to build accurate models with 

filtered data. 

 

The non-linear regression model performs poorly for this 

application. Even though the maximum number of training 

points was used to build the regression model, the prediction 

errors are high in the entire data space and not only at 

boundaries. The resulting regression model is the simplest of 

the models considered. However since the non-linearity of the 

dependent variable is not significant, one might expect the 

regression model to behave comparably to the RBF or GP 

models. Clearly, this is not the case. It should be noted that one 

could build more accurate regression models by transforming 

the data. This case is not shown here to preserve consistent 

processes for all the metamodels considered. Even with 

transformation, it may not be possible to reach the accuracy of 

ANN predictions. 

Metamodel Smoothness at Off-grid Points 
 

The above results only verify the accuracy requirement. The 

best metamodeling approach for this example should also 

satisfy the smoothness requirement. All the above metamodels 

were used to predict the dependent variable by fixing X2 and 

5
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X3 at a constant value and varying X1 from 0 to 1 in intervals 

of 4.5 × 10
-5

. The results are shown in Figure 7. The real values 

are almost identical to the ANN model predictions. Only the N-

LR model predicts the behavior similar to the actual data. Both 

RBF and GP models exhibit spurious oscillations.  

 
Figure 7 Smoothness of metamodel predictions with finely 

varying X1. 

 

 

The results of varying X2 by 5.2 × 10
-5

 are shown in Figure 8. 

Although all metamodels predict varying degrees of nonlinear 

behavior, non of the models except ANN predict the true 

nonlinearity of the dataset. 

 
Figure 8 Checking smoothness of metamodels predictions 

by varying X2 in fine intervals. 

 

A similar exercise was performed by fixing X1 and X2 at 

constant values and varying X3 in intervals of 1.8 × 10
-4

. The 

predictions from all the above metamodels are shown in Figure 

9. In this case, the GP model exhibits similar behavior to the 

actual data. The N-LR and RBF models do not even capture the 

correct behavior qualitatively.  

 
Figure 9 Finely varying X3 to capture metamodel 

inaccuracies. 

 

Metamodel Interpolation Accuracy 
 

To test the interpolation capabilities of the ANN model, we 

removed the data corresponding to X2 = 0.5 to build another set 

of ANN and regression models. These models were then used to 

predict at the removed points. This was done to calculate the 

interpolation error accurately.  

 

The predictions from ANN and regression models are shown in 

Figure 10 and Figure 11 respectively. Clearly, the ANN model 

predictions satisfy both accuracy and smoothness requirements 

whereas the regression model predictions satisfy neither of the 

requirements.  

 

 
Figure 10 Interpolation error of ANN model at X3 = 0.5, 

colors correspond to errors. 
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Figure 11 Interpolation error of regression model at           

X3 = 0.5, colors correspond to errors. 

 

Although 70 % of the points were used for training, the 

smoothness check verifies that the ANN model retained 

generality and accuracy. Thus, based on the accuracy and 

smoothness requirements, we can conclude that for the 

applications similar to the above example, ANN is the best 

choice.  

APPLICATION -B 
 

The data contains three independent variables and one 

dependent variable. The scaled dataset is shown in Figure 12. 

Figure 13 shows a 2 dimensional view of the data. The dataset 

is comprised of ~14000 points. It is representative of the 

nonlinearity and size of the datasets typically used in gas 

turbine applications. Clearly the non-linearity within the same 

family of curves and between separate families are significantly 

more pronounced than the previous example. The maximum 

allowable error is 1 % and the predictions are required to be 

smooth at non-training points. This application is a large dataset 

considering the strict accuracy limits required for metamodels 

predictions. 

  

 
Figure 12 Representative dataset used in gas turbine 

applications. 

 

 
Figure 13 2D view of representative gas turbine data set. 

 

 

A similar procedure as described in application A was used to 

build metamodels for this example. Non-linear regression 

models were built with 9750 points. RBF and GP models were 

built using 100 points closest to an OLH population. Two ANN 

models were built as before: one with 100 points used for GP 

and RBF models and another with 70 % of the points as training 

points. Thirty nodes were used in the sigmoid layer of the ANN 

model. 

 

The accuracy of the various metamodel predictions are listed in 

Table 2. The mean (L1 norm), root mean-squared error (RMSE) 

and maximum absolute errors were calculated from predictions 

at all available data points. 

 

7



  Copyright © 2011 by ASME 

Table 2 Prediction errors of various metamodels. 

 

Model Mean 

Error 

RMSE 

 

Max. Abs. 

Error 

(%) 

ANN (100 pts) 2.72 5.97 20.2 

RBF (100 pts) 1.79 3.71 23 

GP (100 pts) 1.43 2.99 19.8 

N-LR (9750 pts) 3.31 4.80 22.8 

ANN (9750 pts) 0.15 0.23 0.89 

 

From Table 2, it may seem that only the ANN model with large 

training points satisfies the accuracy requirements. However, 

focusing on regions with high error yields a better picture of 

model accuracy. The model predictions with error greater than 

0.5 % are shown in Figures 14-17. The large errors in the ANN 

model (with 9750 training points) are limited to a few points at 

the corner of the data boundary as before. These points are not 

critical to the application and the error can be reduced 

significantly by increasing the data range beyond the operating 

limits of the metamodels. 

 

 

 

Although the maximum errors predicted by RBF, GP and N-LR 

models are very high, the maximum error is only at a localized 

point on the corner of the dataset as seen in Figures 15-17.  

 

 
Figure 14 ANN (9750 training points) model predictions 

with error greater than 0.5 %. 

 

 
Figure 15 ANN (100 training points) prediction error. 

 

 
 

Figure 16 Data regions with RBF model prediction error 

greater than 0.5 %. 
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Figure 17 GP model prediction regions with error > 0.5%. 

 

 
Figure 18 Regression model prediction regions with error 

greater than 0.5 %. 

 

 

Metamodel Interpolation Accuracy 
 

To test the interpolation capabilities of the ANN model, we 

removed the data corresponding to X1 = 0.19 to build another 

set of ANN models. These models were used to predict the 

dependent variable at the removed points. This was done to 

calculate the interpolation error accurately.  

 

The predictions from ANN and N-LR models are shown in 

Figure 19 and Figure 20. The behavior is very similar to that 

observed in the previous application; ANN outperforms 

regression model in all cases.  

 

 
Figure 19 ANN predictions at the removed points with error  

greater than 0.1 %. 

 

 

 
Figure 20 Non-linear regression predictions with errors 

greater than 0.1 %. 

 

 

The model build times for this application are listed in Table 3. 

The ANN model is the most efficient in terms of model building 

and model prediction time. 

 

Table 3 Model build time comparison. 

Model Build Time 

ANN (100 pts) 1-2 min 

RBF (100 pts) 4-5 min 

GP (100 pts) 5-10 min 

N-LR (9750 pts) 1 min 

ANN (9750 pts) 2-4 min 
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From the above results, ANN models clearly outperform the 

other three metamodeling techniques. Although for the same 

number of training points GP and RBF perform similarly to 

ANN models, the quantity of data is not a limiting factor for this 

application. Thus, when large data sets are available, GP and 

RBF do not provide any advantages over ANN models. In fact, 

due to the prohibitive optimization runs required by both GP 

and RBF models, it may not be possible to build highly accurate 

models when the data sets are large and the nonlinearities are 

severe. 

 

 

 

 

CONCLUSIONS 
 

A comparative study on accuracy and efficiency of 

metamodels constructed from large datasets was performed. 

Large datasets inspired from industrial applications were used 

to test several metamodeling techniques including Artificial 

Neural Networks, Radial Basis Functions, Gaussian Process and 

Non-linear regression. The examples are illustrative of a wide 

range of industrial applications in aircraft engines and gas 

turbines. Although Radial Basis Functions and Gaussian 

Process models are robust for small data sets, it was shown 

using multiple examples that they are not efficient enough when 

applied to large datasets with high nonlinearity.  

 

It was found that when sufficiently large data is available, 

ANN models outperform the other three modeling techniques in 

terms of accuracy and prediction smoothness.  
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