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ABSTRACT 

Morton Effect problems involve the steady increase in 
rotor synchronous-response amplitudes due to differential 
heating across a fluid-film bearing that is in turn induced by 
synchronous response.  The present work presents a new 
computational algorithm for analyzing Morton Effect. Previous 
studies on the Morton Effect were based on Eigen or Nyquist 
analysis for stability studies and predicted an onset speed of 
instability. 

The algorithm starts with a steady state elliptical orbit 
produced by the initial imbalance distribution, which is 
decomposed into a forward-precessing circular orbit  and a 
backwards-precessing circular orbit. A separate (and 
numerically intensive) calculation based on the Reynolds 
equation plus the energy equation gives predictions for the 
temperature distributions induced by these separate orbits for a 
range of orbit radius-to-clearance ratios. Temperature 
distributions for the forward and backward orbits are calculated 
and added to produce the net temperature distribution due to the 
initial elliptic orbit. The temperature distribution is assumed to 
vary linearly across the bearing and produces a bent-shaft angle 
across the bearing following an analytical result due to 
Dimoragonas.  This bent shaft angle produces a synchronous 
rotor excitation in the form of equal and opposite moments 
acting at the bearing’s ends.  For a rotor with an overhung 
section, the bend also produces a thermally induced imbalance.  
The response due to the initial mechanical imbalance, the bent-
shaft excitation, and the thermally-induced imbalance are added 
to produce a new elliptic orbit, and the process is repeated until 
a converged orbit is produced.  For the work reported, no 
formal stability analysis is carried out on the converged orbit. 

The algorithm predicts synchronous response for the 
speed range of concern plus the speed where the response 
amplitudes becomes divergent by approaching the clearance.   

Predictions are presented for one examples from the 
published literature, and elevated vibration levels are predicted 
well before the motion diverges. Synchronous-response 

amplitudes due to Morton Effect can be orders of magnitude 
greater than the response due only to mechanical imbalance, 
particularly near rotor critical speeds. For the example 
considered, bent-shaft-moment excitation produces 
significantly higher response levels than the mechanical 
imbalance induced by thermal bow. 

The impact of changes for (1) bearing length to 
diameter ratio, (2) reduced lubricant viscosity, (3) bearing 
radius-to-clearance ratio and (4) overhung mass magnitude are 
investigated. Reducing lubricant viscosity and/or the overhung 
mass are predicted to be the best remedies for Morton Effect 
problems. 

 
NOMENCLATURE 
F, B Forward and backward orbit amplitude 
L,R,D Length, radius and diameter of bearing 
a, b Semi major, minor elliptical orbit 
α Ellipse attitude angle 
ω Running Speed (rpm) 
Cr Radial Clearance 
MT Bent shaft moment 
lgr Length between right bearing and mass center of 

right overhang 
mgr Mass of right overhang 
βT Thermal Bent shaft  angle 
ΔΤ1 Effective maximum differential temperature 
ΔΤf, ΔΤb,  Differential Temperature for forward and 

backward orbit 

fε , bε  Ratio of forward and backward orbit to radial 
clearance 

ϕΤ Location of effective hot spot wrt x axis 
ϕΤf, ϕΤb Phase angle between minimum film thickness and 

hot spot 
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INTRODUCTION 
The Morton-Effect phenomenon is related to differential 

heating across a hydrodynamic bearing due to a synchronous 
orbit. When a journal is executing a synchronous orbit around 
an equilibrium position, one portion of the rotor surface is 
always at the minimum film thickness, while a diametrically 
opposite section of the journal surface is always at the 
maximum film thickness. Reduced film-thickness areas 
produce higher viscous shear stresses that produce higher 
temperatures. Larger clearances have reduced temperatures; 
hence, a temperature gradient develops across the journal, 
creating the slope βT across the journal (figure 1).  For analysis, 
bent-shaft moments MT,-MT can be applied at the bearing’s ends 
to produce βT. Synchronous rotor excitation from these 
moments are independent of running speed ω.  Nicholas et al. 
[1] first examined the effect of residual shaft bow on the 
synchronous response of a single-mass rotor on a rigid support. 
Using a transfer-matrix approach, Salamone and Gunter [2] 
revisited shaft bow synchronous excitation for a multi-mass 
rotor in fluid-film bearing.  

The rotor in figure 1 has an overhang, and the shaft bend 
βT is at the right-hand bearing. The overhung mass mgr has its 
mass center at the distance lgr to the right of the bearing’s 
center. Hence, for small βT , the thermally induced mechanical 
imbalance is  mgrlgrβT.  

The Morton Effect causes additional synchronous 
excitation in the form of (i) bent-shaft moments and (ii) 
thermally-induced mechanical imbalance. Large temperature 
gradients can induce high synchronous response. Sometimes, 
the response grows rapidly with increasing ω, leading to 
machine shutdown. Overhung compressors, integrally-geared 
compressors and double-ended drive turbines are specially 
impacted due to their heavy overhung mass properties [3]. 

 

 
Figure 1. SHAFT WITH A THERMALLY-INDUCED BEND AT 

THE RIGHT-HAND BEARING 
 
        The Morton Effect was first observed by Paul Morton in 
the 1970s as spiral vibration behavior in generators with oil 
lubricated seals. Morton’s early experimental investigations on 
the Morton Effect were published in internal company reports 
but were not available in the public domain. In 2008, Morton 
[4] provides a review of his earlier unpublished results 
including in-rotor temperature measurements. The results 

demonstrated a linear trend between orbit size and differential 
temperature. He found the in-rotor phase angle between the hot 
spot (point on the rotor where the temperature is a maximum) 
and the minimum film thickness location to be 60°. He reported 
a differential temperature of 16°C for an orbit size of 25% of 
the cold radial clearance. 
 In 1980, Kellenberger [5] analyzed spiral vibrations in 
oil lubricated, annular generator shaft seals assuming that the 
heat input to the shaft came from rubbing friction.  In addition, 
he assumed that the ratio of the heat flow into the shaft to the 
heat flow out of the shaft determined the system stability; i.e., if 
this ratio was above some threshold curve, then the system 
would yield unstable spiral vibrations. Kellenberger's model 
worked well for spiral vibration problems due to rubbing.  
        In 1987, Schmied [6] investigated spiral vibrations due to 
hot spots on shafts and gave theoretical evidence of a change in 
rotordynamic behavior due to the bent shaft. He developed and 
solved a coupled eigenvalue problem of the rotordynamics plus 
thermal equation based on Kellenberger’s model. He examined 
the heat input and the shaft vibration assuming , alternatively, 
that the heat input was proportional to: (i) shaft displacement, 
(ii) shaft velocity, and (iii) shaft acceleration. Schmied’s model 
has bent shaft excitation, obtained by multiplying the rotor free-
free stiffness matrix times the bent-shaft vector, consisting of 
the displacements and rotations of the shaft with the bent 
profile. He was the first person to propose spiral vibration as 
arising due to shearing of lubricant at a bearing. His hot-spot 
model was incorporated in the rotordynamics software 
MADYN, and has been applied for spiral vibrations problems 
due to rubbing or viscous shearing. He did not consider the 
effect of thermally-induced mechanical imbalance. 

In 1993, Keogh and Morton [7] presented the first 
Morton-Effect analysis based on viscous heating of the 
lubricant within a plain journal bearing. The initial synchronous 
rotor excitation starts with an assumed bent shaft angle β0k  at a 
bearing that produces a bent shape for the rotor. Multiplying 
this shape by the rotor’s free-free matrix produces a 
synchronous bent-shaft excitation, similar to Schmied’s [6].  
They decomposed the elliptic orbit at the bearing (figure 2) into 
circular orbits that are precessing, respectively, in the same 
direction as the rotor’s spin direction (forward) and opposite to 
shaft rotation (backwards).  Figure 3 shows this decomposition 
defined by  

( ) (
( ) ( ) ( ) ( )

0

0 0

cos sin cos sinc s c s

t t t t

r f r b

)x t x t y t y t

F e B e C e C eω α ω α ω α ω α

ω ω ω

ε ε+ − − + − −

= + + +

= + = +j j j j

R j ω
          (1)              

where, Cr  is the bearing’s radial clearance, and fε  and bε  are 
respectively, the ratio of forward and backward precession 
orbits to Cr.  

They used a short-bearing model with an iso-viscous 
lubricant to predict journal temperature distributions for a plain 
journal bearing with a coolant flow.  They  predicted that: (i) 
Forward and backward orbits produce separate (constant) rotor-
fixed temperature distributions, and (ii) The backward 
precessing orbit also produces an oil film temperature 
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distribution that precesses backwards at twice running speed, 
which can be ignored since the rotor temperature cannot 
respond to this high-frequency temperature oscillation.  They 
assumed that the thermal bend development would be much 
slower than the rotordynamic response.  

 
Figure 2. SYNCHRONOUS ELLIPTIC ORBIT FOR MOTION 

ABOUT AN EQUILIBRIUM POSITION 
 
 

tω

tω

tFe ωj tBe ω− j

 
 

Figure 3. DECOMPOSING AN ELLIPTIC ORBIT INTO 
FORWARD AND BACKWARD CIRCULAR ORBITS. 

 
           Figure 4 shows the rotor-fixed x,y,z coordinate system. 
The angle ϕ  defines the circumferential location of a point on 
the rotor.  For specified fε and bε  values from Eq.(1), Keogh 
and Morton calculated the following rotor-fixed temperature 
distributions: 

                                
( ) (, , ,f bT r T r )ϕ ϕΔ Δ

                           
 (2) 

 

 
 

Figure 4.  ROTOR-FIXED x,y,z  COORDINATE SYSTEM 

 
           
They assumed a linear radial temperature variation; 
i.e., ( ),j jT r TϕΔ = Δ , ( ),j jT r Tϕ πΔ ± = −Δ , (where subscript j 
is either  f or b, denoting a forward and backward orbit, 
respectively). They calculated a bent-shaft angle induced by the 
linear radial temperature gradient at the bearing using 
Dimoragonas’ [8] closed-form solution     

           
( )

22 /2

0 0 0

, ,
2

Tk Tx Ty

L D
T

j
a

DT r z e drd dz
I

π
ϕ

β β

γ ϕ ϕ

= +

⎛ ⎞= − Δ ⎜ ⎟
⎝ ⎠∫ ∫ ∫ j

j

j
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   (3) 
where, D and L are the bearing’s diameter and length, 
respectively.  Further, γT and Ia are the coefficient of thermal 
expansion and area moment of inertia of the journal cross 
section, respectively.  
          As illustrated in figure 1, the hot side of the shaft is at the 
top of the rotor lying in the xT - z plane.  The cold side is at the 
bottom. The relative position of the x, y and xT, yT  axes is 
shown in figure 5 where the maximum differential temperature 
is located with respect to the x axis by ϕT.   

 
Figure 5. RELATIVE POSITIONS OF THE ROTOR FIXED x,y,z 

AND xT,yT,z COORDINATE SYSTEMS 
 

Keogh and Morton expressed the net bend angle 
βTk=βTf +βTb where βTf  is the forward, and βTb is the backward 
bent-angle component. Gain G1 is defined in terms of the ratio 
of temperature induced βTk and initial β0k complex bent-shaft 
angles as 

                                   
1

0

Tk

k

=G
β

β                 
                (4) 

They suggest that Re(G1)>1 indicates unstable growth, and 
Re(G1)<1  indicates stable decay. Thermally-induced imbalance 
due to overhang was not considered.  

In 1994, Keogh and Morton [9] developed a new 
analysis starting with time-varying bent-shaft angle 
components about the body-fixed x and y axes, instead of 
constant bent shaft angle. A time-dependent thermal bend was 
first calculated by combining the heat transfer equations with 
the dynamic equations of the rotor. This thermal bend was then 
transformed to the frequency domain where it was incorporated 
into a positive feedback loop. The stability characteristics of 
this loop were then obtained by plotting Nyquist graphs at 
successive rotor speeds. They obtained a range of instability 
speeds for which the real part of the eigenvalues were positive.  
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Geormiciaga and Keogh [10] used CFD techniques to 
analyze the dynamic flow and heat transport in the lubricant 
film in a hydrodynamic bearing and reported that the 
differential temperature generally increases with speed and 
orbit size. 

In 1996, De Jongh and Morton [11] experimentally 
measured in-rotor temperatures at the tilting-pad bearing in a 
test rig to verify that the observed divergent synchronous 
vibration motion in a centrifugal compressor was caused by 
differential temperature across the journal. Their data are the 
only published in-rotor temperature measurements for 
hydrodynamic bearings. The experiments were done with a 
lightly-loaded rotor with a circular forward precessing orbit. 
They reported temperature difference of 3°C for the orbit size 
of 8% of the bearing clearance at 10500 rpm and an angle 
between the hot spot and position of minimum film thickness of 
20°. They also found that repositioning the unbalance mass by 
an angle of 180° in the rotor resulted in a change of the location 
of the hot spot of about the same angle. The in-rotor 
temperature measurements shown in figure 6 was reported in 
subsequent publications by de Jongh and ver Hoeven [12]. 
However, the orbit amplitude, static eccentricity, running speed, 
and bearing specifications were not reported.  

 

Figure 6.  MEASURED IN-ROTOR TEMPERATURE [12] 
 

De Jongh and Morton [11] developed an algorithm 
based on in-rotor temperature measurements to predict 
synchronous instability. Their rotor model is shown in figure 7, 
where Mc is the concentrated overhung mass and l is the 
distance between the overhung mass and the bearing. θ is the 
change in the bend angle due to differential temperature at the 
bearing location. The algorithm is based on the following three 
transfer functions (refer Figure 8): (1) Mcl (overhung moment at 
the bearing), (2) IOB (“influence coefficient between the 
overhung and the bearing location”) and depends on  ω, the 
mode shape, system damping and proximity to critical speed,  
and (3) T(t,ω) (complex thermal gain) is a function ω and time t 
to be obtained from  experimental measurements. The scheme 
established (shown in Figure 8) defines G as the product of 
three transfer functions. They state that Re(G) should be less 
than 1 for Morton-Effect rotor stability. 

 
Figure 7. OVERHANG MODEL BY DE JONGH AND MORTON 

[11] 
 

In 2000, Balbahadur and Kirk [13] developed a 
theoretical model for Morton-Effect analysis. The bearing’s 
circumferential temperature distribution was determined by 
solving the thermal energy balance equation based on the heat 
generation rates occurring between the journal, lubricant, and 
bearing.  The temperature distribution is used to calculate the 
thermally-induced mechanical imbalance. The net imbalance is 
calculated as a vector sum of mechanical imbalance (taken as 
10% of total weight of rotor divided by ω2) and the thermally 
induced mechanical imbalance. For stability, they state that the 
net imbalance should be less than the threshold imbalance (15% 
of the total rotor weight divided by ω2). The hot spot is 
assumed to coincide with the minimum film-thickness location, 
contradicting experimental observations by Morton [4] and De 
Jongh and Morton [11], plus predictions by Geomiciaga and 
Keogh [10]. Balbahadur and Kirk validate their approach by 
comparing their predictions to observed outcomes for multiple 
case studies [14]. They did not consider induced bent-shaft 
excitation or separate contributions due to forward and 
backward orbits.  
 

Mcl IOB T(t, )Overhang
unbalance

Bearing
Orbit

G

i n

 
Figure 8. SCHEME OF INSTABILITY PHENOMENON AFTER 

[11] 
       

Murphy and Lorenz [15] presented a simplified 
method for modeling the Morton Effect. They used the 
following vectors: (1) A (sensitivity of vibration due to 
mechanical imbalance), (2) B (temperature coefficient vector 
connecting hot spot on the shaft and position of minimum film 
thickness), and (3) C (bow coefficient vector, connecting the 
imbalance vector and the hot spot). For stability, they argue that 
Re(ABC) should be less than 1. The temperature difference is 
found to be linearly proportional to the size of the shaft orbit, 
and they calculated the orbit due to Morton Effect. The 
temperature profile of the lubricant used for the analysis is 
obtained by a separate CFD calculation. 

Multiple case studies exist for machines that have 
encountered divergent synchronous motion, and de Jongh [16] 
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provides an excellent literature overview and review of 
corrective measures for the Morton Effect. 

 
RESEARCH OBJECTIVE 
         A review of existing analysis techniques shows that the 
Morton-Effect response has, until now, been considered as a 
classical stability problem to be resolved by eigenanalysis or a 
related stability technique. In general, linear stability analyses 
consider the stability of motion resulting from a perturbation 
from an equilibrium point or orbit.  However, existing 
techniques seem to omit the initial step of finding an 
equilibrium orbit.  The present analysis aims to iteratively 
construct equilibrium orbits, starting from synchronous 
response due to an initial mechanical imbalance distribution, 
and then considering the additional excitation due to a 
thermally-induced bent-shaft and a thermally-induced 
mechanical imbalance.  The analysis leaves open the question 
of whether the resultant equilibrium orbits are stable. 
 
ALGORITHM DEVELOPMENT 
         The algorithm is motivated by the 1993 Keogh and 
Morton paper [7]. It starts with calculated synchronous 
response results for an initially specified imbalance distribution 
that, for each running speed ω, produces a static eccentricity 
ratio ε0 and an attitude angle ψ0  at a bearing.  For this 
equilibrium position, the contents of Table 1 are calculated by 
solving the Reynolds equation plus the energy equation.  The 
predictions in Table 1 are calculated differential temperature 
and phase lag angles for a plain journal bearing for forward and 
backward orbits at ω=7500 rpm for ε0=0.667,ψ0=41.20, 
L=35mm, D=100mm, Cr=100μm, μ (absolute viscosity) = 0.08 
Pa-s. The phase-angles of Table are illustrated in Figure 9 and 
define the locations of hot spots for forward and backward 
orbits from the minimum-film thickness location.  
 

The bearing-temperature-solution algorithm leading to 
the contents of Table 1 is similar to that of Keogh and Morton 
[7] but is based on the work of  Gadangi et al. [17] and was 
produced using a model and code developed under the 
leadership of Professor Alan Palazzolo at Texas A&M 
University.  Calculating these and similar results takes an order-
of-magnitude more time than the synchronous Morton-Effect 
calculations. 
 
Table 1. CALCULATED DIFFERENTIAL TEMPERATURE AND 

PHASE LAG ANGLES FOR FORWARD AND BACKWARD 
ORBIT 

r

F
C

 fTΔ  
(oC) 

Tfϕ  

r

B
C

 bTΔ (oC) Tbϕ  

0.05 0.7361 72 0.05 0.7898 -84 
0.10 0.9314 36 0.10 0.9058 -48 
0.20 2.0425 24 0.20 2.1279 -24 
0.25 8.5327 12 0.25 7.8965 -12 
0.30 13.785 36 0.30 12.6534 -54 

 
Figure 9. MAXIMUM DIFFERENTIAL TEMPERATURE AND 
PHASE LAG ANGLES FOR FORWARD AND BACKWARD 

ORBITS 
 

    

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4

F/Cr  or B/Cr

Δ
T j

 (o C
)

Forward Backward

 
(a) 

0

10

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25 0.3

F/Cr  and B/Cr

ϕ 
j (

o )

ϕ Tf

−ϕ Tb

 
                                   (b) 

Figure 10. (A) CALCULATED ΔTf ,ΔTb AND (b) ϕTf,ϕTb VERSUS 

ORBIT AMPLITUDE AT 7500 RPM AT ε0=0.667 FROM TABLE-
1 

Figures 10(a) and (b) illustrate predictions of ΔTj and 
ϕΤj from Table 1 for a range of forward and backward orbit 
amplitudes.  For F/Cr and B/Cr up to ~0.2 ΔTj behaves linearly, 
but as the orbit size increases, the behavior becomes nonlinear. 
The ΔTj increase rapidly as ε0+ F/Cr approaches 1; i.e., motion 
approaching the clearance. 
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We are only going to discuss the Morton-Effcet 
algorithm for the right bearing of figure 1 although the 
procedure applies for an overhang at either or both bearings.  
Proceeding with the algorithm, the initially calculated 
synchronous response at the right bearing is an elliptical orbit 
that produces forward and backward orbit radii F0  and B0. 
Using F0/Cr and B0/Cr as input, fTΔ , , bTΔ Tfϕ and Tbϕ  are 
obtained by interpolation from Table 1.  Hence, the net rotor-
fixed temperature distribution is 

            (5)

         
( ) ( )(

( ) ( )(
1 cos * cos *

sin * sin *

T

f Tf b

f Tf b Tb

T e T T

T T
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j
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)
)

Tb                                             

The resultant maximum differential temperature ΔT1 and its 
location ϕT with respect to the x axis is  
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−

Δ = Δ + Δ + Δ Δ + +
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=
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⎜ ⎟
⎝ ⎠

Tb

Tb

     (6) 

From Dimoragonas [8], the resultant bent angle βT  is 

                                

3

1 4 2
T

T

a

D
T L

I

πγ
β = Δ ⎛ ⎞

⎜ ⎟
⎝ ⎠                               

(7) 

An applied moment M at the end of a cantilevered Euler beam 
produces the rotation angle / aML EIβ = . Hence, Tβ is 
produced by the following end moment              

                   
3

1/
4 2T T a T T

D
M L EI M E T

π
β = ⇒ = ⎛ ⎞

⎜ ⎟
⎝ ⎠

γ Δ
     

    (8)             

Observe that MT is not a function of L. Applying MT  and -MT 
moments at the right and left hand ends of the bearing produces 

Tβ . The signs of MT and -MT correspond to right-hand rotation 
directions about the yT axis. With respect to the rotor model, MT 
and -MT  are applied at stations i* and j* corresponding to the 
station on the left and right hand end of the right bearing, 
respectively.  The synchronous response due to this bent-shaft 
excitation is calculated as the first additional contribution to 
the synchronous response. This excitation is applied directly to 
the rotor model versus using the rotor free-free matrix as 
carried out by other methods. 
         The portion of the rotor outside the right-hand side 
bearing has mass mrb, and its mass center lies the distance lgr to 
the right of the bearing center at station k* in the rotor model. 
For small Tβ , a thermally-induced mechanical imbalance occurs 

with the magnitude grb r Tm l β . The synchronous response due to 
this thermally-induced imbalance is calculated as the second 
additional contribution to the synchronous response.    
 The three synchronous responses are added vectorially 
(response due to initial mechanical imbalance + response due to 
bent-shaft excitation + response due to thermally-induced 

imbalance) producing a new starting ellipse, and the process is 
continued until a converged orbit is produced.  

At the end of each iteration step, the gain factor 

    1

i i
aT

i 1i

F B
G

F B
−

+
=

+
−                               (9)

 

is calculated where, Fi and Bi are forward and backward 
amplitudes, respectively at the end of ith iteration. GaT is a real 
number, not complex. (GaT -1) is checked to see if it is less than 
tolerance (0.001 for the present calculations); if yes, the steady 
state converged solution is obtained. Otherwise, the iteration 
continues for a set number of cycles.  For the cases considered 
here and discussed below, the algorithm continues to converge 
until motion approaches the wall.  Convergence problems can 
arise in the form of oscillations if the interpolation grid 
presented by Table 1 is too coarse. 
 
Keogh and Morton’s (1994) Symmetric Rotor Example 
[9] 

 
Figure 11. ROTORDYNAMIC MODEL OF KEOGH AND 

MORTON [9], SYMMETRIC ROTOR 
 
      Figure 11 shows a symmetric flexible rotor with end-
mounted discs (each with mass 20 kg), supported by two 
identical plain journal bearings.  The bearings are at stations 5 
and 41, with L=35 mm, D=100 mm, Cr=100 μm and γT=1.1e-

5/0C. The bearing’s calculated ε0, ψ0, and μ  versus ω are given 
by [11]. Because L/D = 0.35, the short-bearing model [18] is 
used to calculate rotordynamics coefficients. The rotor's first 
and second critical speeds are ~4000 and ~7000 rpm, 
respectively. The first forward damped mode is a cylindrical 
rigid-body mode. Assuming, the maximum continuous 
operating speed is 6000 rpm; the API 684 [3] imbalance is set 
at ~50 gm-cm and is applied at the rotor’s mid-span. This 
imbalance excitation provides minimal excitation for the 2nd 
mode.  

In the following discussion, “Morton Effect” means 
that additional synchronous response contributions are 
calculated including contributions from the thermally-induced 
bent-shaft excitation and the thermally-induced mechanical 
imbalance.  Figure 12 presents ρmax versus ω for the original 
model with Morton Effect where ρmax is the normalized relative  
rotor displacement using radial clearance from the bearing 
center. ρmax  cannot exceed unity without contact.  At speeds 
beyond 10000 rpm, ρmax exceeds the clearance circle, i.e., the 
response diverges. Below this speed, steady-state converged 
solutions are obtained. The distinct peaks at 4000 and 7000 rpm 
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are at the 1st and 2nd  critical speeds. Obviously, operation near 
a critical speed can produce higher levels of synchronous 
vibration. Near a critical speed, the higher amplitudes result in 
higher ΔTs, which causes higher synchronous excitation due to 
Morton Effect.  
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Figure 12. MORTON EFFECT RESPONSE ρmax VERSUS ω OF 

ORIGINAL MODEL  
 
Keogh and Morton [9] calculated an instability zone 

between 9769 rpm and 10371 rpm. Balbahadur and Kirk [14] 
predicted the resultant imbalance exceeding threshold 
imbalance between 10001 rpm to 11521 rpm. The present 
algorithm predicts diverging motion at speeds above ~11000 
rpm and does not predict recovery at higher speeds. De Jongh 
and Morton [11] observed recovery in Morton Effect instability 
at higher speeds. 

2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

a/
C

r

Speeds (rpm)

 Morton Effect
 Mechanical Imb + Ind Bent shaft moments only
 Mechanical Imb + Ind imb only
 Mech. imb. only

      
Figure 13. a/Cr VERSUS ω WITH FOR VARIOUS 

COMBINATIONS OF MORTON EFFECT 
 
   Figure 13 presents a/Cr (a is the semi-major axis of the 
ellipse) versus ω for: (i) Mechanical imbalance only, (ii) 
Morton Effect, (iii) Mechanical imbalance + thermally-induced 
bent-shaft excitation, and (iv) Mechanical Imbalance + 

thermally-induced imbalance. For this case the thermally-
induced bent-shaft excitation is the dominant contributor to the 
response. However, this dominant outcome is not certain, since 
the overhung mass can be increased, increasing the induced 
imbalance without changing the bent-shaft excitation. The 
response diverges (again) at ~11000 rpm.  
 
 
IMPACT OF INCREASING INITIAL IMBALANCE 

Figure 14 shows significant increases in the Morton 
synchronous response when the mechanical imbalance 
magnitude is increased from 50 gm cm to 100gm  cm. The 
divergent speed drops to 7000 rpm from 110000 rpm. The 
larger mechanical imbalance causes a larger orbit amplitude 
that drives the larger differential temperature in the bearing, 
which in turn provides higher synchronous excitations due to 
Morton Effect. Recall that the algorithm requires some initial 
mechanical imbalance to obtain an orbit to begin iterative 
calculations. 
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Figure 14. MORTON EFFECT SYNCHRONOUS RESPONSE 
WITH CENTERED IMBALANCES OF 50 gm cm AND 100 gm 

cm 
 
IMPACT OF CHANGING L/D 

Figure 15 presents ρmax versus ω for L/D= 0.35 and 
L/D= 0.5. For L/D=0.5, ρmax does not cross the clearance circle 
for speeds up to 11000 rpm, indicating no divergent motion .  ε0 
is smaller with L/D=0.5 than 0.35 , as increasing L/D reduces 
the bearing unit load. Increasing L/D is predicted to reduce the 
synchronous response due to Morton Effect.  The predictions of 
figure 14 conflicts with some experiences. Berot and Dourlens 
[19] and Schmeid et al.[20] eliminated Morton Effect instability 
problem  by reducing L/D for tilting-pad bearing. Schmeid et 
al. state, “the thermal deflection per unit temperature rise in the 
bearing cross section is proportional to the width of bearing”. 
For both configurations in figure 15, ε0~0.4-0.7 in contrast of 
the turbo-expander model discussed by Schmeid et al. that have 
ε0~0.05.  Figure 16 predicts that increasing L/D decreases ΔT, 
which explains the difference in the synchronous response.  An 
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extension of the new algorithm to include an analysis of orbit 
stability might show that orbits associated with small L/D ratios 
are more stable than orbits associated with large L/D ratios.   
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Figure 15. MORTON EFFECT RESPONSE-ρmax VERSUS 

ω FOR DIFFERENT L/D RATIOS  

 
Figure 16. ΔTf VERSUS F/Cr FOR L/D=0.35 AND 0.5 AT 7500 

rpm 
 
 IMPACT OF CHANGING Cr/R 
 
   This section examines the predicted influence of changing 
Cr/R  from 0.002 to 0.001. The predicted differential 
temperature and phase angles for different ε0, ψ0, and μ values 
at different speeds is given in Saha [21]. Reducing the 
clearances, reduces the operating eccentricity but increases the 
differential heating. The power dissipated by a centered plain 
journal bearing is inversely proportional to Cr [22].  
 

 
Figure 17. ΔTf VERSUS F/Cr FOR Cr/R=0.001 AND 0.002 AT 

7500 rpm 
 
      

Figure 17 shows the differential temperature 
increasing by an approximate factor of 2 for Cr/R=0.001 as 
compared to Cr/R=0.002. ΔTf increases more or less linearly for 
Cr/R=0.001 For Cr/R=0.002, it first rise linearly up to F/Cr=0.2; 
beyond that it rise sharply with increasing F/Cr. As the orbit 
amplitude approaches the clearance, higher shear viscous forces  
and larger differential temperature result. 
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Figure 18. MORTON EFFECT RESPONSE ρmax VERSUS ω 

FOR DIFFERENT Cr/R RATIOS 
 
  Figure 18 predicts that reducing Cr/R from 0.002 to 
0.001 causes the system to diverge due to the Morton Effect 
above 7000 rpm. No recovery in response is predicted with 
increasing ω.  
          Deliberately increasing Cr has not been considered as an 
option to fix Morton Effect problems; however, de Jongh and 
van der Hoeven [12] noted that there compressor was subject to 
the Morton Effect Instabilities in the field because reduced 
ambient temperatures reduced the clearances.  
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INFLUENCE OF OVERHUNG MASS MAGNITUDES  
        Figure 19 compares ρmax versus ω for the original model 
with an overhung mass of 20 kg and a modified model with 50 
kg.  Saha[21] tabulated the predicted differential temperature 
and phase angles for different ε0, ψ0, and μ values at different 
speeds. Increasing the magnitude of the overhung mass, 
increases the operating eccentricity and consequently increases 
the differential heating. The thermally-induced mechanical 
imbalance is directly proportional to the product of the 
overhung mass and its distance from the bearing. The 50kg 
mass is predicted to cause a sharp rise in response after 3000 
rpm making the response diverge. This prediction confirms the 
general field experience that reducing the overhung mass 
magnitude helps to eliminate Morton Effect problems.  
Corcoran et al. [23] present the only contrary result where a 
significant increase in coupling weight eliminated a Morton-
Effect problem.  
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Figure 19. MORTON EFFECT RESPONSE ρmax VERSUS ω 

FOR DIFFERENT OVERHANG MASSES 
               
 INFLUENCE OF REDUCED LUBRICANT VISCOSITY 

This model has 70% of the original viscosity by 
Keogh and Morton [9]. The remaining parameters are the same. 
Saha[21] provides the predicted differential temperature and 
phase angles for different ε0, ψ0, and μ values at different 
speeds for the reduced viscosity. Reducing viscosity increases 
the operating eccentricity, but reduces the differential heating. 
Figure 20 presents ρmax versus ω for the Morton Effect with the 
original and reduced viscosity. No divergent motion is 
predicted for reduced viscosity for ω out to 12k rpm. Schmeid 
et al. [20] and Marscher and Illis [24] (increased the supply 
temperature) reduce viscosity to eliminate Morton Effect 
problems.  
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Figure 20. MORTON EFFECT RESPONSE ρmax VERSUS ω 

FOR DIFFERENT VISCOSITIES 
             
SUMMARY, CONCLUSIONS, AND DISCUSSION 

The approach and results presented here provide an 
alternative viewpoint for analyzing the Morton Effect 
phenomenon.  Specifically, an iterative approach is used to 
produce a converged orbit for the rotor versus attempting to ask 
whether a rotor is “stable” or unstable under the influence of 
Morton Effect differential heating at the bearing.  For the cases 
considered, the algorithm produced a converged orbit for all 
cases until motion approaches the bearing wall; i.e., cases in 
which contact is predicted.  The speeds for which contact is 
predicted agree reasonably well with predictions from prior 
stability approaches.   

In contrast to some stability algorithms, the present 
approach did not predict higher-speed “recovery” ranges for 
which the Morton Effect phenomenon disappeared. De Jongh 
and Morton  [11] observed this outcome in tests, but did not 
cite corresponding predictions of recovery.   

The new model’s results also differs from prior 
analyses in predicting substantial differences in synchronous 
response due to the Morton effect during critical-speed 
transitions well before speeds that cause divergent motion.  De 
Jongh and Morton’s measurements confirm these predictions 
[11]. 

Predictions from the algorithm are generally consistent 
with experiences except in regard to the impact of changing 
L/D.  For the example considered, the present model predicted 
an improvement with increasing L/D; whereas, several case 
studies have been presented that show an opposite outcome.  As 
yet, no attempt has been made to investigate the stability of the 
converged orbital solutions presented here.  Field experiences 
in which the rotor phase changes continuously at constant speed 
clearly argue that some of the observed orbits are unstable.  A 
more complete model of the rotor and bearing would be needed 
to conduct a stability analysis.  Further stability analysis might 
show that orbits with reduced L/D values are more dynamically 
stable.  Note also that calculated results from all algorithms 
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have been for plain journal bearings while most operating 
experiences have been with tilting-pad bearings. 

However, the reverse side of this statement is that 
prior stability analyses have failed to start from an equilibrium 
orbit in performing stability analyses.  In the related 
phenomenon of spiral vibrations due to rub, motion is 
dynamically unstable for small motion about many initial 
starting points.  However, the resultant motion can proceed to 
either a stable orbit or an unstable orbit [5], [8].   

The code based on the iterative algorithm presented 
here runs very quickly.  However, that speed is deceptive since 
the code that is required to produce the results of Table 1 
require about 6-8 hours of execution time for one point (one 
forward or one backward orbit) for a plain journal bearing with 
constant viscosity.  Assuming that one produces predictions at 
multiple speeds and multiple orbit amplitudes, many hours of 
computer time are required. Predictions are becoming available 
for variable viscosity, and progress is being made for tilting-pad 
bearings. 

The real deficit in regard to the Morton Effect is the 
almost complete absence of in-rotor temperature measurements 
to validate any existing theory or approach.  Most companies 
have developed approaches to “manage” the problem with the 
present inadequate knowledge base, so there is no greater 
incentive to spend money to get a better understanding. 

Saha [21] provides an extended discussion of the 
algorithm including comparative calculated results for the 
model of Schmied et al. [20]. 
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