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ABSTRACT 

Gas foil bearing (GFB) technology has reached great 
maturity as per engineered design and construction and its 
system integration into rotating machinery. Empirical research 
has gone beyond showing a few instances of acceptable 
mechanical performance, to demonstrate GFB multiple-cycle 
repeatable performance in spite of persistent large amplitude 
sub synchronous whirl motions. A GFB is a forgiving 
mechanical element whose engineered resilient underspring 
structure contains and ameliorates large rotor excursions. 
Analyses, however, fail to distinguish the hardening stiffness 
from the FB underspring structure, which under conditions of 
large force excitations due to imbalance, produces a complex 
rotordynamic behavior, rich in sub harmonic motions when 
operating at super critical speeds. This paper extends an earlier 
analysis of a rigid rotor-GFB system that dispenses with the gas 
film component to predict the effect of shaft rotation 
acceleration/deceleration on rotor amplitudes of motion and 
whirl frequency content. For operation above the system critical 
speed and as the rotor accelerates, large amplitude whirl 
motions appear with a main subsynchronous frequency tracking 
rotor speed, first at 50% speed and later bifurcating into at 33% 
whirl frequency. Rotor imbalance awakens and exacerbates the 
system nonlinear response. Slow rotor accelerations result in 
responses with more abundant subsynchronous whirl patterns, 
increased amplitudes of whirl, and accompanied by a 
pronounced mechanical hysteresis when the rotor decelerates. 
Large rotor imbalances produce both jump phenomenon and a 
stronger hysteresis during slow acceleration and deceleration 
cases. Material damping (dry friction) in the FB aids to reduce 
and delay the nonlinear response, eventually eliminating the 
multiple frequency behavior. The results bring to attention 
rotordynamic issues during start up and shut down events that 
can result from an inadequate FB technology or an 
unacceptable rotor imbalance grade condition.   

 
INTRODUCTION 

Gas foil bearings (GFBs) are widely employed in oil-free 
microturbomachinery (MTM) such as air cycle machines and 

micro gas turbines, due to their distinctive advantages over 
rolling element bearings. Elimination of the oil lubrication 
system in MTM significantly reduces overall system weight, 
complexity, and maintenance cost. GFBs also increase system 
efficiency due to their low power losses and extended 
maintenance intervals [1,2].  

Research at the authors’ laboratory has developed GFB 
computational tools, see Refs. [3-5], benchmarked against 
reliable test data [6-10]. The models account for most relevant 
physical aspects and predict foil bearing static and dynamic 
linear forced performance, power loss, and the management of 
thermal energy in high temperature environments. While 
performing the experimental work, it became evident (to the 
authors) that GFBs are highly nonlinear mechanical elements 
that produce complicated RBS motions when operating at high 
speeds, i.e., above the RBS critical speed. Incidentally, there is 
abundant experimental and field data demonstrating the 
complex rotordynamic behavior of rotor-GFB systems; namely, 
rotor motions of large amplitude and sub synchronous in 
character [7-9]. Although well documented, the phenomenon is 
still misunderstood; see for example test data and discussion in 
Refs. [11,12]. 

The appearance of the sub synchronous whirl motions is not 
a self-excited phenomenon, i.e., typical instability. In operation, 
increasing rotor imbalance (a forcing function) further 
aggravates the persistence and severity of the sub harmonic 
whirl motions [7-9]. Most importantly, however, the forgiving 
nature of a GFB does not produce sudden failure of the RBS in 
spite of the exceedingly large orbital motions. The resilience of 
the underspring structure explains the remarkable behavior.  

Figure 1 [9] displays typical rotor motions recorded on a test 
rig with a solid (1 kg) rotor supported on 2nd generation GFBs. 
While the rotor coasts down from a high speed (50 krpm) to 
rest, there is dominance of sub harmonic motions, mainly 
locked at the system natural frequency (140-180 Hz) that 
persists from the top speed to a rotor speed at about thee times 
the natural frequency (27 krpm [450 Hz]). The RBS motion is a 
forced nonlinear phenomenon due to the hardening nonlinearity 
of the FB elastic structure. Internal resonances at rotor speeds 
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equal to twice and thrice the system natural frequency are 
particularly important. For the data shown in Fig. 1, the rotor 
condition was close to perfectly balanced while the support foil 
bearings offered little damping; hence the extreme sensitivity of 
the system to excite its natural frequency over extended regions 
of the operating speed range.  

References [8,9] present further measured RBS motions with 
rich sub harmonic content and introduce mechanical changes 
and air supply conditions aiding to delay the onset and 
amplitude severity of the sub harmonic whirl motions. 
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Fig. 1 Test data from rotor supported on 2nd generation 
GFBs. Top: Waterfall of rotor motion while decelerating 
from 50 krpm. Bottom: Amplitudes of rotor motion 
(synchronous and subsynchronous) versus rotor speed. 
Taken from Ref. [9]  

 
This paper extends an earlier analysis [13] to predict the 

forced response of a rigid rotor supported on FBs modeled as 
nonlinear third order structural elements with material 
damping. Reference [13] reviews the past literature showcasing 
experimental evidence of nonlinear behavior in rotor-GFB 
systems. The simple FB model assumes a minute gas film with 
an infinite stiffness. Hence, the FB reaction force is eminently 
of structural type. Predictions from the analysis agree with RBS 
laboratory measurements in Ref. [7]. The numerical results 
evidence a Duffing-like dynamic behavior with multiple 
frequency responses, sub- and super-harmonic, within certain 
ranges of rotor speed [14-16]. Incidentally, recent Refs. [17,18] 
reporting measurements of GFB forced motions and the 
identification of force coefficients call to attention to the strong 
nonlinearities apparent in GFBs.   

In the early analysis [13], the rotor speed is held constant. 
The predictions thus represent (quasi) steady-state conditions at 
a particular rotor speed. Presently, the analysis seeks to 
determine the effect of rotor acceleration (speed ramp rate), 
imbalance mass magnitude, and the FB structural loss factor – a 

measure of the bearing mechanical energy dissipation- on the 
dynamic response of a simple RBS. Note that fast accelerations 
are typical in small size rotating machinery since the rotor mass 
moments of inertia are small. In automotive turbochargers, for 
example, shaft accelerations (or decelerations) at rates as large 
as 1 kHz/s (60 krpm/s) are not uncommon [19]. 

 
SIMPLE STRUCTURAL MODEL FOR FOIL BEARING  

For a 2nd generation FB, Fig. 2 depicts the recorded bearing 
radial deflection for a range of static loads [13]. The 
measurements show a highly nonlinear structural behavior with 
distinctive paths during the loading and unloading processes, 
thus evidencing mechanical hysteresis. The hardening stiffness 
is likely to induce internal resonances [20] at rotor speeds 
greater than the RBS natural frequency [6]. 
 

-300

-200

-100

0

100

200

300

-50 -40 -30 -20 -10 0 10 20 30 40 50

Static load [N]

B
ea

rin
g 

di
sp

la
ce

m
en

t [
μm

]

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
Test 8

Loading

Loading

Unloading

Unloading

 
Fig. 2 Measured FB displacement versus static load during 
eight load and unload tests. Taken from Ref. [13] 
 

The FB structural reaction force (
sFBF ) is best represented as 

a third order polynomial in the radial displacement (r), i.e.  
2 3

1 2 3sFBF K r K r K r= + +  (1) 

where 4 9 14
1 2 32 36.75 10 , 2 10 , 10N N NK K K

m m m
= = − =  as given in 

Ref. [13]. Figure 3 depicts Eq. (1) to demonstrate the nonlinear 
behavior of the FB as well as the local (nonlinear) stiffness, 

s
s

FB
FB

K
K r

∂
= ∂

. Note that neither the FB reaction force nor its 

local structural stiffness is symmetric about the null load 
condition. The behavior is typical and depends on the 
orientation of the applied load relative to the angular location of 
the spot weld affixing the top and bottom foils to the bearing 
cartridge [21,22]. 

From the load versus deflection hysteresis loop in Fig. 2, a 
structural damping with loss factor (γ) = 0.14 represents best 
the FB mechanical energy dissipation mechanism [13]. A 
similar loss factor magnitude is obtained from shaker induced 
dynamic loads on the same FB [21,22].  

Prior art [7-9] describes the test rig comprising of a solid 
rotor supported on a pair of 2nd generation GFBs. 
Measurements, supported by rotordynamic analyses, 
demonstrate the test rotor, weighing 10 N, behaves as a rigid 
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body for shaft speeds below 50 krpm (833.3 Hz) [7]. Note that 
the test rotor center of gravity is nearly equidistant from the two 
supporting bearings. Hence, for in-phase imbalance conditions, 
the rotor is regarded as a point mass (M=1.02 kg). Figure 4 
shows a schematic view of the model point mass rotor on its 
FBs and the coordinate system for analysis.  
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Fig. 3 Typical foil bearing structural force (FFBs) and 
stiffness (KFBs) versus radial deflection (r) 
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Fig. 4 Schematic view of rigid rotor supported on foil 
bearing and its coordinate system 
 

Let (x,y) denote the vertical and horizontal displacements of 
the rotor mass center, and u as the mass imbalance offset. The 
equations of motion for the RBS are 

 
2

2

2 cos( ) sin( )

2 sin( ) cos( )
x

y

FB

FB

M x F M u Mg

M y F M u

θ α θ

θ α θ

⎡ ⎤+ = Ω + +⎣ ⎦
⎡ ⎤+ = Ω −⎣ ⎦

 (2) 

where the rotor angular speed (Ω) and angular displacement (θ) 
are defined in terms of a constant1 acceleration (α) 

21
2

0 0

;
t t

i idt t dt t tα α θ αΩ = = + Ω = Ω = + Ω∫ ∫  (3) 

The vertical and horizontal components of the FB dynamic 
reaction force are [13]  

; ;s s

x y

FB FB
FB FB

F F
F x x F y y

r r
γ γ⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠

 (4) 

                                                           
1 The selected constant accelerations is a matter of convenience. Other time 
variations can be readily implemented in the computational model. 

with ( )2 2r x y= + . In actual operation and whence the rotor is 

airborne, a gas film separates the rotor from the top foil. 
Presently, this gas film is regarded as minute and hence of 
infinite stiffness. This is the fundamental assumption of the 
model hereby implemented. Note that the model in Eq. (4) is 
strictly valid for a structure with linear stiffness; the nonlinear 
extension follows simplicity and its ability to reproduce 
recorded measurements, see Ref. [13].  

The static equilibrium solution of Eq. (2), i.e. with u=0, gives 
the nonlinear relationship 

( )2
1 2 3 ; 0

2E E E E
M gx K K x K x y+ + = =  (5) 

and the RBS natural frequency (fn) for small amplitude motions 
about the equilibrium condition (xE, yE) is                  

( ) ( )2
1 2 32 2 321 1

2 2
s E EFB E

n

K K x K xK x
f

M Mπ π
+ +

= =  (6) 

Presently, xE=37.5 μm and fn=130 Hz (7,797 rpm).  
The homogeneous form of Eq. (1) with K2=0 reproduces a 

Duffing-like oscillator [15] with hysteretic damping. For the 
undamped case (γ=0), a harmonic balance analysis predicts 
operating speed regions with multiple frequencies; in particular 
sub harmonic (⅓ frequency) responses occur for rotor speeds 
higher than three times the system natural frequency (fn). 
Larger imbalance displacements (u), i.e., a forced excitation, 
tend to exacerbate the whirl amplitudes of motion [13].  

Eqs. (2) and (3) are written in state-space form for ready 
numerical integration using a fourth-order Runge-Kutta scheme 
available in a mathematical software package. In the examples 
that follow, the rotor speed increases from Ωi=2 krpm (209 
rad/s) to ΩT = 36 krpm (3,770 rad/s), or decreases from Ωi=36 
krpm to ΩT = 2 krpm. The rotor acceleration α is constant to 
reproduce slow, moderate, and fast shaft speed ramp rates 
lasting 16 s (α=±35 Hz/s), 8 s (α=±71 Hz/s), and 2 s (α=±283 
Hz/s), respectively.  

In the numerical integration, the sampling rates for the fast, 
moderate and slow rotor ramp rates are 96k/s, 24k/s, and 12k/s, 
respectively; with corresponding time steps (Δt) =  0.01042 
ms, 0.04167 ms, and 0.0833 ms. The fast rotor acceleration 
requires of a smaller time step (faster acquisition rate) since the 
speed changes quickly. In all the cases, the total number of 
integration points (samples) is 192,000. In the integration 
procedure, spanning an integer number of rotor revolutions, the 
initial conditions for rotor acceleration cases are x=xE, 
y=0, 0x y= = , θ=0, Ω=Ωi. The last state during rotor 
acceleration is used as the initial condition for the cases with 
rotor deceleration from ΩT = 36 krpm. For example, the initial 
conditions for α=-283.3 Hz/s are x=-42 μm, y=98 μm, x = 7.8 
mm/s, y = 15.5 mm/s, θ=3979 rad, and Ωi=3770 rad/s. The 
CPU execution time to complete the analysis is just a few 
seconds in a PC. 

At u=8 µm and γ=0.14, Fig. 5 depicts the predicted rotor 
vertical motions (x) versus rotor speed during the fast rotor 
speed ramp rate at ± 283 Hz/s. The top graph shows x as the 
rotor accelerates, and since the acceleration (α+) is constant, the 
horizontal scale is tantamount to increasing time (2s overall). 
The bottom graph shows rotor displacements during 

3 Copyright © 2011 by ASME



 
deceleration (α<0) from a top sped of 36 krpm (600 Hz). The 
graphs show vertical lines labeling the RBS (linear model) 
natural frequency (1×fn) and twice and thrice its magnitude 
(2×fn and 3×fn). The dense graphs (192 k points!) show 
complicated rotor motions with operating speed regions where 
bursts of large amplitude displacements are apparent. Little 
knowledge is gained from these graphs, except to realize that 
the motions when the rotor accelerates or decelerates are 
different. 
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(a) Rotor acceleration +283 Hz/s 
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(b) Rotor deceleration -283 Hz/s 

 
Fig. 5 Predicted rotor time response in vertical direction (x). 
Speed ramp rate ± 283 Hz/s. Imbalance u=8 µm. FB γ=0.14  

 
Post processing of the numerical responses in the frequency 

domain produces waterfalls of rotor motion displacements; and 
by using digital filters, delivers the amplitude of synchronous 
response, as well as any other amplitudes associated to either 
sub or super harmonic frequencies, if existent. Figure 6 depicts 
the predicted waterfall of vertical (x) rotor motions as the rotor 
speed increases to 36 krpm (top graph) and then decelerates to 
2 krpm (bottom graph). Note the synchronous response (1X) 
and the richness of sub harmonic whirl motions with large 
amplitudes. These whirl motions are most severe as the rotor 
accelerates2 towards its top speed (36 krpm).  
 

                                                           
2 This assertion is not general since a highly nonlinear response depends on the 
system initial state. 

0

30

60

90

120

150

180

210

0 200 400 600 800
Frequency [Hz]

A
m

pl
itu

de
 [µ

m
] 1X

2 krpm

35 krpm

1 × fn

2 × fn

3 × fn

Vertical response (x )

 
(a) Acceleration +283 Hz/s 
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Fig. 6 Waterfalls of rotor vertical (x) motion as rotor (a) 
accelerates and (b) decelerates. Rotor speed ramp rate 
±283 Hz/s. Imbalance u=8 µm. FB γ=0.14. 
 
RBS RESPONSE PREDICTIONS AND DISCUSSION 
Effect of rotor acceleration on RBS response 

Below, the whirl frequency ratio (WFR=ω/Ω) relates the sub 
synchronous whirl frequency (ω) to the rotor angular frequency 
(Ω). During rotor acceleration, low to fast speed ramp rates, 
Fig. 7 shows the contour plot of vertical rotor motions (x), the 
WFR, and amplitudes of motion at synchronous speed (1X) and 
subsynchronous frequencies (~½WFR and ~⅓ WFR)3 versus 
rotor speed. In the contour plots showcasing the frequency 
content of rotor motions, bright to dull colors denote large to 
small amplitudes of motion, respectively. The imbalance 
displacement and the FB structural loss factor (γ) are 8 µm and 
0.14, respectively. 

Predicted motions along the horizontal direction (y) are not 
shown for brevity. The y-displacements are also rich in 
subsynchronous components as in the vertical (x) motions; 
albeit there are differences on the frequency ranges over which 
the ½WFR motions are apparent, for example.  

At rotor speeds lower than and just above the system natural 
frequency (fn =130 Hz), no sub synchronous motions are 
apparent. However, for rotor speeds above 10 krpm (167 Hz), 
there is an abundance of large amplitude sub harmonic motions. 
Subsynchronous whirl motions appear from 11 to 20 krpm with 
WFR=½ at first, and later from 20 to 36 krpm jump to 

                                                           
3 WFRs=0.45 to 0.55 and WFRs=0.28 to 0.38 are combined to represent 
~½WFR and ~⅓WFR, respectively 
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WFR=⅓. For rotor speeds above 28 krpm, the whirl motions 
show more complex WFRs ranging from 0.31 to 0.37, slightly 
above and below ⅓. Once a subsynchronous frequency motion 
appears, its amplitude rapidly increases with rotor speed. Note 
that significant motion amplitudes with whirl frequencies at 
50% and 33% of angular frequency (Ω) appear for operation at 
rotor speeds just above ~twice and ~three times the system 
natural frequency, i.e. the internal resonances of the nonlinear 
RBS. The sub harmonic motions are not locked at the system 
natural frequency but track the rotor angular speed at either ½ 
Ω or ⅓ Ω whirl frequency. 

As the rotor speed ramp rate increases, the peak amplitude of 
synchronous response (bottom graphs in Fig. 7) increases 
slightly while traversing the system critical speed (46 µm for 
283 Hz/s, 50 µm for 71 Hz/s, and 54 µm for 35.4 Hz/s). At ~20 
krpm (333 Hz), the rotor whirl motions jump from ω=½Ω to 
ω=⅓ Ω. The subsynchronous vibrations are more severe for the 
slower speed ramp rate (rightmost graphs) since there is more 
elapsed time for the whirl motions to build up. Incidentally, the 
highest rotor acceleration renders a broad frequency spectrum 
around ~⅓WFR with a less marked transition at the jump 

frequency. The frequency jump phenomenon is well 
documented in automotive turbochargers supported on (semi) 
floating ring bearings, see Ref. [19]. 

During rotor deceleration, Fig. 8 shows similar graphs 
filtering the rotor motion into its synchronous and major sub 
synchronous whirl components. Note that the peak amplitudes 
of synchronous whirl (1X) remain similar, irrespective of the 
shaft deceleration rate. The overall rotor response whirl 
amplitudes, synchronous and sub, during rotor deceleration are 
smaller than those while the rotor accelerates. For rotor speeds 
> ~20 krpm (333 Hz), motions with WFRs ranging from 0.27 to 
0.41, i.e. nearly a chaotic regime, are apparent. Note also that 
the motions with a 50% WFR are not as severe in amplitude as 
when the rotor accelerates and occur over a shorter rotor speed 
span; i.e., WFR=½ establishes from Ω= 18.3 krpm→11.2 krpm 
while decelerating. On the other hand, while accelerating, 
motions with WFR=½ persist from Ω=11.2 krpm→20.9 krpm. 
Incidentally, the marked differences in the onset speed and 
persistence of whirl motions show the RBS has a marked 
mechanical hysteresis [19,23].  

 

Frequency [Hz]
0            200          400           600          800  

R
ot

or
 s

pe
ed

 [k
rp

m
]

2 
   

   
   

13
   

   
   

  2
4 

   
   

   
35

 1X

1 × fn

2 × fn

3 × fn

Vertical response (x)

½WFR½ WFR3½ WFR3

 

 

Frequency [Hz]
0            200          400           600          800  

R
ot

or
 s

pe
ed

 [k
rp

m
]

2 
   

   
   

13
   

   
   

  2
4 

   
   

   
35

 1X

1 × fn

2 × fn

3 × fn

Vertical response (x)

½WFR½ WFR3½ WFR3

 

 

Frequency [Hz]
0            200          400           600          800  

R
ot

or
 s

pe
ed

 [k
rp

m
]

2 
   

   
   

13
   

   
   

  2
4 

   
   

   
35

 

Vertical response (x)

1X½WFR½ WFR3½ WFR3

1 × fn

2 × fn

3 × fn

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40
Rotor speed [krpm]

W
FR

2 × f n1 × f n 3 × f n

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40
Rotor speed [krpm]

W
FR

2 × f n 3 × f n1 × f n

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40
Rotor speed [krpm]

W
FR

2 × f n 3 × f n1 × f n

 

0

20

40

60

80

0 10 20 30 40
Rotor speed [krpm]

A
m

pl
itu

de
 [µ

m
]

1X ~1/2WFR ~1/3WFR

2 × f n 3 × f n1 × f n

 

0

20

40

60

80

0 10 20 30 40
Rotor speed [krpm]

A
m

pl
itu

de
 [µ

m
]

1X ~1/2WFR ~1/3WFR

2 × f n 3 × f n1 × f n

 

0

20

40

60

80

0 10 20 30 40
Rotor speed [krpm]

A
m

pl
itu

de
 [µ

m
]

1X ~1/2WFR ~1/3WFR

2 × f n 3 × f n1 × f n

 
(a) +283 Hz/s (b) +71 Hz/s (c) +35.4 Hz/s 

 
Fig. 7 Predicted rotor vertical (x) motion amplitudes while rotor accelerates. α= +283 Hz/s, +71 Hz/s and +35.4 Hz/s (left to 
right graphs). (Top) vibration contour plots, (Middle) whirl frequency ratio, and (Bottom) amplitudes of synchronous and 
subsynchronous (~½WFR and ~⅓WFR) motions versus rotor speed. Imbalance u=8 µm and FB: γ=0.14 
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For comparison, Fig. 9 depicts the amplitudes of rotor 
synchronous motion versus shaft speed obtained for the slow 
rotor acceleration at ±71 Hz/s. The figure also displays the 
amplitude of the linear RBS response [24], with f=Ω/ 2π as the 
frequency of the rotor spinning speed. 

2

22 2

( ')

1 ( ') ( ')
L

rx u
r rγ

=
⎡ ⎤− +⎣ ⎦

; with '
n

fr
f

=  
(7) 

The linear rotor response peaks at ~7.8 krpm at a frequency 
very near the linearized RBS natural frequency (fn). Operation 
at this frequency gives4 xL =u/γ = 8 µm/0.14 = 57.1 µm. There 
is little discrepancy between the linear RBS response and the 
synchronous response obtained numerically. Incidentally, note 
that the peak amplitude during the shaft deceleration is ~10 µm 
smaller than the one predicted during rotor acceleration. The 
minor differences noted may suggest the RBS behaves linearly; 
however, recall the abundant sub harmonic motions found and 

                                                           
4 In the linearized system, the equivalent viscous damping ratio ζ =½γ =0.07 
(7%), not an insignificant magnitude.   

displayed in Figs. 7 and 8. Reference [25] makes a similar 
observation albeit for a more complicated RBS.   
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Fig. 9 Amplitudes of rotor synchronous motion during rotor 
acceleration and deceleration α=+/- 71 Hz/s). Response for 
linear RBS also shown. Imbalance u=8 µm, and FB: γ=0.14.  
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(a) -283 Hz/s (b) -71 Hz/s (c) -35.4 Hz/s 

 
Fig. 8 Predicted rotor vertical (x) motion amplitudes while rotor decelerates. α=-283 Hz/s, -71 Hz/s and -35.4 Hz/s (left to 
right graphs). (Top) vibration amplitude contour plots, (Middle) whirl frequency ratio, and (Bottom) amplitudes of 
synchronous and subsynchronous (~½WFR and ~⅓WFR) motions versus rotor speed. Imbalance u=8 µm and FB: γ=0.14 
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Effect of rotor mass imbalance on RBS response 

During rotor acceleration at α=283 Hz/s, Fig. 10 shows the 
contour plot of vertical rotor motions (x), the whirl frequency 
ratio (WFR=ω/Ω), and components of synchronous (1X) and 
subsynchronous whirl motions (~½WFR and ~⅓WFR) versus 
rotor speed. The graphs, left to right, correspond to predicted 
responses for increasing imbalances, u=4, 16 and 20 µm. See 
Fig. 7 for results with u=8 µm. It is apparent that the imbalance 
magnitude exacerbates the bearings’ nonlinearity and 
showcases a distinctive jump phenomenon [26]. Most 
importantly, as the imbalance u increases, and for rotor speeds 
above (3×fn), the rotor motion has a broader frequency spectra 
with whirl motions at mostly ⅓ WFR. The ½ frequency whirl 
disappears as imbalance increases. Note that other predictions 
evidence no sub harmonic whirl for u < 4 µm. The imbalance 
magnitude does affect the rotor speeds at which the sub 
harmonic motions with 50% and 33% whirl frequencies appear 
(or disappear). 

During rotor deceleration at -283 Hz/s, Fig. 11 depicts the 
contour plot of vertical (x) rotor motion for the largest 
imbalance u =20 µm. The overall amplitudes of sub harmonic 
whirl motion are similar to those predicted as the rotor 
accelerates. Note that during rotor acceleration, see Fig. 10 (c), 
the rotor onset speed of subsynchronous whirl (~19 krpm) is 
higher than the rotor speed (~12 krpm) at which the 
subsynchronous whirl disappears during rotor deceleration, i.e., 
a marked hysteresis is apparent. 

Figure 12 presents the RBS synchronous motion versus rotor 
speed for the fast rotor (de)acceleration cases and imbalance 
u=20 µm. The synchronous amplitude shows a strong stiffness 
hardening effect with the peculiar jump phenomenon. The 
figure includes the predicted linear response, Eq. (7), and the 
nonlinear (numerical) synchronous responses. Note the typical 
hysteresis while the rotor decelerates. For details on this 
nonlinear aspect, please see Ref. [23].  
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(a) u=4 μm (b) u=16 μm (c) u=20 μm 

 
Fig. 10 Effect of imbalance (u) on rotor vertical (x) motion amplitudes. Imbalance u=4 µm, 16 µm and 20 µm (left to right 
graphs). Rotor accelerates at α=283 Hz/s. (Top) vibration amplitude contour plots, (Middle) whirl frequency ratio, and 
(Bottom) amplitudes of synchronous and subsynchronous (~½WFR and ~⅓WFR) motions versus rotor speed. FB: 
γ=0.14.  
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Fig. 11 Vibration amplitude contours: Predicted vertical (x) 
rotor motions while rotor decelerates, α=-283 Hz/s. 
Imbalance u=20 µm and FB: γ=0.14 
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Fig. 12 Amplitudes of rotor synchronous motion during 
rotor acceleration and deceleration α=+/- 283 Hz/s. 
Response for linear RBS also shown. Large imbalance u=20 
µm and FB: γ=0.14. 
 
Effect of FB structural loss factor on RBS response 

In a FB, the loss factor (γ) is a measure of its mechanical 
energy dissipation ability. The higher the γ, the more damping 
the foil bearing has. Conventional gas film bearings are 
notorious for their little viscous type damping; hence the need 
to have GFBs with reliable (and predictable!) mechanical 
energy dissipation characteristics.  

In the following predictions, the rotor with imbalance u=8 
µm accelerates at α=+283 Hz/s. Figure 13 shows the contour 
plot of vertical rotor motions (x), the whirl frequency ratio 
(WFR=ω/Ω), and components of synchronous and 
subsynchronous (~½WFR and ~⅓WFR) motions versus rotor 
speed. The graphs, left to right, correspond to predicted 
responses for bearings with increasing material loss factors, 
γ=0.07, 0.20 and 0.28. See Fig. 7 for predictions with γ=0.14.   

As expected, the FB loss factor significantly affects the onset 
and persistence of the rotor sub harmonic motions. These 
motions are more noticeable as γ decreases, the lesser the 
damping in the RBS. For γ>0.2, ⅓WFR frequency components 

disappear. As γ increases, the peak amplitude of synchronous 
response decreases dramatically since xmax/u~1/γ. For the 
bearing with smallest γ=0.07, the synchronous motion 
evidences the typical stiffness hardening effect and an 
amplitude jump at ~15 krpm. For γ<0.07, and at a rotor speed 
equal to ~twice the natural frequency, the ½ WFR motions 
gradually bifurcate into ⅓ WFR (from 15 krpm to 20 krpm). 
The 0.33 WFR motions persist from 20 krpm to the top speed 
(36 krpm). References [21,22,27,28] show test FBs with loss 
factors (γ) ranging from 0.06 to 0.50, depending on their 
mechanical complexity (generation type). A viscoelastic layer 
underneath the top foil also enhances mechanical energy 
dissipation [29].   

During rotor deceleration at -283 Hz/s, Fig. 14 displays the 
contour plot of vertical (x) rotor motion amplitudes for u=8 µm 
and γ=0.07. Between rotor acceleration, see Fig. 13 (a), and 
deceleration cases, notable differences in the frequency 
component of the rotor response are apparent at rotor speeds 
ranging from 8 ~ 15 krpm (1×fn ~ 2× fn). In this speed regime, 
~½WFR motions are apparent during rotor deceleration. On the 
other hand, as the rotor accelerates, the synchronous whirl 
motions dominate the rotor response from 8~15 krpm. Overall, 
the amplitude components of subsynchronous whirl are similar 
as the ones during rotor acceleration.  

For a FB with γ =0.07 and operating with imbalance u=8 µm, 
Fig. 15 depicts the amplitudes of synchronous response versus 
rotor speed during rotor acceleration and deceleration. As the 
rotor accelerates, the hardening nonlinearity is pronounced and 
showing a distinctive jump (down). On deceleration, the rotor 
synchronous response appears free of nonlinearities. The rotor 
speeds at which the amplitudes peak are 14.3 krpm (98 µm) 
while accelerating, and 7.1 krpm (38 µm) while decelerating. 
Recall that the linear fn=130 Hz (7,797 rpm). 
 
CONCLUSIONS 

The static load and dynamic forced performance of GFBs 
depends mainly on the structural properties and geometry of the 
underspring support. Rotors supported on foil bearings often 
show at high speed operation peculiar responses with sub 
harmonic whirl motions of large amplitude. These whirl motion 
have been at times mistakenly attributed to an instability; 
hence, apprehension follows as per the widespread usage of foil 
bearings in commercial rotating machinery.  

Earlier work by the first author demonstrated, based on 
empirical evidence and analysis, that foil bearings are nonlinear 
structural elements prone to induce forced responses with 
multiple frequency components (not a classical instability). The 
sub synchronous motions are not a self-excited rotordynamic 
instability but a structural nonlinearity exacerbated by mass 
imbalance, i.e. by an external forcing function.  

This paper extends the earlier work to predict (numerically) 
the response of a simple FB supported rotor and to quantify the 
effects of rotor acceleration (deceleration) on the onset and 
persistence of sub harmonic whirl motions, and including 
hysteresis effects on the jump phenomenon. In addition, 
predictions also show the effect of increasing mass imbalances 
on exacerbating the severity of the nonlinear response, and 
increasing foil bearing loss factors, a measure of their damping 
ability, on reducing amplitudes of motion and elimination sub 
synchronous whirl motions.  
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Fig. 14 Vibration amplitude contours: Predicted vertical (x) 
rotor motions while rotor decelerates, α=-283 Hz/s. 
Imbalance u=8 µm and FB: γ=0.07 
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Fig. 15 Amplitudes of rotor synchronous motion during 
rotor acceleration and deceleration α=+/-283 Hz/s. 
Response for linear RBS also shown. Imbalance u=8 µm 
and FB: γ=0.07.  
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(a) γ = 0.07 (b) γ = 0.20 (b) γ = 0.28 
 
Fig. 13 Effect of FB loss factor (γ) on the rotor vertical (x) motion amplitudes. Loss factors γ=0.07, 0.20 and 0.28 (left to 
right graphs). Rotor acceleration α=283 Hz/s, imbalance u=8 µm (Top) vibration amplitude contour plots, (Middle) whirl 
frequency ratio, and (Bottom) amplitudes of synchronous and subsynchronous (~½WFR and ~⅓WFR) motions versus 
rotor speed.  
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Predicted nonlinear responses display rotor motions with two 

major whirl frequencies, at 50% (½ WFR) and 33% of rotor 
speed (⅓WFR) for operation above the system natural 
frequency. During rotor acceleration, whirl motions at 50% 
rotor speed appear and track the rotor speed. As the rotor speed 
further increases, the whirl motions bifurcate into a ⅓WFR. For 
rotor deceleration from a high speed, well above the system 
natural frequency, the overall amplitude of the synchronous and 
subsynchronous rotor responses are smaller than those for rotor 
acceleration. Lower speed ramp rates lead to more pronounced 
and abundant sub harmonic whirl motions.  

Rotor imbalance awakens and exacerbates the nonlinear 
response of a rotor-foil bearing system. The predictions show a 
strong stiffness hardening effect with jump phenomenon and 
the onset and persistence of whirl motions tracking rotor speed 
at fixed ratios, first ½ and later 1/3, for example. Larger 
magnitudes of imbalance produce a stronger hysteresis in rotor 
response during slow acceleration and deceleration cases. The 
magnitude of material damping, i.e., loss factor γ, is paramount 
to prevent and delay the onset of subsynchronous whirl motions 
with large amplitudes reaching a limit cycle. Bearings with γ < 
0.07 produce a distinct hysteresis in the synchronous and 
subsynchronous responses as the rotor accelerates or 
decelerates, i.e. markedly different responses. 

Most RBS implementing bump-type foil bearings are prone 
to show a forced nonlinearity with subsynchronous whirl 
frequencies and amplitudes largely affected by rotor imbalance. 
Elimination of the nonlinear response may not be possible in 
practice; albeit its persistence, since the GFBs are resilient, 
seems not to penalize the RBS efficiency although long life 
operation remains questionable. Improvements in GFB design 
and materials offer configurations with large material damping 
to ameliorate subsynchronous rotor motions resulting from the 
nonlinear effect of the hardening support structure. Fast rotor 
start up and coast down procedures are recommended to avoid 
the build up of excessive nonlinear RBS responses; hence 
reductions in rotor inertia or a larger drive torque become 
necessary. The results of this paper bring to attention design 
and operation considerations for the appropriate selection and 
use of GFBs in commercial applications.  
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NOMENCLATURE 
fn RBS natural frequency [Hz] 
FFBs FB structural force, K1r+K2r2+K3r3 [N] 
K1-3 FB structure nonlinear stiffness coefficients 

KFBs = K1+2K2r+3K3r2
. Nonlinear FB structural stiffness 

[N/m] 
M Rotor mass [kg] 
r =(x2+y2)1/2. Rotor motion amplitude [m] 
t Time [s] 
u Mass imbalance offset [m] 
WFR = ω/Ω .Whirl frequency ratio 
x,y Rotor displacements, vertical and horizontal [m] 
α Rotor angular acceleration [rad/s2] 
γ FB structural loss factor 
θ Rotor angular displacement [rad] 
ω Rotor whirl frequency [rad/s] 
Ω Rotor angular speed [rad/s] 
 
Acronyms

 

FB Foil bearing 
RBS Rotor-bearing system 
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