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ABSTRACT 
Bearings are a key factor in achieving a good rotor 

dynamics performance for turbo machinery. Large 
compressors, steam and gas turbines for industrial applications 
are generally equipped with journal bearings either as tilting 
pad or multi-lobe bearing type. Here bearing parameters such 
as bearing geometry, bearing load or oil viscosity significantly 
alter bearing behavior and influence the rotor dynamics of the 
entire rotor-bearing system. 
 

In order to find an optimal set of bearing parameters for a 
given rotor-bearing system a nonlinear parameter optimization 
approach is employed. The rotor-bearing system is 
parameterized using bearing width, clearance and preload as 
design variables, since they represent design parameters that 
can be modified without significantly influencing the rotor 
design as a whole. The set of design variables is further 
constraint to stay within feasible limits of bearing design. The 
objective function is defined as a quantitative measure of rotor 
dynamic performance evaluating the distance from required 
separation margins with respect to rotor critical speeds based 
on API 617 7th Ed. In order to compute the objective function 
based on the design variables the bearing code ALP3T, solving 
Reynolds equations for the bearing fluid film, is used to 
compute the required stiffness and damping coefficients as 
input to the rotor dynamics program. The rotor dynamics 
performance is then evaluated using the rotor dynamics code 
SR3 based on the transfer matrix method. Both programs have 
been developed by the University of Braunschweig and are de-
facto industry standard within the German turbo machinery 
industry. The two programs are coupled and the nonlinear 
constraint optimization problem is solved using MATLAB’s 
optimization toolbox. 

 

The feasibility of this method is discussed based on an 
example of an axial flow compressor using two-lobe bearings. 
It is shown that a significant improvement in rotor dynamic 
performance can be achieved when compared to previous 
bearing selections for similar compressor designs and that the 
approach is suitable for a real-life engineering environment. 

 

NOMENCLATURE 
AF amplification factor 
B/D bearing width to diameter ratio 
C bearing stiffness matrix 
c bearing stiffness coefficient 
D bearing damping matrix 
d bearing damping coefficient 
m bearing preload 
N rotational speed 
Nc resonance frequency 
Nmax maximum rotational speed 
Nmin minimum rotational speed 
Nrated rated speed 
R bearing sleeve inner radius 
r shaft radius 
SM separation margin 
s distance of resonance point to API safety zone 
ux, uy rotor horizontal and vertical displacement 
x vector of design parameters 
ΔR bearing radial clearance vertical 
ΔRs bearing radial clearance horizontal 
ψ bearing relative radial clearance 
φ 
ζ 

objective function 
modal damping ratio 
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1 INTRODUCTION 
 Journal bearings are widely used to support rotating 
machinery such as industrial gas turbines, steam turbines, 
centrifugal and axial flow compressors. Many of these 
machines are individually designed for their specific 
application. Late in the design process for such tailor-made 
machines much of the dynamics of the rotor-bearing system are 
already determined by earlier decisions. However, the bearing 
design is easily changed without significantly affecting other 
machine parts. Bearing design has an important impact on the 
system dynamics and thus offers an efficient way to optimize 
rotor dynamics performance late in the design process. 
 

The influence of bearing parameters on rotor dynamics has 
been investigated extensively [1,2]. Some studies have tried to 
find an optimal set of parameters for journal bearings ignoring 
the influence of the rotor system [3-5]. However, as has been 
pointed out by many researchers [6-14], the system dynamics 
are influenced by both, bearing and rotor system, such that only 
the analysis of the combined rotor-bearing system can lead to a 
realistic system improvement. Optimization studies 
investigating the influence of bearing parameters on the rotor-
bearing system have employed a variety of objective functions 
focusing on stability [6], unbalance response [7], rotor mass [8] 
or bearing power loss [9-11]. Some researchers have also used 
a multi-objective optimization approach combining rotor 
weight and resonance response [12] or rotor weight and bearing 
load [13]. Recent studies have also focused on introducing 
different optimization algorithms such as genetic [11,14] or 
particle swarm algorithms [9] rather than the classical direct 
search algorithms. 

 
While most researchers have used simple rotor models 

with only few degrees of freedom, this study focuses on testing 
the practicality of the approach of automatic optimization of 
bearing parameters within a real-life engineering design 
process. 

2 MODELING OF THE ROTOR-BEARING SYSTEM 
Rotordynamics modeling was based on API 617 7th 

Ed. [15] which presents a de facto standard in the industrial 
turbomachinery industry. Dynamics analysis according to 

API 617 chapter 2.6 requires an undamped modal analysis in 
order to determine natural frequencies and mode shapes of the 
rotor-bearing system as well as a subsequent damped unbalance 
response analysis. Design criteria are the absence of lowly 
damped critical speeds, e.g. a natural frequency at resonance 
condition. According to API 617 a lowly damped critical speed 
is defined as having an amplification factor of 2.5 or greater. 
Depending on the damping ratio, a minimum separation margin 
of critical speed to speed range is required. While amplification 
factor and separation margin according to API 617 are derived 
from the damped unbalance response analysis, it is just as well 
possible to derive them directly from a damped modal analysis. 
Here, this method has been chosen for conducting the 
optimization problem, because it does not require any 
assumptions regarding relevant unbalance distributions to be 
applied to the rotor-bearing system. 

 
API 617 requires further a stability analysis to ensure 

stable behavior of the rotor-bearing system, including the 
influence of fluid destabilizing forces. For practical purposes 
this analysis has been ignored for the case at hand, since it is 
MAN Diesel & Turbo experience that axial compressors 
featuring comparatively low final pressure levels do not show 
any unstable behavior caused by the process fluid. 

2.1 ROTOR MODEL 
The analysis is based on a 20 MW axial flow compressor 

shown in Figure 1. The compressor consists of sixteen axial 
stages, one radial end-stage, a balance piston and a flexible 
coupling at the discharge side end. For the rotor model only 
shaft mass and stiffness as well as additional lumped masses for 
impellers and couplings were considered. The journal bearings 
are two-lobe bearings with a diameter of 180 mm at the suction 
side and 200 mm at the discharge side. The support stiffness 
used was based on the API 617 recommendation of 
8.75·106 N/mm in the horizontal and vertical direction. 
Damping is only considered for the oil film. The rotor model 
was solved using the rotor dynamics program SR3 [16] based 
on the transfer matrix method. SR3 has been developed by the 
University of Braunschweig and represents a de facto industry 
standard for rotor dynamics computation within Germany. 

Figure 1. Rotor model showing shaft elements, additional masses for blades and impellers and bearing positions. 
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2.2 BEARING MODELLING 
The two-lobe bearing model used is shown in Figure 2. 

Both bearings consist of two pads with oil pockets between 
them. Input parameters are the ratio of bearing width to 
diameter B/D, the bearing clearance ψ defined by 

 

R
rR −

=ψ , (1) 

 
and the preload m where 
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Here, R is the bearing sleeve inner radius, r the shaft radius and 
Rs the pad curvature radius. All other bearing parameters 
remained constant. The bearings were modeled using 
ALP3T [17] in order to compute the bearing stiffness and 
damping coefficients matrices C and D, respectively, which are 
dependent of the shaft rotational speed N: 
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It must be noted that for two-lobe bearings the coupling 

coefficients of the stiffness matrix cxy and cyx as well as the 
coupling coefficients of the damping matrix dxy and dyx are 

neither zero – as in the case of tilting-pad bearings – nor are the 
matrices C and D symmetric [1]. 

 
Figure 3 shows the results of the damped modal analysis of 

the rotor-bearing system for the bearing parameter set 
[ψ1 = 1.5, m1 = 0.65, (B/D)1 = 0.75, ψ2 = 1.5, m2 = 0.65, 
(B/D)2 = 0.75]. A plot of the mode shapes shows the significant 
modes with respect to the rotors operating speed range being 
the classical cylindrical and conical modes. However, next to 
their rigid-body character they also exhibit a significant amount 
of shaft bending, particularly the second and fourth mode. 

 
 Due to the anisotropic character of the two-lobe bearing 

each mode shape exists twice – once in the dominantly 
horizontal and once in the dominantly vertical direction. Hence, 
modes 1 to 4 are often referred to as 1 horizontal (1h), 1 
vertical (1v), 2h and 2v. The difference in bearing stiffness is so 
great that the distance between the resonance frequencies of 
modes 1v (41.8 Hz) and 2h (61.5 Hz) is smaller than the 
distance between 2h and 2v (119.9 Hz). 

 
Figure 4 shows a root plot of the damped eigenvalues, 

where modal damping is plotted versus resonance frequencies 
of the rotor-bearing model. At the same time, the safety zone 
according to API 617 around the rotors rotational speed range 
is shown. Eigenvalues at resonance within the speed range 
must exhibit a modal damping ratio of at least 0.2 in order to 
not be considered critical speeds, as is the case for mode 2 h. 
To the left and to the right of the rotors minimum and 
maximum continuous speed the required damping ratio is being 
reduced. Here, the limits are defined by API 617 as 
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where AF is the amplification factor defined by 
 

12 NN
NAF c

−
= . (7) 

 
Here, Nc is the resonance frequency and N1 and N2 are the 

frequencies at 0.707 · peak amplitude to the left and right of the 
resonance point in a bode diagram. However, for low levels of 
damping and within the linear region the amplification factor 
can be converted into the modal damping ratio by 
 

AF2
1

=ζ . (8) 

 

Figure 2. Geometry parameters of the two-lobe bearing 
model. 
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Further, no resonance frequency is allowed to exhibit 
negative damping, since this would indicate an unstable 
behavior of the rotor-bearing system. Thus, in simple terms it 
can be stated that most rotor dynamics criteria of API 617 are 
fulfilled, if no resonance occurs within the API safety zone 
shown in Figure 4. 

3 OPTIMIZATION APPROACH 
In order to find an optimized set of bearing parameters 

from a rotor dynamics point of view, they should be chosen 
such that the rotor-bearing system exhibits a maximum distance 
between or – in order to state the problem as a minimization 
problem according to common convention – minimum 
closeness of its resonance points to the API safety zone of 
Figure 4, while keeping bearing parameters within feasible 
design limits. Thus, the problem can be stated as a constrained 
optimization problem 

 

min φ = f(x) (9) 
 

where x is the vector of design parameters 
 

x = [ψ1, m1, (B/D)1, ψ2, m2, (B/D)2 ] (10) 
 

subject to: 1.0 ≤ ψ1,2 ≤ 2.0 
 0.5 ≤ m1,2 ≤ 0.8 (11) 
 0.5 ≤ (B/D)1,2 ≤ 1.0, 

 
where the indices 1 and 2 denote the bearings. 

 
The boundaries placed on the design variables represent 

design limits upon which the rotor dynamic model is valid 
based on experience. They also ensure that the bearing will not 
experience an excessive thermal load or mean bearing pressure. 

 
Figure 5 shows a flow chart of the optimization procedure.  

A starting guess of the vector of design variables is combined 
with the set of bearing parameters which remain constant in 
order to create a bearing model in ALP3T. This model is solved 
and the bearing stiffness and damping coefficients are obtained 
and used as input to the rotor dynamics model. From this the 
rotor dynamics solution is obtained and the relevant modes and 
resonance frequencies are evaluated. The rotor dynamics 
objective function φ is then defined as the minimum distance s 
between the resonance points of the damped eigenvalue plot to 
the API safety zone 

 
φ = min(si), for i = 1, … , number of resonance points. (12) 

Figure 3. Rotor natural frequencies and 3D mode 
shapes at resonance speed. 

Figure 4. Damped eigenvalue plot of the rotor-bearing 
system exhibiting the API safety zone. 
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Here, s was evaluated numerically, by discretizing the API 
safety zone boundary into 30000 small segments. 

 
Resonance points outside the safety zone are considered to 

have a negative distance, points within the safety zone are 
calculated to have a positive distance to the closest safety zone 
boundary. 

 

The optimization loop is controlled by Matlab’s fmincon 
function for constrained optimization problems using a gradient 
based algorithm [18]. The gradient is computed using a simple 
two point finite difference approach. For numerical reasons the 
objective function was evaluated using normalized values of 
resonance frequency and modal damping. Convergence criteria 
were set to: 

 
Δψ1,2 ≤ 0.001 
Δm1,2 ≤ 0.001 (13) 
Δ(B/D)1,2 ≤ 0.001 
Δφ ≤ 0.0001 
 

where Δ marks the change between two consecutive 
optimization iterations. 

4 RESULTS 
Initially a parameter study was conducted investigating the 

influence of input parameters ψ, m and B/D on the rotor 
dynamic performance. For this the bearing parameters for 
bearing 1 and 2 were set to be identical thus reducing the 
number of design variables to three. Results for various values 
of B/D are shown in Figure 6. It can be seen that all design 
variables have a significant influence on rotor dynamic 
performance. Best rotordynamic performance is achieved using 
the minimum preload. However, the best choice of bearing 
clearance varies with the ratio of width to diameter. For low 
B/D a small clearance seems beneficial, for high B/D a higher 
clearance achieves better results. 

 

Figure 5. Optimization flow chart. 
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Figure 6. Surface plot of the objective function under the assumption of identical bearing parameters for various values 
of B/D. 
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The optimization routine employed was verified based on 
the results of the parameter study. Figure 7 shows the search 
path of the optimization algorithm for a constant value of  
B/D = 0.7. Convergence is achieved within 20 function 
evaluations on average. Further the global optimum is found 
from various starting points proving the suitability of the 
chosen optimization algorithm for this particular case. Similar 
results can be achieved, if B/D for both bearings is not kept 
constant. The global optimum is found repeatedly at x = [2.0 
0.5 0.94] for various initial starting points. Convergence is 
achieved using 30 function evaluations on average. 

 
Based on the results of the preliminary study the 

optimization run with the full set of six independent parameters 

was started. Figure 8 shows the history of the design 
parameters and the development of the objective function 
value. Convergence was achieved after 387 function 
evaluations. The found optimum point xopt = [1.99 0.50 0.93 
1.83 0.50 0.86] was the same for various starting points. 
Further, a sensitivity study, listed in Table 1, was conducted 
around the found optimum yielding no further improvement to 
the optimization problem. Therefore, and based on the results 
of the parameter study, it must be assumed that the found 
optimum represents the global optimum of rotordynamic 
performance. The result achieves a significant improvement 
over the original design point as is shown in Figure 9. The 
minimum distance of a resonance point to the API safety zone 
(mode 2v) has been increased by 300 %. In fact, the damping 
of mode 2v for the optimized design lies above 0.2 such that it 
would not even be considered as critical speed according to 
API 617. This only leaves mode 1v as a critical speed to be 
considered where the optimized design also leads to a 
significant increase in damping and thus a much improved 
characteristic with respect to rotor instability as well as run-up 
and shut-down behavior. 

5 CONCLUSIONS 
The results show that nonlinear parameter optimization can 

be used to select an improved set of bearing parameters in 
order to optimize rotordynamic performance at a late point in 
the design phase. The found optimum showed a signifcant 
improvement in rotor dynamic performance increasing the 
minimum distance of the resonance point to the API safety 

Figure 7. Convergence path for three different starting 
points. 

Figure 8. Convergence history for the full optimization 
using all six degrees of freedom. 

Table 1.  Objective function gradient for a change 
in design parameters.  

Parameter variation +0.05 -0.05 

ψ1 N/A 0.142 

m1 0.106 N/A 

(B/D)1 0.103 0.039 

ψ2 0.018 0.045 

m2 0.027 N/A 

(B/D)2 0.034 0.004 
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zone by more than 300 % compared to the original design. 
Further, convergence to the global optimum was achieved from 
various starting points, proving the suitibility of this method. 
The number of function evaluations necessary to achieve the 
final result is quite high. However, a major portion of the 
optimization improvements is already achieved after less than 
50 function evaluations, such that these benefits can be realized 
in less than a day making the approach suitable for a real-world 
engineering environment. 

 
The results from the bearing parameter optimization were 

implemented on the described rotor and the axial compressor 
performed well during its mechanical running test. 
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