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ABSTRACT 
The interaction of vibratory traveling waves in rotating 
components with adjacent structures is examined. In the 
most general case, a resonance can occur when the wave 
propagation speed for a nodal diameter n  mode in rotor 1 
is equal in speed and direction to the rotational speed of 
an adjacent structure 2ω . When 02 =ω  this structure is a 
stator and the phenomenon is a major resonance, as 
discussed in Wilfred Campbell�s paper [1] of 1924. An 
identical phenomena can occur when 02 ≠ω  between 
rotor 1 and a co- or counter-rotating rotor 2 if a suitable 
harmonic excitation is generated. Description of 
component test results which demonstrated this resonance 
mechanism is provided. 
1. INTRODUCTION- MAJOR RESONANCE IN A 
ROTOR/ STATOR SYSTEM FOR 2≥n  
Campbell [1] investigated certain rim failures of steam 
turbine wheels, and found that they were caused by a 
resonant backward-traveling wave in the disk, where the 
vibration resulted in axial motion of the bladed disk rim and 
the frequency appeared to be zero relative to a stationary 
observer. The root cause was shown in what is now 
commonly known as a Campbell diagram, reproduced 
here with annotations as Fig. 1. (Fig.1 uses the notation 
from Ref. [1] which does not appear elsewhere in the 
present paper) 
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Notation -After Campbell [1]

fr = Wheel natural frequency WRT the rotating 
wheel

H = Forward-traveling wave frequency, CPS, WRT 
a stationary observer

M = Backward-traveling wave frequency , CPS, 
WRT a stationary observer

n = Number of nodes in mode shape
Ns =Wheel Speed, RPS

 
Figure 1; Campbell Major Resonance From [1] 

It will be the object of this paper to show that the subject of 
Campbell�s investigation was a subset of a more general 
class of interactions. To better describe this family of 
vibratory phenomena, a different sign convention will be 
used. The key definition is that the direction of rotation of 
the primary rotor, or rotor 1, is taken as positive and that 
likewise the sign of any traveling wave propagation speed 
(And corresponding frequency) in the system is also taken 
as positive if in the same direction as rotor 1 rotation. 
The equations for the forward and backward waves in the 
disk from Fig. 1 can then be expressed as: 

1
111

ωnff
combr

n
fwdr

n

g
+=                             (1) 

1
111

ωnff
combr

n
bkwdr

n

g
+=−                            (2) 

(Note that frequency terms, f , as used throughout this 
paper, are assumed to include the effects of speed stress-
stiffening and temperature per [1], unless otherwise 
indicated) 
In addition, rather than using the equations describing the 
traveling wave behavior of a disk, the more general form 
[2] of the equations, which can also describe the traveling 
wave behavior for a rotating cylinder1 will be used. 
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where the λ  term is a function of the rotor geometry and 
fixity. For the case of a cylinder fixed at one end, 

1r
nλ is a 

function of cylinder radius, length, and nodal diameter as 
given by: 
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1 As described in Ref. [2] the terms cylinder and disk refer to 
axisymmetric bodies whose vibratory motion is primarily radial or axial, 
respectively, rather than to the specific geometry of the component. 
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For a disk, ∞→L
R  and ∞→

1r
nλ  in Eq. (3) and (4), which 

results in those equations reducing back to Eq. (1) and (2), 
respectively. (From a practical standpoint, the difference 
between disk and cylinder behavior2 is significant only for 
lower values of 

L
R  and lower values of n ). 

A final modification can be made by casting the diagram in 
terms of wave propagation speed, rather than frequency, 
using the relation: 

n
fWP =ω                                         (6) 

For the nodal diameter modes of axisymmetric 
components under consideration, WPω  is simply the 
apparent speed of rotation of the traveling wave. Eq. (3) 
and (4) then become: 
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The more generalized Campbell diagram which results is 
shown in Fig. 2. 
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Figure 2; Campbell [1] Major Resonance in Terms Of Wave 
Propagation Speed With Revised Sign Convention 

This formulation allows us to define the original Campbell 
major resonance as when the backward wave propagation 
speed in rotor 1 is stationary relative to the adjacent 
structure. The use of wave propagation speed, rather than 
frequency, allows a direct illustration of the coincidence of 
component vibratory response with the adjacent rotor 
speed in the discussions which follow. 
2.   CAMPBELL STATOR RESONANCE FOR 2≥n  
A corresponding resonance dependent on a traveling 
wave in the stator, rather than the rotor, can easily be 
imagined based on the preceding discussion. If the wave 
propagation speed in the stator is equal to the speed of an 
interfacing rotor, a resonant condition, termed a Campbell 

                                            
2 For a free-free cylinder, 0=λ , so that the behavior of any geometry 
can then be bracketed between the limiting possible values of λ . 

Stator Resonance by the author, can exist, as shown in 
Fig. 3. 
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Figure 3; Campbell Stator Resonance; Wave Propagation 

Speed WRT Stationary Observer 

The Campbell resonance discussed in Section 1 was 
characterized by a pattern of equi-spaced rubs on the 
stator and resulted from vibratory activity in the rotor, 
dependent on the rotor natural frequency and speed. The 
Campbell Stator resonance shown in Fig. 3 is governed by 
the natural frequency of the stator. Excitation of the stator 
resonance at the proper rotor speed will result in periodic 
contact on the rotor. 
An example of such a resonance, which resulted in a 
damaging 13=n  rub pattern on a rotating seal, was 
discussed in Ref. [4]. 
3. MAJOR RESONANCE IN COUNTER-ROTATING 
SYSTEMS FOR 2≥n  
The stationary structure discussed in Section 1 may be 
considered as rotor 2 for the special case of . 02 =ω . The 
condition of a major resonance in a system of two counter-
rotating rotors then becomes apparent as when the wave 
propagation speed of the backward-traveling wave in rotor 
1 is equal to the physical speed of rotor 2, resulting in a 
resonance of rotor 1, as is shown in Fig. 4. 
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Figure 4; Campbell Major Resonance in a Counter-Rotating 
System; Wave Propagation Speed WRT Stationary Observer 
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(In the present sign convention, the speed of counter-
rotating rotor 2 is a negative number, as is the wave 
propagation speed of the backward wave in rotor 1) 
Conversion of all quantities in Fig. 4 back into the 
frequency domain returns Eq. (3) and (4) as shown in Fig. 
5. 
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Figure 5;  Campbell Major Resonance in a Counter-Rotating 

System; Frequency WRT Stationary Observer 

Fig 5. shows that, in order to excite the Campbell major 
resonance of rotor 1 with a counter-rotating rotor 2, rotor 2 
must, by some mechanism, produce an excitation of 
frequency 2ωn  relative to a stationary reference frame. 

This mechanism might be an 2ωn  component of 
frequency in the �white noise� excitation resulting from a 
rotor/ rotor rub, or as could result from a pattern of rotor 2 
dimensional variation with the proper harmonic. 
Aerodynamic differences among the rotor 2 airfoils might 
also generate a suitable excitation by means of a resulting 
harmonic pressure distribution adjacent to rotor 1. 
An alternate form of Fig. 5 can be generated by converting 
that figure to the reference frame of rotor 1 by subtracting 

1ω  from Eq. (7) and (8) and then factoring by n  to return 
to the frequency domain: 

( )

1

1

1

11

111

1
2

1
1

2
1

12

2

1

1

r
nr

n

r
n
r

n
r

r
n

r
n

n
nf

n
n

n

f
n

WPnf

gcomb

gcomb

gfwdfwd

λ
ω

ω
λ
λ

ω

ωω

++
−=














−













++
+−

+=

−=

                    (9) 

( )

1

1

1

11

111

1
2

1
1

2
1

12

2

1

1

r
nr

n

r
n
r

n
r

r
n

r
n

n
nf

n
n

n

f
n

WPnf

gcomb

gcomb

gbkwdbkwd

λ
ω

ω
λ
λ

ω

ωω

++
−=−














−













++
+−

+−=

−−=

                  (10) 

The excitation from rotor 2 then becomes, in this same 
reference frame of rotor 1, 

)( 12 ωω −=Σ nnf                               (11) 

Fig. 6 results and illustrates the signal expected from a 
rotor 1 strain gage when, for the counter-rotating system, 
the backward wave in rotor 1 is excited by the proper 
harmonic of the sum frequency Σf  with rotor 2. 
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Figure 6; Campbell Major Resonance in a Counter-Rotating 

System; Frequency WRT Rotor 1 

The preceding discussion is confined to the prediction of 
the response of rotor 1; The evaluation for potential 
resonances of rotor 2 could be conducted in a like fashion 
by plotting the frequencies of rotor 2 against the speed of 
rotor 1. 
4.  MAJOR RESONANCE IN CO-ROTATING SYSTEMS 
FOR 2≥n  
A similar phenomena can occur in co-rotating 
turbomachinery by an identical mechanism. Fig. 7 
illustrates the problem in terms of wave propagation 
speed. The coincidence of rotor 1 wave propagation speed 
and rotor 2 physical speed again defines the resonance. 
The plot is similar to that of Fig. 4 except that the resonant 
crossing now occurs in the upper quadrant where the 
speed of the forward wave in rotor 1 coincides with the 
positive speed of co-rotating rotor 2. 
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Figure 7; Campbell Major Resonance in a Co-Rotating 
System; Wave Propagation Speed WRT a Stationary 

Observer 

Conversion of the quantities in Fig. 7 to the frequency 
domain results in Fig. 8. Once again, it is clear that rotor 2 
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must generate an excitation at the proper harmonic of 2ω  
to produce the resonance.  
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Figure 8;  Campbell Major Resonance in a Co-Rotating 

System; Frequency WRT A Stationary Observer 

Examination of this same problem from the reference 
frame of rotor 1 can be accomplished as before resulting in 
Fig. 9, with 

11 fwdr
n f described by Eq. (9). The resonance, as 

indicated by a rotor 1 strain gage, would, in this case, 
reflect the excitation of the forward wave in rotor 1 by the 
appropriate harmonic of the difference frequency, ∆f . 
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Figure 9; Campbell Major Resonance in a Co-Rotating 
System; Frequency WRT Rotor 1 

Unlike the counter-rotating problem, the higher-speed rotor 
2 cannot interact in a similar fashion with rotor 1 since, by 
definition, 12 ωω >  and therefore: 
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5.  MAJOR RESONANCE IN CO- OR COUNTER-
ROTATING SYSTEMS FOR 1=n  
The discussion so far has been limited to modes of 2≥n . 
Similar phenomena in co- and counter-rotating systems3 
where 1=n , for the so-called �beam bending� modes of 
the rotors, as also discussed in [5], will now be considered. 

                                            
3 Campbell [1] showed that a major resonance in a rotor/ stator 
system was not possible for an 1=n  mode. 

Relative to the previous discussion, these modes exhibit 
three unique characteristics: 

1. For 1=n , fWP =ω  

2. The asymmetry inherent in the rotor support stiffness 
of any practical turbomachine results in the generation 
of both 2ω+  and 2ω−  excitations (Propagating both 
forward and backward4 relative to the direction of rotor 
2 rotation, as explained in Appendix 1) capable of 
interacting with the rotor 1 1=n  modes. 

3. Special mechanisms, such as harmonic dimensional 
or pressure variation, necessary to generate the 2ωn  
excitation required for co- or counter-rotating 
resonance when 2≥n , are not needed to generate 
an 1=n  response. Therefore, such excitations and 
the resulting resonances are much more likely to be 
encountered. 

The following discussion will utilize the traveling wave 
equations specific to a disk, rather than the more 
generalized forms used earlier. This is because the 
mechanisms (Conservation of momentum and centrifugal 
forces) which generate the divergence of the forward and 
backward wave frequencies [2] in cylindrical geometries 
are not relevant for the 1=n  modes under discussion. 
Fig. 10, then, shows Eq. (1) and (2) converted to wave 
propagation speed along with the 2ω±  excitation lines for 
a counter-rotating system. (The corresponding plot for co-
rotating rotors would be identical with the exception that 
the 2ω−  locus would lie in the negative quadrant 

and 2ω+  in the positive) 
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Figure 10; Campbell Major Resonance in a Counter-Rotating 
System; Wave Propagation Speed WRT Stationary Observer 

for 1=n  Modes 

                                            
4 Higher-order backward-propagating excitations ( 2ωn− ) have 
not been observed and therefore were not considered in the 
previous sections. 
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When Fig. 10 is converted to the frequency domain in the 
reference frame of rotor 1, the 2ω±  excitations are 

transformed into the sum ( Σf ) and difference ( ∆f ) 
frequencies as shown in Fig. 11. 
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Figure 11 Campbell Major Resonance in a Counter-Rotating 

System; Frequency WRT Rotor 1 for 1=n  Modes 

Fig. 11 illustrates the response of a strain gage on rotor 1 
and shows that the backward wave can be excited by the 
sum frequency and the forward wave by the difference 
frequency.  
Rotor 1 and rotor 2 would each require an evaluation for 
potential resonance using these techniques. With the 
present sign convention, the corresponding evaluation for 
a co-rotating system would result in a plot identical in form 
to Fig. 11. 
Sum and difference excitation of LP turbine rotor 1=n  
modes in response to imbalance in the HP spool is a 
common observation in co-rotating turbomachinery 
produced by the author�s company. 
6.  EXPERIMENTAL VERIFICATION FOR MAJOR 
RESONANCE IN A COUNTER-ROTATING SYSTEM 
Certain legacy counter-rotating turbines [3] were executed 
so as to avoid the resonance described in Section 3 by 
means of suitable frequency placement. However, this 
constraint can carry a considerable weight penalty. It was 
therefore determined to validate the preceding calculations 
by means of a component test designed to demonstrate an 

2=n  resonance in a counter-rotating system. As shown 
in Fig. 12 and 13, the test set-up simulated an inner 
turbine stage interfacing with segmented honeycomb 
shrouds carried by a counter-rotating outer rotor.  
The rig was installed in an available facility which was 
originally designed for the testing of railway braking 
equipment. 

Outer rotor

Inner rotor 
electric motor

Pulley to drive 
inner rotor

Inner rotor
axial 
translation 
device

Inner rotor

CR62.PPT  
Figure 12; Counter-Rotating Rotor Rub Test Hardware 

and Test Facility 
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Figure 13; Counter-Rotating Rub Test Cross-Section Details 

The outer rotor honeycomb shroud segments were 
designed with a conical inner diameter, such that axial 
translation of the inner rotor could be used to create a rub 
of any desired incursion rate and radial depth. The inner 
rotor seal teeth were machined in an 2=n shape, 

13.0± mm (0.050 in.) on the radius, to ensure the desired 
excitation. 
Designating the outer, T-disk as Rotor 1, the key test 
parameters were as follows: 

6844.2
1

2 =rλ     rps17.361 =ω     rps302 −=ω  
Static and rotating tests of the instrumented outer rotor 
using a siren as the excitation source were conducted for 
frequency characterization. For the stationary outer rotor, 
the 2=n  mode was identified at 83 cps. Frequencies 
obtained from the rotating tests for a variety of speeds 
established the speed stress-stiffening factor as 66.2=B  
by means of Eq. (13) and a curve fit to the frequency vs. 
speed data. A Fast Fourier Transform of the Rotor 1 
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frequency data taken at 17.361 =ω  rps is shown in Fig. 
14 as an example. 
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Figure 14; Counter-Rotating Rub Test Outer Rotor 

Frequency Data for 17.361 =ω  rps 

From the test data, the combined mode frequency at 
speed can be determined using the well known equation 
for speed stress-stiffening [1], 

[ ]
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Bff SRT
rr

gcombgcomb

8.101])17.36(66.2[)83( 22

2
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2
22

11

=+=
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
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         (13) 

Applying Eq. (9) for the forward wave frequency in the 
rotating reference frame, 
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         (14) 

which corresponds closely to the observed strain gage 
signal shown in Fig. 14. Eq. (3) can then be used to obtain 
the corresponding frequency relative to a stationary 
observer as follows: 
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which is nearly equal to the observed siren frequency at 
resonance with the forward wave of 154.2 cps. For the 
backward wave, using Eq. (10) to obtain the expected 
strain gage response: 
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            (16) 

which matches well with the measured value of 121 cps 
(Displayed as a positive number in Fig.14). Finally, Eq. (4) 
can be used to convert this result to the stationary 
reference frame: 
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a result also in good agreement with the test siren 
frequency (Again displayed as a positive number in Fig. 
14) of 48 cps. 
Campbell diagrams similar to those presented previously 
can now be constructed. In this test, the outer rotor speed 

1ω  was held constant, so a diagram similar to Fig. 4 can 

be constructed except with 2ω  as the positive X-axis. 
Values for the rotor 1 wave propagation speeds can be 
calculated from the results of Eq. (16) and (17) using Eq. 
(6) with the corresponding Campbell diagram shown as 
Fig. 15. 

-30

-10

10

30

50

70

0 5 10 15 20 25 30 35

W
A

V
E 

PR
O

PA
G

A
TI

O
N

 A
N

D
 R

O
TO

R
 2

  S
P

EE
D

 (r
ps

) 
W

R
T 

A
 S

TA
TI

O
N

A
R

Y 
O

B
SE

R
VE

R

gbkwdrWP
1

2ω

2ω

2ω

gfwdrWP
1

2ω

rps14.242 =ω

CAMPBELL MAJOR 
RESONANCE OF ROTOR 
1 WITH COUNTER-
ROTATING ROTOR 2

 
Figure 15; Rub Test Campbell Diagram; Wave Propagation 

Speed WRT Stationary Observer 

An 2=n  resonance would therefore be expected at an 
inner rotor speed of 24.14 rps. Conversion of Fig. 15 into 
the frequency domain and reference frame of rotor 1 yields 
Fig.16. 
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Figure 16; Rub Test Campbell Diagram; Frequency WRT 

Rotor 1 

Data from a rotor 1 strain gage, taken during the rotor 1/ 
rotor 2 rub, is shown in Fig. 17. Rotor 1 was maintained at 
36.17 rps while rotor 2 was allowed to decelerate from 30 
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rps as it was translated into the honeycomb and the rub 
event progressed. The data reduction software which was 
used plots all quantities of Fig. 16 in the positive quadrant, 
but the results shown in Fig. 17 are otherwise nearly 
identical. 
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Figure 17; Rub Test Outer Rotor Frequency Response From 

Rotor 1/ Rotor 2 Rub Event 

7.  CONCLUSIONS 
A family of Campbell resonance phenomena are 
characterized by an interaction of a traveling wave for an 
n  diameter mode where the wave propagation speed and 
direction matches the physical rotational speed of an 
interfacing structure.  

1. When 021
== ωω r

n WP , the wave is stationary in 
space and a Campbell major resonance as described 
in Ref. [1] can occur. 

2. When 2ωω =s
n WP , a Campbell stator resonance may 

result as in the example discussed in Ref. [4]. 

3. When 21
ωω =r

n WP , 02 ≠ω , and 2≥n , a Campbell 
resonance with a co- or counter-rotating rotor 2 can 
occur, but only when rotor 2 produces an excitation at 
the proper harmonic of speed. 

4. When 21
ωω ±=r

n WP  and 1=n , the beam-bending 
modes of rotor 1 can be excited by the sum and 
difference frequency of the co- or counter-rotating 
rotors, as observed in the reference frame of rotor 1. 
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9.  NOMENCLATURE 

21

2
fwdrfWAVE CHARACTERIZATION

fwd = FORWARD
bkwd = BACKWARD
comb = COMBINED MODE

REFERENCE FRAME:
1 = ROTOR 1
2= ROTOR 2
g = GROUND OR STATIONARY OBSERVER

NODAL DIAMETER 
OF VIBRATION

= WAVE PROPAGATION SPEED, RPS
f = FREQUENCY (Hz)
wpω
=λ GEOMETRY TERM FOR 

CYLINDER

= WAVE PROPAGATION SPEED, RPS
f = FREQUENCY (Hz)
wpω
=λ GEOMETRY TERM FOR 

CYLINDER
n COMPONENT IDENTIFICATION:

r1 = ROTOR 1
r2 = ROTOR 2
s = STATOR

= SUM FREQ
= DIFFERENCE FREQ

Σ∆

COMPONENT IDENTIFICATION:

r1 = ROTOR 1
r2 = ROTOR 2
s = STATOR

= SUM FREQ
= DIFFERENCE FREQ

Σ∆
SRT

COMPONENT CONDITION:

SRT =   ROOM TEMPERATURE, STATIC CONDITIONS
NONE= VALUE REFLECTS SPEED STRESS-

STIFFENING AND ELEVATED TEMPERATURE 
EFFECTS

QUANTITY:

 
Figure 18; Nomenclature For Parameter Identification 

1ω = Rotor 1 speed in rps; 1ω  defined as 0>  

2ω = Rotor 2 speed in rps; 2ω  is a negative number if the 
direction of rotor 2 rotation is opposite rotor 1. For co-
rotating systems 02 >ω  and is defined as the higher 
speed rotor. ( 12 ωω > )   

B = Speed stress-stiffening frequency correction factor 
Backward-Traveling Wave = A traveling wave where the 
direction of wave propagation is in the direction opposite to 
the rotation of the vibrating rotor. 0<bkwdf  if the direction 
of wave propagation is opposite to rotor 1 rotation.  
Combined Mode = A mode shape consisting of the 
superposition of the forward and backward waves. This is 
the vibratory mode as measured in a frequency test of a 
stationary axisymmetric component where fixed nodes and 
anti-nodes are observed. combf  is defined as positive. 

Forward-Traveling Wave = A traveling wave where the 
direction of wave propagation is in the same direction as 
the rotor rotation. 0>fwdf  if the direction of wave 
propagation is the same as rotor 1 rotation.  
f = Frequency in cps. f has the same sign as the 

corresponding WPω  and is assumed to include the effects 
of speed stress-stiffening and temperature as appropriate 
unless modified by a superscript ( SRTf ) indicating a value 
reflecting room-temperature, static conditions. 

∑f  = Sum frequency, ( )21 ωω +±  , cps  

∆f  = Difference frequency, ( )21 ωω −± , cps 

L = Length of an axisymmetric component 

λ  = Geometry term for an axisymmetric component 
n = Number of nodal diameters (Complete waves) in the 
vibratory mode shape of an axisymmetric structure, whose 
deflection can be described as ( ) θθδ nx cos= . Also 
equal to ‰ the number of nodes in the mode shape. 
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2=n 3=n 4=n 5=n1=n  
Figure 19; Example Mode Shapes for Various Nodal 

Diameters (The plots can be interpreted as either axial or 
radial deflection, dependent on the vibratory characteristics 

of the component) 
R = Mean radius of an axisymmetric component 
Wave Propagation Speed = The apparent speed of 
rotation in rps of a traveling wave or nfWP =ω .  WPω  
is positive if the wave propagation direction is the same as 
rotor 1 rotation 1ω .  

WRT = With Respect To (Reference Frame) 
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11.   APPENDIX I; GENERATION OF ω±  EXCITATION 
BY AN UNBALANCED ROTOR WITH ASYMMETRIC 
SUPPORT STIFFNESS 
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Figure 20; Components Of Elliptical Unbalanced Motion 

Consider two exactly counter-rotating ( ω± ) circular orbits 
at 1R  and 2R  as shown in Fig. 20. These may be 
considered as the orbits of two unbalanced masses, 

producing both ω±  excitations relative to a stationary 
observer. 
In Cartesian coordinates as a function of time, t, the two 
motions can be described as 

)sin()( 11 γω += tRtX       )cos()( 11 γω += tRtY   

)sin()( 22 βω +−= tRtX   )cos()( 22 βω +−= tRtY                 (18) 

where the phase angles γ  and β  are arbitrary but 

unequal, as are 1R and 2R . 

If now we consider these two orbits as components of a 
combined motion, the resulting behavior can be obtained 
by superposition. 
Summation of the X coordinates yields: 
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Likewise, the summation of coordinates in the Y direction 
results in: 
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Assigning new variables to the gathered constants results 
in the following simplified expressions: 

tBtAtX c ωω cossin)( +=  

 tDtCtYc ωω cossin)( +=                    (21) 

Eq. (21) describe elliptical motion in a Cartesian system. A 
Fourier breakdown of the elliptical displacement path of an 
unbalanced rotor rotating at speed ω  with an asymmetric 
support would therefore reveal the ω±  frequencies of the 
circular component motions. 
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