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ABSTRACT 

 
The accuracy of probabilistic risk assessment of rotor disks 

is strongly dependent on the accurate description of the size and 
shape distributions of anomalies in alloys. These size-shape 
distributions of anomalies are often derived from planar 
sectioning data measurements using stereological unfolding 
algorithms. Since it is impossible to accurately predict the 
shape and orientation parameters of a general ellipsoid based on 
measurements obtained from two-dimensional sectioning data, 
the anomaly model should be limited to a spheroid. In this 
study, an unfolding algorithm was implemented and verified 
that can be used to estimate the probabilistic dimensions and 
orientations of 3D spheroids based on 2D section data. It is 
shown that the accuracy of the predicted spheroid model is 
dependent on the number of sections and the discretization of 
the mesh used to characterize the data.  

 
NOMENCLATURE 

 
݂ሺݎሻ = PDF of the radius of circular profiles 

஺ܰ = Number of section profiles per unit area 
௏ܰ  = Number of 3D anomalies per unit volume 

 Transformation matrix (anomaly size dependent) =  ۾
 Transformation matrix (anomaly shape dependent) =  ۿ
 Major caliper parameter of a spheroid =   ݑ
 Major caliper parameter of the elliptical profile of a =    ݏ

spheroid 
 Shape parameter of a spheroid =    ݒ
 Shape parameter of the elliptical profile of a =    ݐ

spheroid 
FV(u,v)  = Bivariate size-shape distribution of a spheroid 
FA(s,t) = Bivariate size-shape distribution of the elliptical 

profile of a spheroids 
 

1 INTRODUCTION 
 
The presence of rare metallurgical and manufacturing 

anomalies in turbine disks can contribute to uncontained 
aircraft engine failures that can lead to catastrophic disasters 
such as the crash landing at Sioux City, Iowa, in 1989 [1,2].  As 
a result, probabilistic methodologies have been developed to 
address the uncertainties associated with fracture-mechanics-
based life prediction of aircraft engine components [3-5]. 
Comprehensive design systems have been developed for the 
routine assessment of rotors and disks that may contain inherent 
material anomalies [6-9].  These methodologies provide the 
capability to quantify the risk of fracture associated with rare, 
life-limiting events such as inherent material and manufacturing 
anomalies that occasionally occur during processing.  The use 
of probabilistic methods for risk assessment is now an 
established practice in the international gas turbine engine 
industry.  For commercial aircraft engines, regulatory agencies 
recommend probabilistic approaches as part of the certification 
process, as summarized in several recent U.S. Federal Aviation 
Administration (FAA) Advisory Circulars [10-12]. 

The accuracy of probabilistic risk assessment 
methodologies is closely dependent on the accurate description 
of the size and shape distributions of anomalies in alloys. In 
some alloys, this is the dominant random variables affecting the 
probabilistic risk of fracture [9, 13-14]. Usually, it is very 
difficult to directly measure the size and shape distributions 
of 3D anomalies. Indirect anomaly measurement techniques are 
available, such as Heavy Liquid Separation (HLS) and 
metallographic examination.  

These methods provide 2D information that must be 
transformed to predict 3D anomaly dimensions. This is a 
typical problem in stereology, which is the science of 
estimating higher dimensional information from lower 
dimensional samples. Wicksell’s corpuscle problem is one of 
the classic problems in stereology [15-16]. He developed an 
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algorithm to estimate the size distribution of spheres from the 
size distribution of circular profiles in planar sections [15]. 
Wicksell later considered the problem of estimating the size and 
shape distribution of ellipsoids from data measured on the 
ellipses on planar sections [16]. Although he was able to set out 
a general relationship linking the moments of the conventional 
“diameters” of the ellipsoids and the elliptical profiles, 
Moran [17] and Cruz-Orive [18-19] proved that the ellipsoid 
problem is indeterminate. They concluded that the equation for 
the general stereological problem has unique solutions only for 
particular families of ellipsoids called spheroids, which are 
biaxial ellipsoids. The spheroids may have random size and 
shape, not necessarily independent from each other, but they 
must all be either prolate or oblate for a given model. For 
prolate spheroids (elongated “football” shape) the major axis is 
the rotator axis, whereas the minor axis is the rotator axis for 
oblate spheroids (flattened “pancake” shape).  

In this paper, a stereological unfolding algorithm was 
implemented and verified that can be used to estimate the 
probabilistic dimensions and orientations of 3D spheroids based 
on 2D sectioning measurements. The general stereological 
equation is presented, and an algorithm is described for solving 
the equation numerically for both prolate and oblate spheroids. 
The algorithm is then applied to a numerical example where the 
accuracy of the algorithm is assessed considering the two 
primary sources of error (statistical and discretization errors). 

 
2 THE SPHERICAL PARTICLE PROBLEM 
  
 A general stereological methodology must account for 
ellipsoidal anomalies of various sizes, aspect ratios, and 
orientations.  To gain an understanding of the equations, it is 
useful to first assess the simpler sphere problem, which was 
first presented by Wicksell [15]. Wicksell’s analytical approach 
requires differentiation of the intercepted size distribution. 
However, the distribution of circular profiles obtained from 
experiments is not an analytically smooth profile. Scheil (1931) 
first addressed this problem by dividing the data into bins [20]. 
A number of improved methods were later developed based on 
this discretization approach and the most popular method is the 
Schwartz-Saltykov method [20, 21]. In this approach, the sizes 
of the both the particles and their section profiles are divided 
into an equal number of bins so that the initial differential 
problem is reduced to a linear algebra problem. Here we 
illustrate how the Scheil-Schwartz-Saltykov’s discretization 
method is derived from the analytical continuous size 
distributions.  
 Consider a volume containing uniformly distributed 
spherical particles with radii ranging from 0 to R.  If the spheres 
are randomly sectioned by a number of parallel planes, the radii 
of circles in the planar sections will also fall in the range from 0 
to R. However, the probability density function (PDF) of the 
sphere radius is not identical to the PDF of the circle radius. In 
essence, the stereological unfolding problem is to estimate the 
sphere radius PDF from the circle radius data observed in the 
planar sections. This problem is illustrated in four steps: 

(1) random sections of a single sphere; (2) random sections of a 
volume with spheres of the same size; (3) random sections of a 
volume with spheres of two different sizes; and (4) random 
sections of a volume with spheres with radii between 0 and R.  

 
2.1 Random Sections of a Single Sphere 
 

Consider a sphere with radius R is sectioned at a distance ݔ 
from its center, as shown in Fig. 1. The radius of the circle in 
the section is given by 
 
ݎ  ൌ √ܴଶ െ ,ଶݔ ݔ א ሺ0, ܴሻ ሺ1ሻ 
 

If the sphere is sectioned repetitively at random locations, 
(i.e., ݔ is uniformly distributed between 0 and ܴ, so that 

݂ሺݔሻ ൌ
ଵ

ோ
, ݔ א ሺ0, ܴሻ) then the PDF of the circle radius is 

given by ሺFig. 2ሻ 
 
 ݂ሺݎሻ ൌ

ଵ

ோ

௥

ඥோమି௥మ
, ݎ א ሺ0, ܴሻ ሺ2ሻ 

 
 

 

Figure 1.  General sphere and associated circular profile at 
a random planar section. 
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Figure 2.  Probability density function of the radii of circular 
profiles ݂ሺݎሻ generated by sectioning a sphere at random 
locations. 
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2.2 Random Sections of a Volume with Spheres of the 
Same Size 

 
If a volume with randomly distributed spheres of the same 

size is sectioned on random planes, some particles may be 
sectioned and some may not. The number of spheres that come 
in contact with a section plane is proportional to the number of 
spheres per unit volume ௏ܰ.  Given a unit volume with ௏ܰ 
spheres of radius ܴ per unit volume, the number of circular 
profiles per unit ஺ܰ area is equal to the number of spheres that 
are sliced by the section plane. As shown in Fig. 3, all spheres 
with centers falling within thickness of 2ܴ will be counted. The 
number of sliced spheres is given by   
 
 ஺ܰ ൌ 2 ௏ܴܰ (3) 
 

Sectioning a volume with randomly distributed spheres of 
the same size is similar to sectioning a single sphere at random 
locations. Therefore, the ஺ܰ circular profiles have the same size 
distribution given in Eq. (1). The number of circular profiles 
with radii between ݎ and ݎ ൅   ,is given by ݎ݀
 
 ݀ ஺ܰ ൌ ஺݂ܰሺݎሻ݀ݎ ൌ 2 ௏ܴ݂ܰሺݎሻ݀(4)  ݎ 
 

Therefore, the number of circles within size range ሺݎଵ,  ଶሻݎ
is  

׬  ݀ ஺ܰ  
௥ଶ

௥ଵ ൌ 2 ௏ܴܰ ׬ ݂ሺݎሻ݀ݎ
௥ଶ

௥ଵ   (5) 
 
 
2.3 Random Sections of a Volume with Spheres of 

Two Sizes  
 
 Consider next a volume containing randomly placed 
spheres of two distinct radii R/2 and R with ௏ܰଵ and ௏ܰଶ, 
spheres per unit volume, respectively. If the spheres of each 
size are considered separately, the problem can be solved for 
each sphere using Eq. (2).  The distributions for the two sphere 

sizes ranging from ݎ א ቀ0,
ோ

ଶ
ቁ and ݎ א ሺ0, ܴሻ are shown in 

Figs. 4(a) and (b), respectively.  The total size distribution, 
 

 
 

Figure 3.  A unit volume with randomly placed spheres 
intersected by an arbitrary plane. 
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Figure 4.  PDF of the radii of circular profiles associated 
with spheres of one or two deterministic radii (a) R/2, (b) R, 
and (c) combination of R/2 and R. 

 
which consists of circular profiles from spheres of both sizes 
can be obtained by superimposing the contributions from each 
size, as shown in Fig. 4(c). 

As an illustration, suppose the circle radius values are 
divided into two bins with size ranges ሺ0, ܴ 2⁄ ሻ and ሺܴ 2⁄ , ܴሻ. 
The number of circles in each bin ( ஺ܰଵ and ஺ܰଶ) can be derived 
as follows. The circular profiles of spheres of size ܴ 2⁄  all fall 
with the size range ሺ0, ܴ 2⁄ ሻ. Substituting sphere radius and 
size range into Eq. (5) yields, 
 

 ஺ܰଵ,ଵ ൌ ஺ܰଵ ൌ 2 ௏ܰ ቀ
ோ

ଶ
ቁ ׬ ݂ሺݎሻ݀ݎ

ೃ
మ

଴ ൌ ௏ܰଵܴ ׬ ݂ሺݎሻ݀ݎ
ೃ
మ

଴  (6) 



 4 Copyright © 2011 by ASME 

where ஺ܰଵ,ଵ is the number of circular profiles resulting from 
spheres of size ܴ 2⁄ .  

The circular profiles of spheres with radius R range 
between ሺ0, ܴሻ. Similarly, substituting size ranges of each bin 
into Eq. (5) yields  
 

 ஺ܰଵ,ଶ ൌ 2 ௏ܰଶܴ ׬ ݂ሺݎሻ݀ݎ
ೃ
మ

଴ ,  for size bin ሺ0, ܴ 2⁄ ሻ (7) 
 

 ஺ܰଶ,ଶ ൌ 2 ௏ܰଶ ׬ ݂ሺݎሻ݀ݎ
ோ

ೃ
మ

, for size bin ሺܴ 2⁄ , ܴሻ (8) 

 
The total number of circles per unit area in bin ሺ0, ܴ 2⁄ ሻ,  

஺ܰଵ, can be obtained by adding up the contributions from 
spheres of both sizes given in Eqs. (6) and (7). 
 
 ஺ܰଵ ൌ ஺ܰଵ,ଶ+ ஺ܰଵ,ଶ ൌ 

 ௏ܰଵܴ ׬ ݂ሺݎሻ݀ݎ ൅  2 ௏ܰଶ ׬ ݂ሺݎሻ݀ݎ
ோ ଶ⁄

଴

ೃ
మ

଴  (9) 
 

Only spheres of size ܴ contribute to the relative frequency 
of the circular profiles in bin ሺܴ 2⁄ , ܴሻ , ஺ܰଶ. Therefore 
 

 ஺ܰଶ ൌ ஺ܰଶ,ଶ ൌ 2 ௏ܰଶܴ ׬ ݂ሺݎሻ݀ݎ
ோ

ோ/ଶ  (10) 
 

Rewriting the above two equations in matrix form, we have 
 

 ቎
ܴ ׬ ݂ሺݎሻ݀ݎ

ೃ
మ

଴ 2ܴ ׬ ݂ሺݎሻ݀ݎ
ೃ
మ

଴

0 2ܴ ׬ ݂ሺݎሻ݀ݎ
ோ

ೃ
మ

቏ ൤ ௏ܰଵ

௏ܰଶ
൨ ൌ ൤ ஺ܰଵ

஺ܰଶ
൨ (11) 

 
Since the analytical form of ݂ሺݎሻ is given in Eq. (2), the 

elements of the coefficient matrix can be calculated 
analytically. Therefore, the size distribution of spheres can be 
obtained by solving the above linear equations. 

 
2.4 Random Sections of a Volume with Spheres of 

Radii Ranging from 0 to R 
 
Consider a volume with randomly distributed spheres with 

radius range ሺ0, ܴሻ. Suppose the size of spheres and their 
circular profiles are divided into ݊ bins of equal width ܴ/݊. 

஺ܰሺߙሻ is the relative frequency of circular profiles within the 

ߙsize bin ൬ሺ ݄ݐߙ െ 1ሻ ோ

௡
, ߙ

ோ

௡
൰, ߙ ൌ 1, ݊തതതതത.  ௏ܰሺ݅ሻ is the relative 

frequency of spheres within the ݄݅ݐ size bin ൬ሺ݅ െ 1ሻ ோ

௡
, ݅

ோ

௡
൰, 

݅ ൌ 1, ݊തതതതത.  Using the same derivation in Step (3) (Section 2.3) 
Eq. (11) can be expressed as 

 
܄ۼ۾   ൌ  (12) ۯۼ 
 
where ۯۼ ൌ ሼ ஺ܰሺߙሻ, ߙ ൌ 1, ݊തതതതതሽ is a vector containing the 
relative frequencies of circular profiles within each size bin, 
܄ۼ  ൌ ሼ ௏ܰሺ݅ሻ, ݅ ൌ 1, ݊തതതതതሽ is a vector containing the relative 

frequencies of spheres within each size bin, and P is an upper 
triangle matrix and its elements are given by 
 

 ܲሺ݅, ሻߙ ൌ 2
௜ோ

௡
׬ ݂ሺݎሻ݀ݎ

ഀೃ
೙

ሺഀషభሻೃ
೙

ൌ 

   
ଶோ

௡
ቀඥ݅ଶ െ ሺߙ െ 1ሻଶ െ √݅ଶ െ ଶቁߙ , ሺ ݅ ൌ 1, ݊തതതതത, ߙ ൌ 1, ଓതതതതሻ  (13) 

 
where ܲሺ݅,  ሻ denotes the portion of circular profiles in size binߙ
 resulting from spheres in size bin ݅. The size distribution of ߙ
spheres ܄ۼ can be obtained by solving Eq.  (12).  

It can be seen from the above derivation that the final size 
distribution of circular profiles in planar sections consists of 
contributions from spheres in all size bins. But the radii of 
circular profiles associated with a sphere of a given size are all 
less than or equal to the sphere radius, which explains why 
matrix P is an upper triangle matrix. Moreover, only spheres in 
the largest size bin contribute to the radii of circles in the 
largest size bin, which explains why there is only a single 
element in the last row in matrix P. As a result, the number of 
spheres in the largest bin can be directly calculated. Once the 
number of spheres in the largest size bin is calculated, its 
contribution can be subtracted and the spheres in the second 
largest size bin become the largest spheres in the remaining 
distribution, which can be calculated similarly. By repeating 
this process, the full size distribution of spheres can be obtained 
from the largest to the smallest. This solution process is similar 
to peeling onion skins layer by layer, which explains why this 
approach is called the stereological unfolding process. 

 
3 THE STEREOLOGICAL EQUATION FOR A 

GENERAL SPHEROID 
 
The equation for a general spheroid is similar to the sphere 

equation (Eq. (12)). The primary difference is that spheres have 
circular profiles on planar sections, whereas spheroids have 
elliptical profiles. The sphere equation is essentially a one-
dimensional problem that considers only the size (i.e., radius) 
distribution whereas the spheroid equation is a two-dimensional 
problem that considers both size and shape distributions (i.e., 
major and minor axes of ellipses).  A detailed derivation can be 
found in Refs [18-19]. 

Let the size parameters U and S be the major caliper 
parameter of a spheroid and its planar section profile, 
respectively. Let V be the shape parameter of a typical spheroid 
and T be the random shape parameter of a random section 
profile. Let FV(u,v) and FA(s,t) denote the bivariate size-shape 
distribution functions of the spheroids and their elliptical 
section profiles, respectively, where FV(u,v)=P(U≤u,V≤v) and 
FA(s,t)=P(S≤s,T≤t).  The probability of both S>s and T>t  is 
given by: 

 
   ܲሺܵ ൐ ,ݏ ܶ ൐ ሻݐ ൌ 1 െ ,∞஺ሺܨ ሻݐ െ ,ݏ஺ሺܨ 1ሻ ൅ ,ݏ஺ሺܨ  ሻ (14)ݐ

 
The stereological equation describes the relationship 

among the distribution functions of the spheroids and elliptical 
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section profiles of prolate or oblate spheroids whose principal 
major and minor semi-axes are a and b, respectively: 
 
 ஺ܰሾ1 െ ,∞஺ሺܨ ሻݐ െ ,ݏ஺ሺܨ 1ሻ ൅ ,ݏ஺ሺܨ ሻሿݐ ൌ
                           ௏ܰ ׬ ׬ ,ݑሺ݌ ,ݒ ,ݏ ,ݑ௏ሺܨሻ݀ݐ ሻଵݒ

௧
ஶ

௦  (15)  
 

where 0<s and 0<t≤1. The shape parameter is defined as v = 1 – 
(b/a)2. The bi-dimensional size-shape variables (u,v) for prolate 
and oblate spheroids are (b,v) and (a,v), respectively. Similarly, 
the size-shape parameter (s,t) for elliptical profiles is defined as 
(a, 1 – (b/a)2 ), where a and b are the principal major and minor 
semi-axes of the elliptical profiles, respectively [18]. 

4 NUMERICAL SOLUTION OF THE STEREOLOGICAL 
EQUATION 

In real applications, the above stereological equations are 
usually solved numerically by discretizing the size and shape 
domain into “bins” or “cells”. The size and shape distributions 
are represented as relative frequencies or histograms over these 
cells. There is a close correspondence between Eq. (15) which 
specifies linear relations among distribution functions and 
linear equations which specify analogous relations among 
vectors of relative frequencies [18-19]. The stereological 
integral equation (Eq. (15)) can be transformed into a linear 
equation system as follows: 
 
ۯۼ   ൌ  (16)  ۿ܄ۼ۾ 

 
where ܄ۼ and ۯۼ are vectors of relative frequencies of the 
spheroids and their elliptical profiles, respectively. P and Q are 
transformation matrices corresponding to the kernel function 
p(u,v,s,t)  in Eq. (15). Suppose the range (0, b) of size 
component b (or a) is divided into s bins of equal width B/s, 
and the range (0,1) of the shape component is divided into k 
bins of equal width 1/k. The rectangular domain of variable 
(b,v) or (a,v) is divided into a grid comprising s×k  “cells”. The 
relative frequency of spheroids is 

 
܄ۼ  ൌ ൛ ௏ܰሺ݅, ݆ሻ; ݅ ൌ 1, ,തതതതത ݏ ݆ ൌ 1, ݇തതതതതൟ (17) 

 
where NVሺi, jሻ is the relative frequency of spheroid in cell ሺܑ,  .ሻܒ
Clearly, ∑ ∑ NVሺi, jሻ ൌ NV

୩
୨ୀଵ

ୱ
୧ୀଵ . The relative frequency of 

elliptical profiles is:  
 

ۯۼ  ൌ ൛NAሺα, βሻ; α ൌ 1, sതതതത, β ൌ 1, kതതതതതൟ (18)  
 
where NAሺα, βሻ is the relative frequency of elliptical profiles in 
cell ሺα, βሻ. Clearly, ∑ ∑ NAሺα, βሻ ൌ NA

୩
ஒୀଵ

ୱ
஑ୀଵ . Solving 

Equation (16) yields 
 

  

     kjsiqNpjiN j
S

i

k

j
A

ia
V ,1,,1,,, 1  

 

 

 



 

(19)

where ݌௜ and ݍఉ௝  are the elements of matrices P-1 and Q-1 , 
respectively.  P is an upper triangular matrix that is size 
dependent, whereas Q is a lower triangular matrix that is shape 
dependent. The elements of matrices P and Q are given as 
follows: 
 

P஑୧ ൌ

ە
ۖ
۔

ۖ
ඥሺiۓ െ 1 2⁄ ሻଶ െ ሺα െ 1ሻଶ െ ඥሺi െ n 1 2⁄ ሻଶ െ αଶ;  

for ሺα ൌ 1, ı െ 1തതതതതതതതത, i ൌ  2, sതതതതሻ,

ඥi െ 3 4⁄ ;   for ሺα ൌ i,   i ൌ 1, sതതതതሻ,
0;  for ሺα ൐ ݅,    ݅ ൌ 1, sതതതതሻ.

   (20) 

 
For populations consisting of prolate spheroids, we have, 
 

q୨ ൌ ൞

ඥtଵ
ଶ െ 1ൣ൫tஒ൯ െ ൫tାଵ൯൧;  ൫ ൌ 1, j െ 1തതതതതതതതത, j ൌ  2, kതതതതത൯

ඥtଵ
ଶ െ 1 ൫t୨൯                       ;  ൫ ൌ j,             j ൌ 1, kതതതതത൯

0                                              ;  ൫ ൐ ݆,              ݆ ൌ 1, kതതതതത൯

  (21) 

 
 

where    ݂ሺݐሻ ൌ ݐ ሺݐଶ െ 1ሻ ൅ arg tanhሺݐሻ⁄  and 
ఉݐ ൌ ሾሺ2݇ െ ߚ2 ൅ 2ሻ ሺ2݆ െ ߚ2 ൅ 1ሻ⁄ ሿଵ ଶ⁄ .  

 
For oblate spheroids, 
  
 q୨ ൌ  

൞

ඥ1 ൅ tଵ
ିଶൣ൫tஒ൯ െ ൫tାଵ൯൧; ൫ ൌ 1, j െ 1തതതതതതതതത, j ൌ 2, kതതതതത൯

ඥ1 ൅ tଵ
ିଶ ൫t୨൯   ;  ൫ ൌ j,           j ൌ 1, kതതതതത൯

0    ; ൫ ൐ ݆,         ݆ ൌ 1, kതതതതത൯

 

 

(22)
 

 
where   ݂ሺݐሻ ൌ ݐ ሺݐଶ ൅ 1ሻ ൅ arc tanሺݐሻ⁄ , 
ఉݐ ൌ ሾሺ2݆ െ ߚ2 ൅ 1ሻ ሺ2݇ െ 2݆ ൅ 1ሻ⁄ ሿଵ ଶ⁄  . 
 
5 APPLICATION EXAMPLE 

 
A FORTRAN program based on the Cruz-Orive unfolding 

algorithm was implemented and illustrated for a cubic section 
of a fictitious material containing oblate spheroidal anomalies. 
The spheroid samples with random values of a and b/a were 
generated using Monte Carlo simulation and placed at 
random 3D locations. The relative frequency of the samples is 
1.0×10-4 per unit volume. The spheroid dimensions (major axis 
a and aspect ratio b/a) and orientation angles were modeled as 
independent uniformly distributed random variables with the 
values indicated in Table 1.  

 
Table 1.  Spheroid parameters associated with 

application example 

Variable Description Lower 
Bound 

Median Upper 
Bound 

Distribution 

a major axis 0.0 5.0 10.0 Uniform 
b/a aspect ratio 0.0 0.5 1.0 Uniform 

1, 2, 
3 

orientation 
angles 

0.0  2 Uniform 
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Table 2.  Statistics of the number of ellipses on 
section planes 

# of 
Sections 

Average Stdev Min Max 

1 923 0.0 923 923 
10 894.7 38.5 825 941 
98 898.3 28.8 825 956 

 
To simulate the measurements that would be obtained by 

the sectioning process, virtual horizontal slices were made at 
uniformly spaced heights within the cube. Each spheroid 
sample is tested against every section plane to determine 
whether it intersects with the section plane. If so, the major and 
minor axis lengths of the intercept ellipses were calculated 
using the ellipsoid intersection algorithm in Ref [22]. Three 
example cases were simulated with 1, 10, and 98 sections, 
respectively. Table 2 indicates the statistics of the number of 
ellipses per section plane for the three example cases. 
 The discrete size and shape distributions for both the 
spheroids and their elliptical profiles were obtained by dividing 
the size and shape parameter ranges into an equal number of 
bins of dimension s×k. Two discretization schemes were 
considered: 5×5 and 10×10. The relative frequencies of 
elliptical profiles per unit area ۯۼ were used as the input for the 
Cruz-Orive unfolding algorithm to predict the size and shape 
distribution of the spheroids. The relative frequencies of the 
actual spheroid samples ܄ۼ

૙ were used as the reference result to 
determine the accuracy of predictions. 
 Figure 5 shows the 3D histogram plots of the relative 
frequencies of the actual population of spheroids and the 
predicted population based on measurements of their elliptical 
profiles for the example case with 98 simulated sections. A 
comparison of the original distribution (Fig. 5(a)) to the 
predicted distribution (Fig. 5(b)) indicates reasonably similar 
results. Computational accuracy improves as the number of 
simulated sections is increased, as expected. The influence of 
the number of sections on predicted spheroid size parameter 
and shape parameter values is shown in Figs. 6 and 7, 
respectively for both 10×10 and 5×5 grids.  For both 
parameters, predictions were significantly improved when the 
number of sections was increased from 1 to 10, but increasing 
the number of sections by another order of magnitude (i.e., 
from 10 to 100) had only a marginal improvement on prediction 
accuracy.  This suggests that there may be an optimum number 
of sections that provides a good balance between computational 
accuracy and the number of sections (and associated costs). 

Another observation from Fig. 6 is that the results are more 
accurate for large spheroids and the error is larger for smaller 
spheroids in spite of the number of sections and bins. This is an 
intrinsic characteristic of the unfolding algorithm because the 
small elliptical profiles have contributions from all spheroids 
with equal or larger major axes. Elliptical profiles in the largest 
size bin include only contribution from the spheroids in the 
largest size bin. The unfolding algorithm operates on the largest 
size bin first so errors in the large size bin propagate into the 

smaller size bins, causing additional errors in smaller size bins. 
However, the probabilistic risk of fracture is more sensitive to 
large anomalies so the additional errors in the smaller anomaly 
sizes may have negligible influence on risk.  

The primary errors associated with the stereological 
unfolding algorithm can be classified as statistical error (i.e., 
not enough Monte Carlo samples) and discretization (i.e., bin 
size) error.  The total number of bins has an influence on both 
types of error. Discretization error decreases with increasing 
number of bins, whereas statistical error increases with 
increasing number of bins. The optimal number of bins is based 
on an optimal discretization parameter that minimizes the total 
error [23-24]. In practical experiments, the number of sections 
is limited and data noise often dominates, so the discretization 
error is generally insignificant compared with statistical error. 
For  example,  the  accuracy  of  the  results  using  5×5  bins  is 
 

 

 

 (a) 

 
 (b) 

Figure 5.  Bivariate histograms (stereograms) of anomaly 
size and shape parameters associated with anomalies in 
the fictitious material:  (a) original population of spheroids, 
and (b) predicted population of spheroids based on 
sectioning data transformed using the Cruz-Orive unfolding 
algorithm. 
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(b) 
 
Figure 6. Influence of the number of section plane 
measurements on predicted spheroid size parameter 
values: (a) 10×10 bin grid, and (b) 5×5 bin grid.  
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(b) 
 

Figure 7. Influence of the number of section plane 
measurements on predicted spheroid shape parameter 
values: (a) 10×10 bin grid, and (b) 5×5 bin grid. 

 
 

comparable to the 10×10 bin results, if not better. Therefore, the 
focus should be on reducing statistical error in practical 
applications. It is important to have a sufficient number of 
samples in each bin to have small statistical errors. Ghosn [25] 
reported previously that the unfolding algorithm performed 
well for some mesh sizes and not so well for others. This 
difference may possibly have been due to the number of 
sections or the discretization bin width. Statistical error is 
smaller if measurements are done on more planar sections, or if 
the material has a higher density of spheroid centers and the 
spheroids are larger. However, there is a maximum limit on the 
density of spheroids for the Cruz-Orive stereological unfolding 
algorithm because this algorithm assumes that the spatial 
distribution of spheroids is uniform and dilute. In practice, 
“dilution” is satisfactory whenever the volume fraction of the 
spheroids to the total volume is less than about 10% [10]. This 
condition is required if it is assumed that the set of spheroid 
centers approximately forms a “Poisson ensemble” in three 
dimensions. 

 

6 CONCLUDING REMARKS 
 

 As mentioned previously, it currently is impossible to 
accurately predict the shape and orientation parameters of a 
general ellipsoid based on measurements obtained from 2D 
sectioning data. If data are available in another form, such as 
HLS, then it may be possible to predict general ellipsoid 
parameters by combining the data using Bayesian updating or a 
similar method.  On the other hand, if data are only available 
from 2D sectioning, then a general ellipsoid model is probably 
not an appropriate one because it simply cannot be fully 
characterized.  In this situation, the anomaly model should be 
limited to either the prolate or oblate spheroid model. 
 In this study, an unfolding algorithm was implemented and 
verified that can be used to estimate the dimensions and 
orientations of 3D spheroids based on 2D sectioning 
measurements.  It was shown that the accuracy of the predicted 
spheroid model is dependent on the number of sections and the 
discretization of the mesh used to characterize the data.  In 
some instances, the number of sections may be a fixed quantity 
(e.g., historical data).  In this case, the unfolding algorithm 
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could be used to quantify confidence bounds on fracture risk 
associated with the uncertainty in the spheroid model for the 
fixed number of sections.  For new design, the number of 
sections is probably limited by the cost to obtain them.  In this 
situation, the unfolding algorithm could be used to identify the 
minimum number of sections that would be required to meet a 
fracture risk reliability target that accounts for the uncertainty 
associated with the number of sections.   
 In this study it was assumed that anomalies could have any 
orientation, and that all orientations were equally likely to 
occur.  It was further assumed that each anomaly would be 
intersected by a single plane.  Under these constraints, it is 
impossible to determine the out-of-plane dimensions of a 
sectioned anomaly which are needed to characterize a 3D 
ellipsoidal model.  However, in some materials the anomaly 
orientation may be influenced by processing conditions that 
may result in an overall bias in orientation.  For example, 
previous studies (e.g., [25] among others) suggest that the 
longest dimension of the anomaly may be aligned with the 
direction of forging strains, which could provide additional 
information for use in characterizing an ellipsoidal model. 
 Although this relationship is not well understood and has not 
been validated, it could lead to the development of improved 
anomaly models in the future. 
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