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ABSTRACT 
In a traditional turbine-generator set, rotor shaft designers 

and blade designers have their own models and design process 
which neglects the coupled effect. Since longer blade systems 
have recently been employed[1] for advanced turbine sets to 
get higher output and efficiency, additional consideration is 
required concerning rotor bending vibrations coupled with a 
one-nodal (k=1) blade system. Rotor-blade coupled bending 
conditions generally include two types so that the parallel and 
tilting modes of the shaft vibrations are respectively coupled 
with in-plane and out-of-plane modes of blade vibrations with a 
one-nodal diameter (k=1). This paper proposes a method to 
calculate the natural frequency of a shaft blade coupled system. 
According to this modeling technique, a certain blade mode is 

reduced to a single mass system, which is connected to the 
displacement and angle motions of the shaft. The former 
motion is modeled by the m-k system to be equivalent to the 
blade on the rotating coordinate. The latter motion is commonly 
modeled in discrete form using the beam FEM on an inertia 
coordinate. Eigenvalues of the hybrid system covering both 
coordinates provide the natural frequency of the coupled 
system. In order to solve the eigenfrequencies of the coupled 
system, a tracking solver method based on sliding mode control 
concept is used. An eight-blade system attached to a cantilever 
bar is used for an example to calculate a coupled vibration with 
a one-nodal diameter between the blade and shaft. 
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1. INTRODUCTION  
Due to the increasing sizes of low-pressure-stage long blades 

in recent years, the blades along the entire circumference are 
now being coupled by tie wire, a cover or other means to allow 
for greater rigidity and damping. Given the complex structure 
and coupling with the outer circumference of the disk, both the 
disk and blades are combined to provide various vibration 
modes. Because this structure has a tied periphery, the bladed 
disk shows complicated eigenfrequency modes, which are 
represented by nodal diameter. As shown in Table 1, the mode 
with a nodal diameter (j) of zero is coupled with torsional or 
axial vibrations of the shaft, whereas the mode with j = 1 is 
coupled with bending vibrations of the shaft. This indicates that 
an analysis in which the blade and shaft systems are coupled 
with each other is desired to enable precise prediction of 
eigenfrequencies. Just analyzing the individual bladed disk and 
the shaft systems separately is sufficient for this purpose in the 
case of modes with j = 2 or over, because the bladed disk and 
the shaft are not coupled in these modes. 

The electric power grid includes torque excitation of a 
double frequency (2f = 100/120 Hz). Accidents in which 
damage occurred to blades with j = 0 have been reported; these 
are probably attributable to blade-shaft coupled resonance. As a 
result, various analysis methods for large-size turbine 
generators have been proposed and field measurements of 
actual turbines have been made [2-10]. In addition, ISO 22266-
1 suggests a standard for preventing such resonance [11]. 

 
Table 1 Criteria for coupled vibration 

Blade 
Vibration 

Shaft Vibration 

Nodal diameter Torsional/Axial Bending 
j = 0 Coupled Not Coupled
j = 1 Not Coupled Coupled 

j ≥  2 Not Coupled Not Coupled
 
On the other hand, the model reduction analysis of blade-

shaft coupled bending vibrations in eigenmodes of blade 
systems with nodal diameter j = 1 has not been reviewed in 
connection with steam turbines because such accidents have 
not been reported. However, problem examples and research 
into vibration analysis have been reported for wind turbine 
blade-tower frame coupled vibrations at wind power plants 
[12]. For wind power plants, coupled vibrations of all systems 
must be analyzed using strict equations of motion because the 
number of blade number is very small.  

A coupling behavior between shaft and disk-blade systems 
was investigated by Hagiwara and Palladino [13,14]. However, 
these coupling models were completed only by beam transfer 
matrices including modification associated by blade 
attachment. By using all 3D FEM model and related 
substructures, a vibration analysis method for shaft-disk-blade 
coupled system was firstly demonstrated by Gerardin from 
rotor dynamics viewpoints of critical speeds, stability and so on 
[15]. This study uses full FEM formulation. There is then no 

concept of the model reduction for a large scale of 3D FEM 
disk-blade system. 

This paper clarifies blade-shaft coupled bending vibration by 
replacing turbine blades with an equivalent, simple harmonic 
vibration blade model and adding this model to the shaft 
system of a one-dimensional finite element method (FEM) 
model. This approach is similar to the concept of blade-shaft 
coupled torsional vibrations [6-10]. The modeling of blade-
shaft coupled bending vibrations faces new challenges to 
resolve as listed below. 
(1) Separate use of rotating coordinate system for blades and 

inertial coordinate system for a shaft 
(2) Influence of the Gyro effect or Coriolis effect 
(3) Effect of coupling between translation and tilting motions 

of the shaft and blade vibrations 
This paper describes the equivalent blade model and the 
coupled bending vibration analysis procedure using this model 
as well as an numerical example. 

 

2. VARIABLES AND DEFINITIONS 
Before analyzing blade-shaft coupled vibration, some 

important variables must be defined. This section provides a 
specific description of these variables citing an eight-blade 
turbine. 
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Figure 1 Coordinate system 

 
2.1 Displacement of Blade Vibration 

The blades are approximated on a simple single-mass-point 
system(m) as shown in Fig. 1. They are assigned a number 
beginning from #0, which is the reference blade. A fixed 
coordinate system Xri, Yri, Zri is provided with blade #i at the 
angle τi, from blade #0. Xri, Yri, and Zri are set in the radial 
direction, the circumferential direction, and axial direction of 
the shaft respectively. We regard the vibration displacement to 
each of these directions as ui, vi, and wi, respectively. We 
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assume the reference coordinate system is fixed on blade #0 as 
Xr, Yr, Zr, and the translating motion of the center of the shaft is 
represented on the rotating coordinate system as {xr, yr}, and 
the tilting motion component shown in the figure is represented 
as {θxr, θyr}. 
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Figure 2 Transformation of coordinate systems 
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Figure 3 Blade nodal eigenmodes (vector) 

 
2.2 Rotating Coordinate Transformation 

A coordinate system rotated by θ  about an axis to the 
original coordinate system X1Y1Z1 is X2Y2Z2 as shown in Fig. 
2 and the unit vector of each coordinate system is 

[ ]iiii kjie =  (i=1,2); then the rotating coordinate 
transformation is defined as follows. 
About the X1 axis: 
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About the Z1 axis: 
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2.3 Blade Vibration Mode 
As described in Fig. 3, eight modes φi (i = 0,L ,7) exist when 

the number of blades is eight, and there are five corresponding 
eigenfrequencies ωi (i = 0,L ,4). The blade vibration coupled 
with the bending vibration of the shaft has a nodal diameter 
node (k) of one. The pair of eigenfrequency and modes {ω1, φ1, 
φ7} is the subject to be considered in this paper. In-plane and 
out-of–plane case of this vibration are right angles to each other 
and will be considered separeately and superposed in the 
following sections. 

 

3. BLADE-SHAFT COUPLED VIBRATION EQUATION 
(EXAMPLE OF EIGHT BLADES) 
3.1 Motion Equation for In-plane Vibration 

Focusing on blade #i, the equation of motion allowing for 
coupling with the translating motion of the center of the shaft is 
obtained from Lagrange’s equation. As shown in Fig. 4, the 
rotating coordinate system XrYrZr with blade #0 is positioned 
at the opening angle Ωt from the inertial coordinate system 
X0Y0Z0. The vibration displacement of blade #i is measured in 
the blade fixed coordinate system XiYiZi at the position rotated 
by iτ degrees from blade #0. The displacements in the radial, 
circumferential, and axial directions are assumed to be ui, vi, 
and wi, respectively. The unit vector of each coordinate system 
is represented by adding a subscript to it as stated in the 
preceding section, that is, e0，er，eri. The gray circles indicate 
the rotating coordinate transformation axes. 
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Figure 4 Coordinate system and unit vector 

 
It is assumed that the motion of the center of the shaft to be 
{xr， yr， 0} on the rotating coordinating system er. The 
vibration displacement of the blade on the fixed coordinate 
system is eri. Only the circumferential component of the 
vibration components is considered as {0，vi，0}. Since the 
vibrations are in-plane blade vibrations, the axial vibration is 
defined as wi = 0 and the radial vibration as ui = 0. 
Consequently, the position of the tip end P of the blade from 
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the origin O of the inertial coordinate system is represented by 
the following equation. 
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Kinetic energy is thus given by the following equation. 
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Lagrange’s equation is applied to obtain the equation of motion 
for a blade is applied. In this stage, the term of the plate rigidity 
of the blade is ignored. 
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when xr, yr and vi are substituted for q, the equation of motion 
is expressed as follows: 
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Figure 5 Coordinate system and unit vector 

 
 

3.2 Motion of Equation for Out-of-plane Vibration 
Next, the out-of-plane vibration of the blades and the tilting 

vibration of the shaft will be considered. Figure 5 shows the 
coordinate system. In this figure, all coordinate systems are 
simply represented by a unit vector: the inertial coordinate 
system is e0, the rotating coordinate system of reference blade 

#0 is er, and the coordinate systems showing the tilt of the shaft 
rotated slightly by -θyr and θxr when viewed from the rotating 
coordinating system are eθa and eθb, respectively. Additionally, 
these coordinate systems are turned by τi degrees to blade 
number i to match them with the fixed blade coordinate system 
eri. They can be expressed as follows. 
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We assume that only the axial component is the vibration 
displacement on the fixed blade coordinate system rie , which is 
{0，0，wi}. Since θxr and θyr are very small vibrations, we can 
neglect the coordinate system transformation order. 

After this preparation, the blade-shaft coupling model for 
out-of-plane tilting vibrations is obtained by following the 
same procedure of in-plane vibration as described earlier. The 
position of the blade is represented by the following equation. 
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Kinetic energy is thus given by Eq. (10) 
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The equation of motion for a single blade is obtained from 
Lagrange’s equation, when θxr, θyr and wi are substituted for q 
in Eq. (6). At this stage, the potential energy term of the blade 
deformation. 
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3.3 Motion of Equation for General Blade Systems 
The equation of motion for general blades is a combination 

of Eqs. (7) (11) and expressed as shown below. 
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E8 = 8-dimensional unit matrix, 08 = 8-dimensional zero matrix 
 

4. BLADE-SHAFT COUPLED MODE SYNTHETIC 
MODEL 
4.1 Modal Superposition Transformation Matrix 

The mode synthesis method is applied assuming that the 
motion (translation and tilting) of the center of the shaft is 
treated as a boundary coordinate and that the blades system, 
which is fixed to the center of the shaft, is treated as an internal 
system. The eigenmodes of the blade as an internal system 
were shown in Fig. 3. Only the nodal diameter k = 1 is 
considered. 

The two modes shown in Fig. 6 correspond to the behavior 
of circumferential in-plane vibrations. In primary mode v1φ , 
blades #0 and #4 have reversed phases at the antinode, and 
blades #2 and #6 become nodal diameter. In mode v7φ , blades 
#0 and #4 become nodal diameter, and blades #2 and #6 have 
reversed phases at the antinode. Consequently, all of the blades 
are equivalent to the movement of the center of gravity, or 
vibration displacement, represented by the following equation: 

cv lφ =1  (yr direction), sv lφ =7  (-xr direction). 
Next, the behavior of vibrations in the out-of-plane direction 

is considered. As shown in Fig. 7, blade #4 moves as if sinking 

when blade 0 rises in primary mode w1φ . All of the blades are, 
therefore, equivalent to the behavior of rotation around the Yr-
axis. In mode w7φ , they are equivalent to the behavior of 
rotation around the Xr-axis. The tilting of all blades in each 
mode is: 

cw lφ =1  (around -Yr-axis) →  Reverse of tilt θxr 

sw lφ =7  (around -Xr-axis) →  Reverse of tilt θyr 
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Figure 6 One-nodal diameter modes (In-plane) 
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Figure 7 Tilting modes of one-nodal diameter (Out-of-Plane) 
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Figure 8 Blade setting angle 

 
Keeping this point in mind, the order of the coordinates of 

the modal superposition model is arranged into the Xr and Yr 
directions, and define the modal superposition transformation 
matrix Ψ as represented by the Eq.(13) given below. The blade 
setting angleσ to the shaft is defined as shown in Fig.8. Then 
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the circumferential component of diameter node = 1 mode is 
σα cos=  times and the out-of-plane component is σβ sin=  

times of the blade vibration respectively. 
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4.2 Modal Superposition Model (Rotating Coordinate 
System) 

By substituting Eq. (13) into Eq. (12) and multiplying it by 
Ψt. The modal superposition model is represented by Eq. (14). 
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Next, for the purpose of simplification, complex displacement 
is introduced. 

[ ] t
rrrr z ηθ=Z   (15) 

rrr jyxz +≡ , ryrxr jθθθ +≡ ， ryrxr jηηη +≡  

Equation (14) results in the equation of motion for complex 
displacement given as Eq. (16): 

00 =+Ω+ rrrrrr j ZKZGZM &&&  (16) 
 where mass matrix Mr (1, 1) is total mass of the blade system, 
which is defined as 

mm 8≡δ      (17) 

and mass matrix Mr (3, 3) is a blade modal mass *m , which is 
defined as 

)(4 22* βα +≡ mm     (18) 

rG is the Coriolis matrix and r0K is the geometric mass 
matrix due to the centrifugal effect. r0K (3, 3) is a stiffness 
term of modal coordinates. Since the rigidity of the blade in the 
Eq.(11) is ignored up to this point, the rigidity of the blades 
should be included in the modal stiffness and r0K (3, 3) shall be 

replaced with modal stiffness of the blades system[16]. 
Assuming that the eigenfrequency of the blades ωb, which 
considers centrifugal force and axial force effects, is given, we 
define modal stiffness as k*= m*ω b2. ω b is the ω1 of one nodal 
diameter frequency. Accordingly, coupled vibrations are 
analyzed using the following equation that replaces the three 
rows and three columns of the stiffness matrix of Eq. (11) with 
k*. 

0=+Ω+ rrrrrr j ZKZGZM &&&   (19) 
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This is a modal superposition model of the rotating coordinate 
system like the one with the subscript r added to the total mass 
and displacement variable of the blade system. 
4.3 Modal Superposition Model (Inertial Coordinate 
System) 

When this blade vibration is observed from a static field, 
associated variables with the subscript r are removed as shown 
below. 

tj
r e Ω= ZZ      (20) 

We obtain the following equation by rewriting the expression 
of the static field in Eq. (19). 
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Considering pII =δ2  on a thin disk, the second column and 

second row of the gyro matrix in the equation of motion for this 
inertial coordinate system is considered to be the polar moment 
of inertia. 
4.4 Modal Superposition Model (Both Coordinate Systems) 

The rotor shaft vibration of a regular individual system is 
analyzed using an inertial coordinate system, and the blade 
vibration is analyzed using a rotating coordinate system. For 
this reason, an equation of motion for both coordinate systems 
is redefined. From Eq. (21), Eq. (22) is obtained. 
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4.5 Eigenvalue Equation 
Now, a characteristic equation for the equation of motion of Eq. 
(22) is obtained. Assuming that the solution of vibration is as 
shown below, 
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Equation (23) is substituted into Eq. (22). The characteristic 
matrix bP  of the blades can be obtained. 
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       (24) 
The elements (1, 1), (2, 2), and (3, 3) in this characteristic 
matrix represent the deflection coordinates of the shaft, the 
tilting coordinates of the shaft, and the vibration displacement 
respectively when the nodal diameter of the blades is one. 
 

5. FEM REDUCED MODELING FOR NODAL 
DIAMETER 1=k  
5.1 Eigenmode 

When the blade vibration of individual blades is analyzed 
with the motion (translation and rotation) of the shaft as the 
internal system constrained, the blade vibration eigenpair of the 
nodal diameter k = 1 is expressed as shown below. 

Eigenfrequency ω1  Eigenmode
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(to blade #0) 
In Fig. 1, the runout at each point in the eigenmode was 
represented by the radial component ϕ1u , the circumferential 
component ϕ 1v , and the axial component ϕ 1w . The 
circumferential component ϕ 1v , contributes to the in-plane 
coupled behavior shown in Fig. 6, and the axial component 
ϕ 1w  relates to the out-of-plane behavior shown in Fig. 7. 
5.2 Reduced Modeling 

Based on the discussions thus far, Fig. 9 shows a modeling 
procedure for general blades. In the procedure, the number of 
blades is N, the mass matrix of a single blade is Mb. (Appendix  
shows the case of a single-mass-point (m) at the tip of blade.) 
The 3DOF vibration eigenmodes of the eigenfrequency of the 
blade bω  are [ ]wvu 111 φφφ . 
  First the specifications of rigid body blades is calculated. To 
do that the mass Mδ of the blades as rigid bodies and the 
moment of transverse inertia Id ≅ Ip/2 (Ip = polar moment of 
inertia). In the form of a matrix, they are: 

( )M11tNm =δ ,  ( )Mrr t
p NI =   (26) 

where 
1 = {vector with each point on the blade set as 1}; and 
r= {vector formed by dotting the radius ri of each point of 

the blade}. 
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Figure 9 Calculation procedure of one-nodal coupled system 

 
  Second, the modal and coupled amounts of elastic blades are 
calculated. The modal mass m* and modal stiffness k*  are 
defined as follows. 
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The coupled mass mc1 is the inner product of the 3DOF forced 
displacement of each point of the blades and the 
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circumferential component in the 3DOF mode, which is the 
eigenmode of the blades, when the shaft is subjected to a unit 
forced translation displacement =1(m) in the Xr-axis direction 
as shown in Fig. 10(a). Also as shown in Fig.10(b), the coupled 
mass mc2 is the inner product of the 3DOF displacement of 
each point of the blades and the out-of-plane component in 
3DOF mode, which is the eigenmode of the blades, when the 
shaft rotation is 1(rad) about the Xr-axis. Consequently, each 
matrix of the blade mode superposition model is obtained as a 
matrix on the inertial coordinate system. 

( )
( )w

t
c

v
t

u
t

c
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Mφ1Mφ1

2/

2/

2

1

=
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  (28) 

 
5.3 Solution of Characteristic Equation 

The characteristic equation bP  for the blades is superposed 
on the characteristic matrix of the shaft sfsfsf ss KDM ++2  
to obtain the characteristic matrix of the entire blade-shaft 
coupled system P . 

( ) bsfsfsf ss PKDMP ⊕++= 2   (29) 

where ⊕ = Superposing operation in FEM [17]. 
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Figure 10 Coupling parameters 
 

By substituting the speed Ω for the parameter t, the coupled 
eigenvalue can be analyzed from the abovementioned 
determinant = 0. However, there is no numerical analysis 
method for obtaining large-scale determinants in general; so the 
tracking solver shown in Fig. 11 is used with the theorem of 
tracing to solve the equations [18, 19]. The time axis is set 
according to the speed. Specifically, the time history response 
of the characteristic root s (t) = s (Ω) over the specified speed 
range is calculated to obtain the correct answer after t = 1. 
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Figure 11 Tracking solver for eigenvalue equation 

6. ANALYSIS EXAMPLE 
We calculate the eigenfrequency when uniform blades (mass 

= m, cross-sectional area = A, length = l, mounting radius r = 
l/3, number of blades N = 8) are attached to one end of the shaft 
system as shown in Fig. 12. 
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Figure 12 Calculation model 

 
   First, the mass of all blades as rigid bodies is calculated. 
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   Second, each parameter of the blade-shaft coupled model is 
calculated. 
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The model of the blade system shown in Eq. (24) is 
consequently determined. The first term of Eq. (29) can be 
obtained by dividing the shaft into five(for example) finite 
element parts and creating a mass matrix M, a gyro matrix G, 
and a rigidity matrix K (including the bearing mass constant) 
based on the FEM method. Then, by superposing the 
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characteristic Eq. (25) for the blades, the characteristic Eq. (29) 
for the entire system is completed. 

Specific numerical example is calculated. The mass of the 
blades m is 14.75 kg, the length of the blades l is 0.75 m, the 
cross-sectional area of the blades B x h is 0.25 x 0.01 mm, and 
other necessary constants are as shown in Fig. 12. Modes 
corresponding to the circles on the curves are also shown. In 
the example given in the upper left area of the figure, the “●” 
symbol is the mode of the shaft and the “○” symbol is the mode 
of the blades. The values of ±22 Hz and ±81 Hz at the 
eigenfrequency at a speed of 0 rpm are eigenvalues of the shaft 
system. The value of ±14.7Hz+Ω on moving to the right is the 
eigenvalue of the blades. These values do not intersect each 
other but they approach each other as shown in frames A and B. 
Figure 13 shows that the blades vibrate significantly when the 
blade frequency and shaft frequency are approaching each 
other. Both the blades and shaft frequencies move away from 
each other after passing closing point. Both frequencies do not 
intersect. 
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Figure 13 Coupled bending natural frequency 

 

7. CONCLUSION 
This paper discussed in depth a coupled model for analyzing 

blade-shaft coupled bending vibrations. Our main points were as 
follows. 

(1) With regard to the blade-shaft coupled bending vibration 
model, the shaft is represented by an inertial coordinate 
system as usual. The blade system is defined by a rotating 
coordinate system. The combined equation of motion is 
represented by a mix type of rotating and inertial coordinate 
system. 

(2) Using this equation of motion, a characteristic equation for 
analyzing eigenfrequencies is obtained. 

(3) The characteristic equation for the eigenfrequency and 
mode of coupled vibrations of a model provided with eight 
blades on one end of the shaft is analyzed. The tracking 
solver method is used to evaluated blade-shaft coupled 
bending vibrations of this model. 

 

NOMENCLATURE 
 Acronym 

FEM  Finite element method 

Main symbols 

kb  Modal stiffness of blade 
z ,θ  Translation displacement and tilting of shaft (inertial 

coordinate system) 
zr ,θr   Expression of z,θ  on rotating coordinate system 
ηr  Blade vibration (rotating coordinate system) 
η  Expression of ηr on inertial coordinate system 
ωb  Eigenfrequency of blade with nodal diameter k = 1 
Ω  Rotating speed of shaft 
Tt t is the symbol of transpose 
Xri, Xri, Xri  rotating coordinate system of blade #i 
M, Mr Mass matrices inertial and rotating coordinate system 
K, Kr Stiffness matrices on inertial and rotating coordinate 

system 
G, Gr Gyro matrices on inertial and rotating coordinate 

system 
Pb  Characteristic matrix 
u  vibration displacement of radial direction 
v  vibration displacement of circumferential direction 
w  vibration displacement of axial direction 
ηxr, ηyr  modal displacement of blade 
⊕   superposing operation commonly used in FEM 

 

REFERENCES 
 
[1] Saito, E., Yamazaki, Y., Namura, K., Tsubouchi, K., 

Nakamura, S., and Onoda, T., 1998, "DEVELOPMENT OF A 
3000RPM 43-IN. LAST STAGE BLADE WITH HIGH 
EFFICIENCY AND RELIABILITY," International Joint 
Power Generation Conference, pp. 89-96. 

[2] La Rosa, J. A., Kung, D. G. C., and Rosard, D. D., 1980, 
“Analysis of Turbine Blade Vibration Induced by Electrical-
mechanical Interactions,” Joint Conference on Power 
Generation. 

[3] Hammons, T. J., 1986, “Stressing of Large Turbine- 
generators at Shaft Couplings and LP turbine Final-stage 
Blade roots Following clearance of Grid System Faults and 

9 Copyright © 2011 by ASME



Faulty Synchronisation,” Joint Conference on Power 
Generation,  pp. 1-12. 

[4] Manabe, K., 1982, “Torsional Vibration Measurements by 
Generator L-L Short-circuit at Ikata No.1 Power Station,” 
Sikoku Electric Power Company Report, No. 40 , pp. 1-6 (in 
Japanese). 

[5] Higuchi, M. and Tsuda, T., 1989, “Telemetry Test of Blade 
Shaft Coupled Torsional Vibration at the Tsuruga No.2 Power 
Plant,” American Power Conference, 51, pp. 1-6. 

[6] Ziebarth, H. and Termuehlen, H., 1989, “Evaluation Method 
for the Coupled System of Shaft Torsion and LP turbine Blade 
Deflection,” American Power Conference, 51, , pp. 1-7. 

[7] Matsushita, O., Sugaya, T., Namura, K., Okabe, A., Kaneko, 
R., Michimura, S., and Ida, M., 1988, “An Equivalent 
Reduced System for Coupled Vibration Analysis,” 
Transactions of the Japan Society of Mechanical Engineers, 
Series C, 54(499),  pp. 587-595 (in Japanese). 

[8] Matsushita, O., Namura, K., Yoshida, T., Kaneko, R., and 
Okabe, A., 1989, “Torsional Vibration Analysis of Turbine-
generator-blade Coupled System,” American Power 
Conference, 51, pp. 1-6. 

[9] Okabe, A., Kaneko, R., Matsushita, O., Namura, K., and 
Yoshida, T., 1989, “Coupled Vibration Analysis: Torsional 
Vibration of Turbine-generator Coupled System,” 12th ASME 
Conference on Mechanical Vibration and Noise, 18, pp. 135-
140. 

[10] Okabe, A., Kudo, T., Yoda, H., Sakurai, S., Matsushita, O., 
and Shiohata, K., 2009, “Rotor-Blade Coupled Vibration 
Analysis by Measuring Modal Parameters of Actual Rotor,” 
Transactions of the Japan Society of Mechanical Engineers, 
Series C, 75(751),  pp. 566-573 (in Japanese). 

[11] ISO, 2009, 22266-1:2009(E), “Mechanical Vibration-
Torsional Vibration of Rotating Machinery-, Part 1: Land-
based Steam and Gas Turbine Generator Sets in Excess of 
50MW.” 

[12] Santos, I.F., Saracho, C.M., Smith, J.T. and Eiland, J., 2004, 
“Contribution to Experimental Validation of Linear and Non-
linear Dynamic Models for Representing Rotor-Blade 
Parametric Coupled Vibrations,” J. Sound & Vib.,  271(3/5),  
pp. 883-904. 

[13] Hagiwara, N., Sakata, S., Takayanagi, M., Kikuchi, K., and 
Gyobu, I., 1979, “Analysis of Coupled Vibration Response in 
a Rotating Flexible Shaft-Impeller System,” ASME paper 82-
GT-240, pp. 1-12. 

[14] Palladino, J.A., and Rossettos, J.N., 1982, “Finite Element 
Analysis of the Dynamics of Flexible Disk Rotor Systems,” 
ASME paper 79-DET-69, pp. 1-6. 

[15] Gerardin,M., and Kill,N., 1986, “ A 3-Dimensional 
Approach to Dynamic Analysis of Rotating Shaft-Disk 
Flexible Systems," IFToMM International Conference on 
Rotordynamics, pp. 87-93. 

[16] NX Nastran Rotor Dynamics User's Guide, Chap. 2, p.15. 
[17] Matsusita, O., Kikuchi, K., Kobayashi, S., and Furudono, M., 

1980, "Solution Method for Eigenvalue Problem of Rotor-
Bearing Systems (part 1 Undamped Systems with Isotropic 
Supports),"  Bulletin of the JSME, 23(185), pp. 1872-1878. 

[18] Fujiwara, H., Matsushita, O. and Ito, M., 2005, “A Tenacious 
Solver Using Sliding Mode Control for Eigenvalue Problem of 
Rotor-Bearing Systems,” Trans. of Japan. Soc. of Mech. 
Engrs. (Ser. C), Vol. 71, No. 701,(2005), pp. 43-50. 

[19] Matsushita, O. and Fujiwara, H., 2008, “1D and 2D Tracking 
Solvers for Solving Algebraic Equations Based upon Sliding 
Mode Control,” J. of Environment and Engineering, 3(1),  pp. 
216-227. 

 

Appendix 
Figure 14 shows the model of the blade which is divided into 

four parts. The blade is #0 and mass matirx is expressed by  
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When the blade is translated in 1 (m), the displacement vector is  
[ ]11111=t1 , 

and，when it rotate in 1(rad), the vector of blade is  
[ ]54321 rrrrrt =r . 
rr =5  

If the first mode φ  of cantilever is assumed as the third order 
curve, it is  
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By using blade setting angle σ , the eigenmodes of the 
circumferential component ϕ 1v and the axial component ϕ 1w are 
expressed as follows: 

ασ φφφ == cosv  
βσ φφφ == sinw  

and the radial component ϕ1u is  
[ ]00000=uφ  

,because deformation of blade in radial direction is very small 
comparing to the circumferential and axial deflection in case of 
turbine blades. By using Eq. (28), parallel coupling mass and 
tilting coupling mass are calculated as follows: 

αmNm v
t

c 4
21 == Mφ1  

βmrNm w
t

c 4
22 == Mφr  

These results correspond with 1cm  and 2cm  in Eq. (22) 
σ
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r2 r3 r4 r5=r

m
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Figure 14 Example of blade model 
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