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ABSTRACT
This paper surveys the applications of damper seals to

provide the stable operation with respect to rotordynamics of
centrifugal compressors.  Damper seals are applied as sealing
devices at the division wall of back-to-back compressors and
at the balance piston of in-line compressors.  They consist of a
roughened surface on the stator that is typically created by a
pattern of holes.  Rotordynamically stable operation is shown
by a lack of or a small bounded amount of SSV
(subsynchronous vibration) at the first fundamental lateral
critical frequency.  Experience plots showing the use of
damper seals will be presented.  Case histories of the use of
damper seals will be given.  Stability analysis and full load
full pressure test results will be reviewed.  The test results
show no SSV at the first critical frequency with the damper
seals.

INTRODUCTION
Damper seals as described in this paper are used at the

division wall of back-to-back compressors and at the balance
piston of in-line compressors.  They consist of a roughened
surface on the stator that is typically created by a pattern of
holes or honeycomb cells. The rotor surface is smooth.  A
hole-pattern damper seal is shown in Figure 1, as was given in
[1].  Damper seals serve as sealing devices to control leakage.

Damper seals have much more direct damping than
toothed labyrinth seals, increase the logarithmic decrement of
the first critical frequency and the stability margin, and
provide stable operation with respect to rotor dynamics.  Even
with this large amount of direct damping there is a need for
deswirling at the inlet of the seal [2], which in that case was
done through a shunt hole system as shown in Figure 2, as
was given in [2].  Swirl brakes, as shown in Figure 1 from [1]
and also in [3], are also used for deswirling.

Experience plots will be given that are used for the
preliminary evaluation of the rotor stability of centrifugal
compressors.  The plots are for compressors with gas or
labyrinth casing end seals.  Plots similar to these were shown
in [4-8].  Distinctions will be made on these plots whether
damper bearings or damper seals are used.  A sketch of a
damper bearing is shown in Figure 3, as was given in [5-8].

The plots will show that damper seals have extended the
experience envelope of compressors to higher densities and
gas pressures, and that this can be done without the use of
damper bearings.  The plots will show that there is extensive
experience with the simultaneous application of damper
bearings and damper seals in the same compressor.

Then case histories of the applications of damper seals
will be given.  The case histories will show how damper seals
have actually raised the log dec as pressure goes up, both
analytically and from magnetic bearing exciter testing during
full load full pressure tests.  The log dec can be so high that
the first natural frequency is critically damped.  This does not
happen when toothed labyrinths are used.  The good
agreement between analysis and test will be described.

Figure 1. HOLE PATTERN SEAL WITH
SWIRL BRAKES ON THE HIGH

PRESSURE SIDE
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DAMPER SEALS - HISTORY
Honeycomb seals are a type of damper seal.  They were

initially used in centrifugal compressors for strength reasons,
where differential pressures were in excess of what could be
handled by conventional knife-edge seals.  They had been
used since the late 1960s for that purpose, mainly at the
balance piston of high-pressure synthesis gas compressors.
There were no deswirling devices used for those seals.  Then
in the 1990s there were a series of applications for improved
rotor stability characteristics for higher pressure and higher
density compressors.  Some examples are discussed in the
papers [2, 9, 10 and 11].  A survey of application of
honeycomb seals to high-pressure compressors from 1994 to
1997 is given in [11].

The application of a damper seal at the balance piston
during the full-load shop test of a large compressor for
propane service is described in [4, 12 and 13].  This particular

damper seal was made by machining a pattern of small
pockets in aluminum.

It was found that some kind of deswirling device should
be used with the honeycomb seal (and certainly also with a
hole pattern seal).  See [2, 10, and 14], where there were
unacceptable levels of SSV without a shunt system and one
was eventually used.  Some manufacturers use a swirl brake
system with no shunt hole system, see [15, 16], where hole
pattern seals are used.  The author’s company uses both [17],
except for some in-line synthesis gas compressors it uses just
swirl brakes.  That paper also contains a short history of
compressors with damper seals, both honeycomb and hole
pattern types, through 2003.

Although the original honeycomb seals built by the
author’s company were straight, these new applications of
honeycomb seals were built as tapered so that if the stainless
steel material of the honeycomb made contact it would be in a
small area.  For rotordynamic reasons the clearance was
smaller at the low-pressure side of the seal.  This is called a
convergent seal.

Around 1999 the author’s company began to make
damper seals of aluminum, with a pattern of holes.  The
production time was much shorter than with the honeycomb
and the aluminum material could withstand rubs better than
the honeycomb type.  A typical hole pattern damper seal with
swirl brakes is shown in Figure 1, as was shown in [1].  Also
see [15-17] for pictures or sketches of hole pattern seals with
swirl brakes.

The author’s company has built more than 400
compressors that use damper seals, of which about 60 use the
honeycomb seal and the rest use the hole pattern seal.  About
half of the compressors with damper seals also use damper
bearings.  These statistics do not include a large number of in-
line synthesis gas compressors.

DAMPER SEALS – LOW FREQUENCY INTSABILITY
ISSUE

A low frequency instability has been seen when the
damper seals are nominally straight.  This problem had not
been seen when the convergent honeycomb design was used.
Analysis and testing has shown if there is a deviation of the
straight design to a divergent condition then that may result in
a negative direct stiffness.  See the experimental vs. analytical
results in [18] and the discussion of case histories of this
occurrence as given below.  If this direct stiffness is high
enough in the absolute sense it may overcome the positive
direct stiffness from the journal bearings and produce a low
frequency vibration with a negative log dec.  This frequency is
typically described to be the first lateral critical frequency.

The effective cross-coupled stiffness is given by the
equation:

Qeff = k - ωC (1)

Figure 2.  SHUNT HOLE SYSTEM
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Figure 3. DAMPER BEARING
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Where k is the cross-coupled stiffness, ω is the first
lateral critical frequency, and C is the direct damping.

If there is a large (in the absolute sense) negative K
(direct stiffness) introduced then the ω may be lowered and
then Qeff increases.

The effective direct damping is given by the equation:

Ceff = C- (k/ω) (2)

If ω decreases then Ceff decreases.
The stability problems associated with the introduction of

a negative direct stiffness has been described in a series of
papers.

The paper [14] describes the testing of a back-to-back
compressor.  This compressor has non-damper bearings and
gas seals.  A 40 HZ frequency was seen with unacceptably
high amplitudes.  The first critical frequency was expected to
be at 65 HZ.  Then the honeycomb seal was made to be
convergent, but still the vibration was unacceptable.  Shunt
holes were added and there was no SSV.

The paper [19] discusses a high vibration in the field at
approximately 6 percent of running speed of an in-line
compressor.  This compressor has damper bearings and
contact seals.  It was suspected that a fouling on the inlet side
of a recently introduced honeycomb seal at the balance piston
had produced divergence.  The seal was changed back to a
toothed labyrinth.

The paper [20] discusses a problem with unacceptable
amounts of vibration at a low frequency, approximately 16
percent of running speed, of a back-to-back compressor.  This
manifested itself on the test stand under load and pressure.
The compressor has damper bearings and gas seals.  There
was a hole pattern seal at the division wall which has shunt
holes and swirl brakes and a hole pattern seal at the second
section gas balance with swirl brakes.  It was likely that there
was divergence at the division wall and gas balance seals.
The division wall and gas balance seals were redesigned to
ensure no divergence and there was no SSV.

The paper [21] discusses high SSV at approximately 7
percent of running speed of an in-line compressor.  It has
damper bearings and gas seals.  There was a hole pattern seal
at the balance piston with shunt holes and swirl brakes.
Convergence was introduced at the balance piston and there
was no SSV.

The papers [14-16 and 20-21] have shown that there are
analytical and design procedures that will ensure that this low
frequency instability problem is not encountered.  A stability
analysis should be done to see how much convergence, if any
is needed.

Conversely, convergent damper seals can provide a large
amount of direct stiffness and this can push the first natural
frequency up into the operating speed range, as is shown in
[2].  But they also can push the log dec up so that the first
natural frequency is critically damped and thus not detrimental
to the operation of the compressor.

DAMPER SEAL PROGRAM USED
The analytical basis of the computer code used to model

the damper seals and predict their performance is described in
the paper [22] by Kleynhans and Childs.  The code solves the
turbulent bulk flow equations using the Blasius friction factor
model but adds an extra degree of freedom to represent the
cells [23]. The solution of the turbulent bulk flow equations
results in frequency-dependent stiffness and damping
coefficients.

Testing done at the Turbomachinery Laboratory at Texas
A&M University provided experimental measurements of
rotor dynamic stiffness, damping and leakage for both hole
pattern and honeycomb seals.  Tests were performed at up to
69 bara (1000 psia) supply pressure and at up to speeds of
20,000 rpm.  Some of these results were shown in the paper
[24] and good correlation was shown between the modeling
and the experimental results.  The code has also been
validated during extensive use in modeling damper seals in
high-pressure compressors.  Also see [25], where a method
was proposed for computations of rotordynamic coefficients
of deliberately roughened stator gas annular seals using
computational fluid dynamics (CFD).  Rotordynamic
coefficients predicted by CFD for a hole pattern seal were in
good agreement with test data and the bulk-flow code
prediction.  This paper also has a picture of a hole pattern seal,
but the swirl brakes that are used are not evident.

DAMPER BEARINGS
Damper bearings, as shown in Figure 3, consist of placing

a squeeze-film damper and support spring in series with the
journal bearing, which in these cases is a tilting pad type.  The
application of a squeeze-film damper in series with a tilting
pad journal bearing is used to aid in providing stable
operation, by increasing the logarithmic decrement and
stability margin.  They provide decreased response to
unbalance, by decreasing the amplification factor of the first
critical speed and the vibration amplitude at the midspan.  The
rotor-support system is softened by the squeeze-film damper
resulting in less shaft bending at the first natural frequency.
Descriptions of damper bearings and modeling and analytical
procedures for using damper bearings to aid in the
optimization of the rotor dynamic stability and response
characteristics have been given in [4-8, 12, 13, 26, and 27]

ROTOR STABILITY EXPERIENCE PLOTS
Four types of rotor stability experience plots will be given

that are used in conjunction with an API 617 [28] Level I
stability analysis for the preliminary assessment of whether
stability enhancements or a more in-depth analysis are needed
for centrifugal compressors.  These plots were given in [8],
but without the discussion of the eight case histories to be
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given later in this paper.  All of the compressors on these plots
have dry gas or toothed labyrinth casing end seals (mostly dry
gas).  The compressors shown in Figures 4A, 5A, 6A, and 7A
all use damper bearings and the compressors shown in Figures
4B, 5B, 6B, and 7B all use non-damper bearings.  A
distinction is made on each plot whether or not the compressor
uses damper seals.  Solid symbols on these plots mean toothed
labyrinths are used at the division wall or balance piston and
hollow symbols mean damper seals are used there.  Circular
symbols mean damper bearings are used and square symbols
mean non-damper bearings are used.

All of the compressors given in the case histories to be
discussed later in this paper use damper seals.  The case
histories are indicated with a diamond in the middle of the
hollow symbol and are numbered with the arrows pointing to
their location.  Most of those case histories are on the edge of
the experience envelope.  Solid triangles are shown for the
case histories given in the preceding paper [8], where all those
examples did not use damper seals.

Compressors in Region B of these plots are subject to
more strict analytical stability criteria than those in Region A.
Each plot has a representative sample of the compressors from
this author’s company.  The plots include compressors with
ship dates from as far back as 1973.

Most of the high pressure and high-density experience
with dry gas or labyrinth casing end seals to this time is
included.  The usage of these types of plots has been
discussed in [1, 4-8].  The compressors with oil-film seals
have been given in separate plots in earlier papers [2, 11, 17,
29 and 30], with emphasis on the use of tilting pad oil-film
seals.

Figures 4A (damper bearings) and 4B (non-damper
bearings) are plots of flexibility ratio, the ratio of the
maximum continuous speed divided by the rigid bearing first
critical speed, vs. the average gas density, as is used in
Specification 2.6.5 of Chapter 1 of API 617 [28].  The average
gas density is the average of the inlet density and the
discharge density of the gas.  These densities are typically
calculated for one point, the normal operating (certified) point
as is required by API [28].  They are not from tests or
experiments.  In Region A the API analytical stability
screening criteria is not as severe as in Region B.  Per API and
[4 and 8] there should be a cut-off average gas density above
which more stringent stability criteria should apply no matter
what the flexibility ratio.

Figure 4B. FLEXIBILITY RATIO VS.
AVERAGE GAS DENSITY - WITH NON-

DAMPER BEARINGS
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Figure 4A. FLEXIBILITY RATIO VS.
AVERAGE GAS DENSITY - WITH

DAMPER BEARINGS
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Figure 5A. BEARING
SPAN/IMPELLER BORE VS.

AVERAGE GAS DENSITY - WITH
DAMPER BEARINGS
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Figure 5B. BEARING SPAN/IMPELLER
BORE VS. AVERAGE GAS DENSITY -

WITH NON-DAMPER BEARINGS
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Plots like Figures 4A/B were given in [31] by an end-
user, with different dividing lines and without a cut-off
density.  See [14-16] with plots of flexibility ratio vs. average
gas density with the experience of other companies.

Figures 5A (damper bearings) and 5B (non-damper
bearings) are plots of bearing span/impeller bore vs. the
average gas density.  The bearing span is the distance from the
journal bearing centerline at one end of the compressor to the
journal bearing centerline at the other end of the compressor.
The diameter of the shaft at the position at which the impellers
are located on the rotor is used as the impeller bore.  If the
impellers have different bores then a weighted averaging
system is used to determine an effective bore.  In [4 and 8] it
was shown that the plot with bearing span/impeller bore more
accurately predicts the need for stability enhancements.

The ratio bearing span/impeller bore is an estimate of the
slenderness of the shaft and is calculated with a minimum
knowledge of the shaft geometry.

As with the flexibility ratio, it is non-dimensional.  The
effect of the slenderness of the shaft on the stability should be
considered, no matter if the flexibility ratio is high or low.

Figures 6A (damper bearings) and 6B (non-damper
bearings) are plots of discharge pressure times differential
pressure across the case vs. flexibility ratio.  The pressures are
typically from the analytical calculated normal operating
(certified) point.  They are not from tests or experiments.
From [4 and 8] there should be a cut-off discharge pressure
times differential pressure across the case above which more
stringent stability criteria should apply no matter what the
flexibility ratio.  Plots like Figures 6A/B were first given in
[32] and then in [31], with different dividing lines and without
a cut-off discharge pressure times differential pressure across
the case.

Figure 6A. DISCHARGE PRESSURE X
CASE DIFFERENTIAL PRESSURE VS.

FLEXIBILITY RATIO WITH DAMPER
BEARINGS
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Figure 6B. DISCHARGE
PRESSURE X CASE

DIFFERENTIAL PRESSURE VS.
FLEXIBILITY RATIO WITH NON-

DAMPER BEARINGS
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Figure 7A. DISCHARGE PRESSURE X
CASE DIFFERENTIAL PRESSURE VS.

BEARING SPAN/IMPELLER BORE
WITH DAMPER BEARINGS
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Figure 7B. DISCHARGE PRESSURE X
CASE DIFFERENTIAL PRESSURE VS.

BEARING SPAN/IMPELLER BORE
WITH NON-DAMPER BEARINGS
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Figures 7A (damper bearings) and 7B (non-damper
bearings) are plots of discharge pressure times differential
pressure across the case vs. bearing span/impeller bore.  This
type of plot was first given in [8].  As was discussed in [8] the
plot with bearing span/impeller bore more accurately predicts
the need for stability enhancements.

Conclusions from the study of these plots:
• There is extensive experience in the high density and

high differential pressure regions with damper seals.
• Damper seals have extended the experience envelope

in the high density and high differential pressure
regions.

• With non-damper bearings for high density or high
differential pressure applications all of the experience
is with the use of damper seals.

• There is extensive experience with use of both
damper bearings and damper seals.

• There is considerable experience of the concurrent
use of damper seals and damper bearings.

• For high flexibility ratios or high ratios of bearing
span/impeller bore the trend is to use damper
bearings.

• The papers [4 and 8] showed that bearing
span/impeller bore does better than flexibility ratio in
assessing the need for stability enhancements.

ROTOR DYNAMIC PROGRAMS USED
The rotor dynamic programs that were used for the

stability analysis analytical results given in this paper, besides
the damper seal program described above, are: The author’s
company rotordynamic software suite [33], the stability
program of Lund [27], the toothed labyrinth program by Kirk
[34], and the tilt pad bearing program by Nicholas [35].  See
the paper [7] for a description of the analytical basis of the
programs.  Also see [26], for a discussion of the usage of the
programs, except for the programs for damper seals and
toothed labyrinths.

STABILITY CASE HISTORIES WITH HOLE PATTERN
SEALS AND DRY GAS CASING END SEALS

Stability case histories will be given of high-pressure
compressors with hole pattern seals at the division wall or
balance piston and dry gas casing end seals.  All of them had
full-load full pressure shop tests.  All of them are natural gas
injection compressors except for case history 8, a CO2
compressor with very high discharge pressure, 303 bara (4400
psia), for a CO2 compressor.  All are on the outside edge of
the experience envelope shown in Figures 4-7, except for case
history 2, on the plots with bearing span/impeller bore.

 All of them have teeth on stator.  All have swirl brakes at
the impeller eyes.  All of them have shunt holes and swirl
brakes at the division wall seal if back-to-back or at the
balance piston if in-line.  All of them have tilt-pad bearings.
The compressors in Case Histories 1, 2, 5, 6 and 8 were tested
with the use of a magnetic bearing exciter, as is shown in
Figure 8.

The magnetic bearing exciter is put on the free end of the
compressor to generate asynchronous forcing functions into
the rotor at various aerodynamic conditions.  See the papers
[15, 16, and 36-39] for descriptions of the application of
magnetic bearing exciters.  The effect of pressure on the log
dec of the first natural frequency of compressors with hole
pattern seals at the division wall or balance piston is evaluated
by the use of the magnetic bearing exciter.  The magnetic
bearing exciter measures but does not control the log dec.  The
log dec increases with pressure with the hole pattern seals,
contrary to what is found with toothed labyrinth seals.  Good
agreement is found between the testing and the analysis.

Stability analyses, as in Level II of API 617 [28],
including the toothed labyrinths and damper seals, are done as
a matter of course by this OEM, whether or not [28] requires
them.  They were done for all of the Case Histories.

Case History 1 - 410 bara (5950 psia) Discharge
Natural Gas Injection Compressor with Damper
Bearings

This case history was discussed in [36].  The compressor
has seven impellers and is a back-to-back design.  It is driven
by a gas turbine through a gear.

Figure 9 shows the measured and predicted log dec vs.
discharge pressure from the magnetic bearing exciter tests.
The log dec steadily increases with pressure and is very high
at the final discharge pressure.  The good values of log dec at
low pressures is due to the damper bearings.  There is good
agreement between the measured and the analytical
calculations.  The vibration spectrum plot in Figure 10 shows
no SSV during the class I test at the design discharge.

Figure 8. SOLID MODEL OF THE MAGNETIC
BEARING EXCITER
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Case History 2 - 215 bara (3115 psia) Discharge
Natural Gas Injection Compressor with Non-Damper
Bearings

This case history was discussed in [37].  The compressor
has eight impellers and is a back-to-back design.  It is driven
by a variable speed induction motor through a gear.

Figure 11 shows the measured and predicted log dec vs.
discharge pressure from the magnetic bearing exciter tests.
The log dec steadily increases with pressure and is high at the
final discharge pressure.  The lower log decs at low pressures
is due to the lack of squeeze-film dampers.  There is good
agreement between the measured and the analytical
calculations.

A smooth seal was tested with the same clearance as the
hole pattern seal.  As shown, the log decs were about the same
but the leakage for the smooth seal was approximately 50
percent higher

Case History 3 - 457 bara (6621 psia) Discharge
Natural Gas Injection Compressor with Damper
Bearings

This case history was discussed in [20] and earlier in this
paper.  The compressor has eight impellers and is a back-to-
back design.  It is driven by a gas turbine through a gear.
There are four of these trains.

The results of a Level II stability analysis as given in
2.6.6 of Chapter 1 of API 617 7th edition [28] is shown in
Figure 12.  All of the toothed labyrinths and hole pattern seals
are included in the analysis.  The analysis was made for
minimum and maximum clearance bearings and squeeze-film
dampers and minimum and maximum hole pattern clearance
at the division wall.
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Figure 12 is a plot of the log dec vs. additional values (in
addition to the already included values for the toothed and
hole pattern labyrinths) of cross coupled stiffness at the
midspan.   Shown on the plot is QM that is the modal sum of
the anticipated cross coupling from the impellers as is given in
[12].  The calculated log dec at the value of QM ranges from
2.0 to 7.3 and easily meets the goal of API 617 [28], that the
log dec be greater than 0.1

Figure 13, the waterfall plot of the vibration spectrums,
shows no SSV during the API 617 class I test at full load full
pressure on hydrocarbon gas.  There was no magnetic bearing
exciter test for this compressor.

Case History 4 - 409 bara (5932 psia) Discharge
Natural Gas Injection Compressor with Non-Damper
Bearings

The compressor has six impellers and is a back-to-back
design.  It is the high-pressure compressor in a train driven by
a variable speed synchronous motor through a gear first to the
low-pressure compressor and then to the high-pressure
compressor.  There are two of these trains.

The results of a Level II stability analysis as given in API
617 7th edition [28] are shown in Figure 14 for Case History 4.
The same assumptions are made as for Case History 3. The
calculated log dec at the value of QM ranges from 2.0 to 4.1
and easily meets the goal of API 617 [28], that the log dec be
greater than 0.1.

The vibration spectrum plot in Figure 15 shows no SSV
during the API 617 class I test at full load full pressure.  There
was no magnetic bearing exciter test for this compressor.

Case History 5 - 352 bara (5105 psia) Discharge
Natural Gas Injection Compressor with Non-Damper
Bearings

The compressor has six impellers and is a back-to-back
design.  It is driven by a variable speed induction motor
through a gear.

Figure 16 shows the measured log dec vs. discharge
pressure from the magnetic bearing exciter tests.  The log dec
steadily increases with pressure and is very high at the final
discharge pressure.

Figure 13. CASE HISTORY 3 – VIBRATION
SPECTRUM

Calculated log
dec at 5105
(PSIA) =
5.1 to 5.8

Figure 16. CASE HISTORY 5 –
LOG DEC VS. DISCHARGE

PRESSURE
Figure 14. CASE HISTORY 4 –

STABILITY ANALYSIS
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At full pressure the log dec was calculated for the range
of bearing, squeeze-film damper, and damper seal clearances
and these values were added to Figure 16 and show an
excellent agreement between the measured and the calculated
values.

Figure 17 shows the magnetic bearing exciter results vs.
pressure and how at high pressure the first natural frequency
is completely damped out for Case History 5.

Case History 6 - 380 bara (5515 psia) Discharge
Natural Gas Injection Compressor with Damper
Bearings

This case history was discussed in [38].  The compressor
has nine impellers and is a back-to-back design.  It is driven
by a gas turbine through a gear.

Figure 18 shows the measured and predicted log dec vs.
discharge pressure from the magnetic bearing exciter tests for
Case History 6.  The log dec steadily increases with pressure
and is high at the final discharge pressure.  There are two
predicted curves, one with the API method [28] and the modal
sum of the anticipated cross-couplings at the impellers and the
other with bulk-flow predictions for the impellers.  There is
little difference in the predicted results and the predicted log
decs are more conservative (lower) than the measured

Case History 7 - 485 bara (7030 psia) Discharge
Natural Gas Injection Compressor with Damper
Bearings

The compressor has five impellers and is an in-line
design.  It is driven by a gas turbine through a gear, first to a
low-pressure compressor, then to a medium pressure
compressor, and then finally to this high-pressure compressor.

The results of a Level II stability analysis as given in API
617 7th edition [28] are shown in Figure 19.  The same
assumptions are made as for Case Histories 3 and 4.  The
calculated log dec at the value of QM ranges from 1.2 to 1.7
and easily meets the goal of API 617 [28], that the log dec be
greater than 0.1.

The vibration spectrum plot in Figure 20 shows no SSV
during the API 617 class I test at full load full pressure.  There
was no magnetic bearing exciter test for this compressor.

Figure 17. CASE HISTORY 5 –
MAG BEARING RESULTS

SHOWING NC1 VS. PRESSURE

Figure 18. CASE HISTORY 6 –
LOG DEC VS. DISCHARGE PRESSURE Figure 20. CASE HISTORY 7 –

VIBRATION SPECTRUM AT FULL
DISCHARGE PRESSURE
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Case History 8 - 303 bara (4400 psia) Discharge CO2
Compressor with Damper Bearings

This case history was discussed in [39].  The compressor
has eight impellers and is a back-to-back design.  It is the first
body of a string of two centrifugal compressors driven by a
constant speed induction motor through a gear.

Figure 21 shows the measured log dec vs. discharge
pressure from the magnetic bearing exciter tests.  The log dec
steadily increases with pressure and is very high at the final
discharge pressure.  At full pressure the log dec was
calculated for the range of bearing, squeeze-film damper, and
damper seal clearances and there is excellent agreement
between the measured and the calculated values.  It is
relatively high at low pressure because of the damper
bearings.  The vibration spectrum plot in Figure 22 shows no
SSV during the API 617 class I test at full load full pressure.

CONCLUSIONS

Damper seals have substantially extended the experience
envelope of centrifugal compressors in high density and high-
pressure applications.  In such critical applications they can
critically damp the first natural frequency, as is shown by the
high value of the measured log dec of the first fundamental
lateral critical frequency and the lack of SSV during full load
full pressure tests.

The magnetic bearing exciter tests at full load and full
pressure show the good correlation between the predicted and
the tested values of the log dec of the first lateral critical
frequency.

The additional experience plots provide an excellent
supplement to the Level I screening criteria of API 617 [28].
The experience plots show that there is extensive experience
with both damper seals and damper bearings and that both can
be used in the same compressor.  The experience plots give
strong indications of when damper seals should be used.
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NOMENCLATURE
SSV = subsynchronous vibration
K = direct stiffness
k = cross-coupled stiffness
C = direct damping
Qeff = effective cross-coupled stiffness
Ceff = effective direct damping
ω = first lateral critical frequency
CFD = computational fluid dynamics
MCOS = maximum continuous speed
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