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ABSTRACT 

The support stiffness and connecting structure stiffness 
which has significant effect on rotordynamics change with 
different assembly conditions and operating conditions. For 
example, the squeeze film stiffness changes with different film 
force, and the elastic support stiffness changes with different 
temperatures. These parameters are “uncertain but bounded”, 
in another word, the distributions of the parameters are 
unknown, but the intervals of the uncertain parameters are 
always got easier.  

An interval analysis method, which solves the 
rotordynamics with these uncertain parameters, is presented. 
Based on interval mathematics and perturbation method, 
interval analysis method simplifies the uncertain parameters to 
interval vectors so that it can get the intervals within which 
the rotordynamics varies when less information of structure is 
known. The interval analysis method is efficient under the 
condition that probability approach cannot work because of 
small samples and spare statistics characteristics. The 
formulation of natural frequencies of rotor using interval 
perturbation analysis method is formulated. A numerical 
example of comparison between interval perturbation method 
analysis and monotonic method is given. The rotordynamic 
analysis of a turbofan rotor is performed with this method, and 
the test data validates the numerical results. 

 

1. INTRODUCTION 

Rotordynamic analysis is very important for the design of 
aero-engines. Nowadays the finite element method is 
becoming increasingly popular in analyzing complicated rotor 
systems, as it is capable of predicting the static and dynamic 
behavior of the structure based on its geometry and material 
characteristics, the applied loads and constraints. 

 
However, it is often very difficult to define a reliable FE 

model of the rotor system, especially when a number of 
physical properties are uncertain. In real life, many 

components of a rotor system are subject to uncertainty. There 
are three types of uncertain in the rotor system. The first type 
is probabilistic uncertain, and in this case the uncertain 
parameters are described as random variables with known 
probability distributions. The second type is the fuzzy 
uncertain, which is non-probabilistic uncertain because 
sufficiently reliable stochastic data are not available. In fuzzy 
theory, the uncertainty is interpreted as the designer and 
analysis choice to use a particular value for the uncertain 
variable, if a preference function is used to describe the 
desirability of using different values within the same range.  
The last type is the interval uncertain, in which parameters are 
“uncertain but bounded”. It can be seen that when information 
about uncertain variables in the form of a preference or 
probability function is not available, interval analysis can be 
used most conveniently. 

 
If the uncertainties can affect the dynamics of the rotor 

system greatly, the validation of a structure with the FEM can 
only be reliable when taking the uncertainties into account. 
Many papers focus on the probabilistic uncertain of rotor 
systems, from random structures to random external forces [1- 
2], and there are also some papers on the rotor system with 
fuzzy uncertainties [3]. But there is rarely any work on the 
interval analysis of rotordynamics. 

In this paper, an interval analysis method, which solves the 
rotordynamics with these uncertain parameters, is presented. 
Based on interval mathematics and perturbation method, 
interval analysis method simplifies the uncertain parameters to 
interval vectors so that it can get the intervals within which 
the rotordynamics varies when less information of structure is 
known. The interval analysis method is efficient under the 
condition that probability approach cannot work because of 
small samples and spare statistics characteristics. The 
formulation of natural frequencies of rotor considering 
gyroscopic moments using interval perturbation analysis 
method is formulated. A numerical example of comparison 
between interval perturbation method analysis and monotonic 
method is given. The rotordynamic analysis of a turbofan 
rotor is performed with this method, and the test data validates 
the numerical results. 
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2. UNCERTAINS IN ROTOR SYSTEM AND INTERVAL 
ANALYSIS METHOD 

2.1 Uncertainties in rotor system 

Due to the randomness in material and geometric properties, 
or varying operation circumstance in rotor systems, 
uncertainties exist widely in the rotor-bearing systems. The 
exact actions such as bearing loads and rotational speeds are 
all subject to variations. The lubricant properties such as 
density and viscosity vary with the oil temperature. The 
performance of components such as bearings and shafts vary 
during their lifetimes because of wear and changes in 
operating conditions. Among these uncertainties, the support 
stiffness and connecting structure stiffness [4] are significant 
parameters that affect the rotor critical speed and vibration 
modes. 

 

As shown in Fig. 1, the support stiffness generally consists 
of three parts: the support structure stiffness KStructure, the 
stiffness of squeeze film damper (KSFD) and the stiffness of 
bearing (Kbrg). KStructure and KSFD change with different 
temperature and loads, and Kbrg changes with temperature, 
assembly state and loads.   

 
Fig. 1 The composition of support stiffness 

Fig.2 Connecting structures of an aero-engine rotor 
 

2.2 Interval analysis method  

The equation of motion of the rotor includes the structural 
parameters, such as mass, connecting stiffness and supporting 
stiffness etc., which can be represented as 

1 2( , , )T
ma a a a=  

In the deterministic rotordynamic analysis, only the 
deterministic value or nominal value  of these structural 
parameters is considered. However, in the uncertain 
rotordynamic analysis, the influence of the uncertainties of 
structural parameters on rotordynamics also needs to be 
considered. 

ca

KStructure 

In practice, usually no sufficient information on uncertainty 
can be obtained so that it is difficult to determine their 
statistical characteristics. Nevertheless, the bounds of 
uncertain parameters often can be defined easily. They can be 
described by interval notation as: 

CSFD KSFD 

 [ , ] [ , ]I c c c
i i i i i i i i i ia a a a a a a a a a I∈ = = −Δ + Δ = + Δ  (1) Kbrg 

where 

 [ ,I
ia a ]aΔ = −Δ Δ   (2)  

The connecting structures in aero-engine rotors such as 
spline joint structures and bolted joint structures (shown in 
Fig.2) were employed to hold two or more parts with different 
materials together to form an integrated rotor frame in a 
mechanical structure, in which rigidity and a mating part 
contact are the two primary characteristics. The stiffness of 
connecting structures changes with different working 
conditions (temperature, rotating speed) and initial assembly 
statement. 

Then the interval uncertain parameters can be described as 
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Let us consider the differential equation of motion of rotor 
systems with n degrees of freedom 
 ( )Mz C G z Kz 0+ + + =  (4) 

These parameters are typical “uncertain but bounded” ones, 
in another word, the distributions of the parameters are 
unknown, but the intervals of the uncertain parameters are 
always got easier. An interval method [5-6] is introduced to 
analyze the effect of these parameters on rotordynamics. 

Where M = (mij) is the mass matrix, C = (cij) is the damping 
matrix, G = (gij) is the gyroscopic matrix, K = (kij) is the 
stiffness matrix, respectively. M = (mij) is the positive definite 
matrix. C = (cij) and K = (kij) are the positive semi-definite 
matrices. G = (gij) is the anti-symmetric matrix. 

By state transformation, Eq. (4) can be written in the form 
  (5) 0Bx Ax− =
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Where 

M C G
⎡ ⎤

= ⎢ ⎥+⎣ ⎦
 , ，  (6) 

in which A is 2n × 2n-dimensional real symmetric 
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non-positive definite matrix, and B is 2n×2n-dimensional 
dissymmetry matrix. 

The generalized complex eigenvalue problem 
corresponding to Eq. (6) has the following form: 
 Au Buλ=  (7) 

 BA TT λνν =  (8) 

Whereλ is the complex eigenvalue, [ ]u
λφ
φ

= is the 2n 

complex right eigenvector ， ν is the 2n complex left 
eigenvector,φis the n complex eigenvector. 

 
The natural frequency analysis of the rotor system with 

uncertain parameters can be described as Eq. (4) with 
constraint Eq. (9). 

 ij ij ijm m m≤ ≤ ， ij ij ijc c c≤ ≤ ， 

 ij ij ijg g g≤ ≤ , ij ij ijk k k≤ ≤  (9) 

Based on Eq. (5), Eq. (9) can be written in the form 

 AAA ≤≤ ， BBB ≤≤  (10) 
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According to the formulation of interval matrices, Eq. (10) 
can be written as 

 ，
IAA∈ IBB∈  (12) 

Then Eq. (7) and Eq. (8) can be written as 

  (13) uBuA II λ=

 
ITIT BA λνν =  (14) 

Based on Eq.(1), Eq.(13) can be written as 

  (15) ( ) (c I c IA A u B Bλ+ Δ = + Δ )u

If small changes are introduced to matrices A and B: 

 ,  (16) AAA c δ+= BBB c δ+=

Where andcA cB are the unperturbed matrix pair, and Aδ  
and Bδ  are the matrix pair representing the small changes 
from andcA cB . We shall refer to A and B as the perturbed 
matrix pair. The perturbed generalized eigenvalue problem 
can be written in the form 

  (17) uBBuAA cc )()( δλδ +=+

where  AAA Δ≤≤Δ− δ ， BBB Δ≤≤Δ− δ  (18) 
One can obtain the expression of the first perturbation 

eigenvalues for the perturbed matrix pair  and 
as follows: 

AAA c δ+=
BBB c δ+=
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By the interval mathematics or interval analysis, Eq. (20)
and Eq. (21) can be written in another form: 
    (22) ],[ ircirircir

I
ir λλλλλ Δ+Δ−= ni ,,2,1=

    (23) ],[ iyciyiyciy
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Where 

 ( )

( )

T I T I
cir cir ciy ciy

T I T I
ir cir cir cir ciy ciy

T I T I
ciy cir ciy ciy cir

A u A u

B u B u

B u B u

ν ν

λ λ ν ν

λ ν ν

Δ − Δ

Δ = − Δ − Δ

+ Δ + Δ

 (24) 

 ( )

( )

T I T I
cir ciy ciy cir

T I T I
iy ciy cir cir ciy ciy

T I T I
cir cir ciy ciy cir

A u A u

B u B u

B u B u

ν ν

λ λ ν ν

λ ν ν

Δ + Δ

Δ = − Δ − Δ

− Δ + Δ

 (25) 

In Eqs.(24) and (25), the eigenvalues 1ci cir ciyλ λ λ= + − , 

ni ,,2,1= and the eigenvectors 1ci cir ciyv v v= + − , 

ni ,,2,1= and 1ci cir ciyu u u= + − ,  satisfy ni ,,2,1=

  (26) ci
c

cici
c uBuA λ=

 
cT

cici
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ci BA νλν =  (27) 

 1=ci
cT

ci uBν  (28) 

Obviously, from Eqs. (22) and (23), we can see that we only 
need to solve two generalized eigenvalue problems and 
compute four expressions, then all interval eigenvalues of the 
interval matrix can be determined. Thus, the presented method 
is very practical. 

According to Eqs. (23) and (25), the interval natural 
frequencies of the rotor system can be written as 
 [ ,I

i ci i ci ]if f f f f= −Δ + Δ    (29) ni ,,2,1=
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2.3 Summary of monotonic method 

If is a monotone function of interval 
parameters , then the bound of f can be 
captured from the combination of all the import parameters. 
Let  
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Then all the possible extreme value of f can be written as 
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This monotonic method can calculate the interval variation 
bound of the response function accurately, but the calculation 
efficiency will decrease with the increase of the number of 
uncertain parameters.  

 

3. NUMERICAL EXAMPLE 

In this section, a single-disk rotor is modeled by beam 
element with interval parameters, and natural frequency 
(complex eigenvalue) analysis is performed with interval 
perturbation method.  

The model of the rotor is shown in Fig.3. The length of the 
shaft is L=0.75m, the diameter R=0.06m, L1=0.1m, 
L2=L3=0.15m. The rotor is modeled with 10 beam elements 
and 1 mass element. In this example it is assumed that the 
stiffness coefficient of support 2 K2, the density ρ  and 
Elastic modulus E are uncertain-but-bounded variables, and 
the interval stiffness of support 2 is taken as 

2 2 2 2 2[ ,c c c ]cK K K K Kβ β= − +

[ ,c c c c

, the interval density 

]ρ ρ βρ ρ βρ= − +
[ ,c c c cE E E E Eβ β= − +

, and interval Elastic modulus 

, where ] 2
CK =3.0e6N/m,  

ρ C=7.8e03Kg/m3, and EC=200GPa. Other quantities are 
deterministic, in which the mass of the disk is taken as 
m=20Kg, and the polar moment of inertia  Ip=0.144kg·m2， 
the stiffness coefficient of support 1 K1=1.0e8N/m, the 
rotating speed ω=6,000rpm. 

 

Fig.3 The single-disk rotor model 
  
The natural frequencies computed by the perturbation 

method are listed in Table 1 when the variable parameterβ is 

taken as β=0.05. In the tables k is the number of modes; 
c

if are the nominal frequencies, p
if  and p

if are the lower 

bound and upper bound of the natural frequencies using the 

perturbation method, respectively. a
if  and a

if are the 

accurate lower bound and upper bound of the natural 
frequencies calculated with the monotonic method of 
reference [7], because the lateral vibration frequencies are 
monotonic to support stiffness K2, the densityρ and elastic 
modulus E, respectively. The corresponding mode shapes of 
the frequencies are shown in Fig.4.  

 
Table 1. Lower and upper bounds of natural frequencies (Hz) 

k Mode 
shapes 

c
if  

p
if  p

if  
a

if  a
if  

1 93.656 89.616 97.695 89.667 97.751
2

Fig.4 a
99.614 95.372 103.857 95.429 103.918

3 251.085 242.785 259.384 242.834 259.449
4

Fig.4 b
251.191 242.967 259.415 243.027 259.492

5 581.948 566.751 597.144 567.004 597.423
6

Fig.4 c
644.836 627.401 662.271 627.752 662.653

 

 
a. 1st and 2nd mode shape (pitch mode) 

 
b. 3rd and 4th mode shape  

 
c. 5th and 6th mode shape (1st bending) 
Fig.4 Mode shapes of the single-disk rotor  

 
From the results listed in Table 1 , we can see that there are 

very little difference between the maximum or upper bounds 
and the minimum or lower bounds on the natural frequencies 
yielded by the perturbation method and those produced by 
monotonic method. The separation margin is less than 0.05%. 

Comparisons of the range curves of the natural frequencies 
of the system computed by the interval perturbation method  
and monotonic solution theorem when the variable parameter 
β ranges from 0.0 to 0.2 are plotted in Fig.5 (a)–(c). 

It can be seen from Fig.5 that when β is less than 0.05, 
the natural frequencies calculated by interval perturbation 
method are the same as the accurate frequencies. Whenβ 
increases from 0.05 to 0.2, the natural frequencies calculated 
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Table 2. Summary of material properties of the rotor by interval perturbation method are very close to the accurate 
frequencies. The separation margin is less than 0.8%.  Elastic modulus

（GPa） 
Density 

（Kg/m3）
Poisson 

ratio 
Fan disks, 

Compressor rotor 100 4.44 E+03 0.34 

Fan shaft 196 7.86E+03 0.3 
Turbine rotor 193 8.16E+03 0.25 
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According to reference [4] and [10], an equivalent stiffness 

coefficient eε  is defined as follows: 

 K
Kc

e =ε  (33) 

where Kc the real stiffness of joint structures, and K is the 
stiffness of the reference axis segment. According to reference 
[10], the interval equivalent stiffness coefficients eε of the 
three spline joints are summarized in Table 3 due to different 
assembly states. The stiffness of the first three supports is 

N/m, and the interval stiffness of support 4 which is 
close to turbine rotor is [ , ] due to the 
uncertain temperature. 
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Table 3. Summary of interval equivalent stiffness coefficients 

 SJ-1 SJ-2 SJ-3 

eε  [0.6-0.8] [0.6-0.8] [0.6-0.8] 

 
Fig.8 shows the Campbell diagram of the interval model, and 
the corresponding vibration modes are shown in Fig.6. It is 
seen from Fig.6 that the 1st mode is local mode of turbine 
rotor and the 2nd mode is the local mode of fan rotor. Table 4 
summarizes the results of interval critical speeds. 

 

 

Fig.5 Comparison of the region curves of natural frequencies 
yielded by the monotonic method and the interval perturbation 

method 

4. ROTORDYNAMIC ANALYSIS OF A TURBINE-FAN 
ROTOR a. Mode 1 

 

4.1 Numerical analysis 

The subject rotor is a typical small turbine-fan rotor [8], 
including fan disks, fan shaft, compressor rotor and turbine 
rotor which are series connected by 3 spline joints (shown in 
Fig.7). The engine has four bearing supports. The engine is 
about 870mm long and the diameter is about 320mm. The 
maximum speed is 36,000rpm. Table 2 summarizes the 
material properties used in rotordynamic analysis. 

b. Mode 2 
Fig.6 Vibration modes of integral rotor 
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Fig.7 Diagram of rotor structure 
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Fig.8 Campbell diagram of interval model 

 
Table 4. Summary of interval critical speeds 

Mode Interval critical speed 
(rpm) 

Determined critical speed 
C
cω  

1 [16400-17835] 17118 
2 [42915-44575] 43745 

 

4.2 Analysis of test data 

In order to validate the simulation analysis, an analysis of 
the test data including 8 trail runs is performed in this section. 
The time domain test data of the start up process of 7th test is 
taken for example. Fig.9 shows the time domain chart of the 
engine startup process, it can be seen that the vibration 
acceleration has three peaks in Area A, B and C. The 
frequency spectrums of the three areas are shown in Fig.10.  

 

 
Fig.9 The time domain chart of startup process 

 
From Fig.10 it can be seen that in Area A and C, the energy 

of rotating frequency is less than 15% of the total vibration 
energy, while high-frequency vibrations are much more than 
rotating frequency, thus the corresponding frequency in Area 
A and C are not the engine critical speeds. 

The variation of vertical vibration acceleration of rotating 
frequency with rotating speed is shown in Fig.11. The 1st 
critical speed (288Hz, 17280rpm) can be captured from 
Fig.11. 

 

 
a. The frequency spectrum of area A 

 

 
b. The frequency spectrum of area B 
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c. The frequency spectrum of area C 

Fig.10 The frequency spectrums 
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Fig.11 Variation of vibration acceleration with rotating speed 

 
Table 5 summarizes the measured critical speeds of the eight 
tests. Only the first critical speed which is under the running 
speed is captured from the analysis of test data. Table 6 
summarizes both predicted and measured interval critical 
speeds. It can be seen from Table 6 that the interval 1st critical 
speed predicted by interval perturbation analysis is more 
close to the measured critical speed region compared with the 
critical speed yielded by determinated method which is the 
mean value shown in table). It is very necessary to calculate 
the rotordynamics with interval method, especially for 
aero-engines which lack samples and statistics characteristics. 

Table 5. Summary of measured 1st critical speed 
Test No. Critical speed (rpm) Test No. Critical speed (rpm)

1 16080 5 18000 
2 17760 6 17040 
3 18480 7 17280 
4 16560 8 16180 

 
Table 6. Summary of predicted and measured critical speed 

Critical speed (rpm) 
 

predicted measured 
Separation margin

Upper bound 17835 3.4% 
Lower bound 16400 2.0% 
Mean value 17118 

[16080-18480] 
7.4% 

 
The same engine was dismounted and assembled for 

8 times, and the acceleration rates were kept at a same 
level in the eight start up process. To a great extent, 
these could make the critical speeds captured from test 
data more reliable even considering the effect of 
nonlinear response and the frequency estimation error. 
The uncertain critical speed is mainly caused by 
uncertain rotor stiffness and support stiffness due to 
different assembly conditions and different working 
loads. In the numerical analysis, only the interval 
uncertain connecting stiffness and stiffness of support 4 
are considered, so the separation margin may be caused 
by other uncertain parameters such as stiffness of other 
supports. 

5. CONCLUSIONS 

If one views the uncertainty of the interval matrix as a 

perturbation around the midpoint of the interval matrix, one 
can solve the generalized interval eigenvalue problem by the 
perturbation method. By applying the interval extension to 
the matrix perturbation formulation, we present the interval 
perturbation approximating formula for estimating the upper 
and lower bounds on the set of all possible natural 
frequencies of the rotordynamic problem.  

The present interval perturbation method is more accurate 
than determined method in rotordynamic analysis, and it is 
more efficient than probabilistic method such as Monte 
Carlo simulation (uniform distribution for the bounded 
uncertainty).  

In this paper, only the effect of interval support stiffness 
and connecting structure stiffness on rotordynamics are 
studied, but how the assembly parameters such as fit 
clearance and preloads affect the stiffness is not included. 
The critical speeds are mainly monotonic to these stiffness 
parameters, but the effect of assembly parameters on stiffness 
is not monotonic [4]. The analysis of interval critical speeds 
with these assembly parameters would be presented in 
subsequent paper.  
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