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ABSTRACT 
The tie-bolt fastened rotor which is assembled by rods 

distributed circumferentially is modeled and analyzed by finite 
element method with the consideration of elastic-plastic contact 
between discs. Based on elastic-plastic contact model between 
an elastic hemisphere and a rigid plane, the contact between 
discs is investigated by the statistical contact model of rough 
surfaces, and the contact stiffness is derived. The equivalent 
bending stiffness between discs is acquired. With the increase 
of the load between the two contact surfaces, the difference 
between the contact stiffness of purely elastic contact and 
elastic-plastic model is compared. With the obtained contact 
stiffness, the equation of motion for the tie-bolt fastened rotor 
system is formed and the critical speeds are calculated. It 
indicates that the contact stiffness between discs increases as 
the load increases. The contact stiffness of elastic-plastic 
contact model is lower than that of the elastic contact model, 
and the difference between the two models increases with load. 
With the stiffness of elastic-plastic contact, the critical speeds 
of tie-bolt fastened rotor are lower than that of the pure elastic 
contact situation. 
 
INTRODUCTION 

Tie-bolt fastened rotor is a rotor assembled by the 
elementary component of disc and rod. The discs are pressed 
together by some rods distributed circumferentially, as shown 
in Fig.1, or by a single rod located in the center of the rotor. In 
the process of assembling, the rods are elongated to offer the 
tighten force between discs. With the unique structure, tie-bolt 
fastened rotor has advantages in weight, manufacture and 
assembling. As tie-bolt fastened rotor is assembled by small 
size of parts, the cooling passages are easy to design, and the 
rotor can prevent large thermal stresses at high temperatures. 
Therefore, tie-bolt fastened rotor is widely adopted in gas 
turbines, especially in heavy duty gas turbines. 

The assembled structure makes tie-bolt fastened rotor 
widely application, but it brings some difficulties in dynamical 
modeling and analysis of it. As there are many contact 
interferences between discs along the axial direction, the tie-

bolt fastened rotor is not a continuous unity. The traditional 
methods in rotor dynamics, such as transfer matrix method and 
finite element method, cannot model tie-bolt fastened rotor 
well[1], and need many experiments to revise the prediction 
results. In order to model and analyze tie-bolt fastened rotor 
with less dependence on experiments, RaoZhushi[2] introduced 
a model which modeled the contact between discs as distributed 
springs. The discs and two ends of rotor are modeled as beams. 
In this model, the stiffness of the distributed springs is derived 
from analysis of the rough surfaces contact between discs [2-4]. 
This model was adopted by researchers in modeling and 
analyzing tie-bolt fastened rotor[5,6]. In this paper, the model 
introduced by RaoZhushi is applied. According to this model, 
the contact stiffness between discs should be obtained at first in 
modeling of tie-bolt fastened rotor. Therefore, the contact 
analysis between discs will be the first part of the modeling 
work. 

 
Fig. 1 The instance of tie-bolt fastened rotor 

(This figure is from the Internet document “Gas Turbine 
Operation and Maintenance Course”) 

The surfaces of part are not as smooth as we look in 
macro scale, they are inevitable roughness to some degree. 
Therefore, the contact between discs is actually the problem of 
the contact between rough surfaces. In contact mechanics, the 
rough surface is modeled as a rigid plane with a number of 
asperities or perturbations distributed on it. When two rough 
surfaces are pressed together, only the asperities with relative 
large height will interact with the other surface. As a result, 
only a portion of asperities will withstand the total load 
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between rough surfaces. As we can see, the deformation 
behavior of single asperity is of significant importance in the 
analysis of rough surfaces contact. In contact mechanics, the 
asperity are usually supposed to be of spherical summit, the 
deformation of asperity can be simplified as the contact 
between spheres. The most famous model of the contact 
between two spheres is the Hertz solution, which based on the 
work of Hertz in 1881[7]. Hertz solution is derived from the 
classical elasticity theory with the assumption of the Hertz 
pressure distribution on the contact surface. The contact area 
and contact load vary with the interference of the two contact 
spheres. Based on Hertz work, the contact between two spheres 
can be equivalent to a rigid plane contact with a sphere, whose 
radius is the combination of the radius of former two spheres. 
Hertz solution plays an important part in contact mechanics, 
and it is still being applied in many models. However, the 
elastic deformation limits the application of Hertz solution. As 
with the increase of interference, the stresses in the elastic 
sphere increase at the same time. When the maximum stress in 
the elastic sphere reaches the yield stress of the material, the 
plastic deformation will appear in the elastic sphere, and then 
the Hertz solution will be invalid. Many research works have 
been done to investigate the elastic-plastic deformation of 
single asperity during contact[8-10]. KE elastic-plastic model, 
which is proposed by Kogut and Etsion,  is based on the finite 
element analysis of a hemisphere contacting with a rigid plane, 
and the empirical expressions on the relations about contact 
area, contact load with interference are established. However, 
KE model is valid in a small range of interference, and will 
induce large deviation at large interference[9]. So Jackson and 
Green propose a model based on finite element analysis results 
with the consideration of the deformed geometry and material 
properties at large interference, which can describe the 
deformation of single asperity more accurately with various 
materials [9, 11]. In the work of Li, the JG model can be 
approximated to a simple form without lost of accuracy[12]. In 
the contact of tie-bolt fastened rotor, as the tighten force 
between discs is large, the plastic deformation would occur in 
the contact asperities. Therefore, the elastic-plastic contact 
models of single asperity will be adopted. 

In the simulation of the contact between rough surfaces, 
the GW model is one of the most mentioned models in contact 
mechanics, which was proposed by Greenwood and Williamson 
in 1966[13]. The GW model assumes the rough surface to be a 
rigid plane with a large number of asperities distributed on it, 
and the heights of asperities vary randomly. With the 
assumption, the contact between rough surfaces can be modeled 
by the probability of the asperity with a height to be contact. So 
the GW model is also called statistical model. In GW model, 
the Hertz solution is adopted to describe the deformation 
behavior of single asperity during the process of contact. This 
indicates that, the GW model is an elastic contact model of 
rough surfaces. In the paper [6], the classical GW model was 
utilized to obtain the contact stiffness in tie-bolt fastened rotor. 
As the press force between discs is large, most contact 
asperities will deform elastic-plastically, the classical elastic 

GW model cannot describe the elastic-plastic deformation of 
asperities accurately. On the elastic-plastic contact between 
rough surfaces, many investigation has been done with elastic-
plastic asperity contact model[14-16]. In this paper, the idea of 
elastic-plastic contact of rough surfaces was adopted, which 
used the basic GW model with the replacing of elastic Hertz 
solution with the elastic-plastic model of single asperity, to 
simulate the elastic-plastic contact between discs in tie-bolt 
fastened rotor. 

In this paper, the models of single asperity deformation 
are introduced at first. Based on the elastic-plastic model of 
single asperity deformation, the contact between rough surfaces 
is modeled with the statistical model, and then the elastic-
plastic contact model of rough surfaces is derived. The contact 
stiffness could be obtained from the contact model of rough 
surfaces. The tie-bolt fastened rotor is modeled in the following 
step, with the combination of the elastic-plastic contact stiffness 
between discs. The first three orders of critical speeds of tie-
bolt fastened rotor are obtained, and the comparison was made 
between the results with consideration of elastic-plastic contact 
and the pure elastic contact results. 

NOMENCLATURE 
AA   Contact area of rough surfaces  ( 2m ) 
A   Contact area of single asperity  ( 2m ) 

nA   Nominal contact area of rough surfaces  ( 2m ) 

 C    Ratio varies with Poisson’s ratio, 
2

2

8.88 10.13( 0.089)

6.82 7.83( 0.0586)




 

 

E Young’s modulus  ( GPa ) 

eqG   The equivalent bending stiffness between discs 
( /N m rad ) 

H Hardness of material  ( Pa ) 

K Hardness factor, 0.454 0.41  

aI   The cross sectional moment of inertia of contact 
surfaces  ( 4m ) 

N Total number of the asperities on rough surfaces  

PP Contact load of rough surfaces  ( N ) 

P Contact load of single asperity  ( N ) 

R Radius of asperity  ( m ) 

Y Yield stress of material  ( MPa ) 
d   Separation of rough surfaces  ( m ) 

nk   Normal contact stiffness between rough surfaces on 
unit nominal contact area ( 3/N m ) 

n Number of contact asperities on rough surfaces 

z Height of asperity on rough surface  ( m ) 
 Dimensionless factor, c   

 z   Distribution function of asperity heights 

 Density of asperities on nominal contact area  
( 21/ m ) 

 Standard derivation of the asperity height distribution
 Poisson’s ratio 
 Interference of single asperity  ( m ) 
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Superscripts 
*   Dimensionless values 

Subscripts 
GW   The values of GW model 
c   The values at critical interference of single asperity 
e   The elastic deformation of single asperity 

1P   The value of first elastic-plastic deformation region  

2P   The value of second elastic-plastic deformation 
region  

1   The values of sphere 1 

2   The values of sphere 2 

ANALYSIS OF CONTACT BETWEEN DISCS 
The surfaces of parts are rough to some degree in micro 

scale. Therefore, the contact between discs is actually the 
contact between two rough surfaces. In this section, the contact 
between discs is modeled and analyzed. As the deformation 
behavior of single asperity during contact is the base of the 
contact analysis, the model of a single asperity deformation 
behavior is introduced at first. 
The model of single asperity deformation 

The model of a single asperity deformation behavior 
during contact behavior is of significant importance in contact 
mechanics, as it describes the basic relations between contact 
area, contact load and interference. In contact mechanics, the 
asperity is usually modeled as spheres. Based on the work of 
Hertz, the contact between two spheres can be treated as the 
contact between a sphere and a rigid plane, where the sphere 
radius is the combination of the radius of former two spheres. 
As the deformation mainly occurs at the summit of the sphere, 
the contact of asperity is usually simplified as an elastic 
hemisphere contact with a rigid plane, which is shown in Fig.2. 
The simplified model of single asperity is adopted mainly in the 
research work on modeling of single asperity contact.  

 
Fig. 2 The spherical contact model   

As the model illustrated in Fig.2, the deformation of the 
elastic hemisphere increases as the interference   increase. 
During the processes of the interference increases from 0 to the 
critical interference c , the hemisphere deforms elastically. 

Here the critical interference indicates the transition of elastic 
deformation to plastic deformation, which judged from the 
stress analysis in the hemisphere.  

According Hertz solution, in the elastic regime of 
deformation, contact load eP can be written as 

 
31

2 2
4

3eP ER   (1) 

 Where R is the radius of the elastic hemisphere, which is 
the combination of the radius 1R , 2R , of the two contact spheres 

with 
1 2

1 1 1

R R R
  ; E is the equivalent Young modulus,

2 2
1 2

1 2

1 11

E E E

  
   ,with 1E , 2E and 1 , 2  are the Young 

modulus and Poisson’s ratio of the materials of the two contact 
spheres respectively. 

The critical interference c is an important parameter in 

the contact model of a single asperity. It depends on the 
properties of the material and the geometric parameters of the 
hemisphere. The expression of critical interference derived by 
Chang et al, is applied in the elastic-plastic analysis of a single 
asperity widely [14]. It is written as: 

 
2

2
c

KH
R

E


   

 
 

 (2) 

Where K relates to Poisson’s ratio of the material yield 
first, is given by 0.454 0.41K   ; H is the hardness of the 
material, it can be written by 2.8H Y , and Y is the yield 
stress of the material; E and R  are the equivalent Young 
modulus and radius of the elastic hemisphere respectively. 

When the interference   passes the critical interference c , 

in some region of the hemisphere, the stress becomes larger 
than the yield stress of the material. As a result, the plastic 
deformation occurs in the hemisphere. According to finite 
element analysis by Kogut and Etsion, when the interference in 
the region of 6c c    ,  the deformation of the hemisphere 

summit is still dominated by elastic deformation, plastic 
deformation is only a small portion in the hemisphere summit. 

The situation is changed after the interference reaches 6 c , 
when the plastic deformation expends to the outside surface of 
the hemisphere, and dominates the deformation of the 
hemisphere summit. With the finite element analysis results, the 
relation between contact and interference can be written as[8]:  

 

1.425

1

1.263

2

1.03                   1 6

1.40                   6 110

p C
C c

p C
C c

P P

P P

 
 

 
 

  
     
  


 
    

 

 (3) 

The KE model use a piecewise function to describe the 
evaluation of the plastic deformation from as the interference 
varies in the region 110c c    . When the interference 

exceeds 110 c , KE model cannot predict the contact load 

accurately. Jackson and Green extend the range of interference 
with the consideration of varied geometry and material 
dependence at large interference. Based on the finite element 
analysis, they also propose an empirical formulation [9]. The 
JG model can describe the deformation of single asperity form 
elastic-plastic to fully plastic regime. In the work of L.Li[12], 
the JG model is simplified to describe the deformation at large 
interference. The simplified JG model can be written as: 


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  4.6SJG c
c

P P C



 
   

 
 (4) 

Where  
2

2

8.88 10.13( 0.089)

6.82 7.83( 0.0586)
C




 


 
 relates the Poisson’s 

ratio of the material yield first.  
It is convenient to introduce the dimensionless form of the 

single asperity contact model. The interference, contact area 
and contact load are normalized by the values at critical 
interference, respectively. The dimensionless procedure can be 
written as: 

 * *,
c c

P
P

P




   (5) 

The relationship of contact load and interference in the 
Hertz solution, KE model and simplified JG model can be 
expressed in the dimensionless form as follows. 

The dimensionless load by Hertz solution: 

  
3
2* *P   (6) 

The dimensionless contact load of KE model: 

 
 
 

1.425* * *
1

1.263* * *
2

1.03                   1 6

1.40                   6 110

p

p

P

P

 

 

   

   

 (7) 

The dimensionless contact load of simplified JG model: 

  * 4.6SJG
c

P C


 

  
 

 (8) 

Where
 

* * * *
1 2, , ,e p p SJGP P P P are the dimensionless contact 

loads in the different regions of interferences. 
The differences between the Hertz solution and elastic-

plastic model can be illustrated in the figures bellow.  
When the interference varies in the region 0 110 c   , 

the contact load of Hertz solution, KE model and JG model are 
plotted in Fig.3. As the KE model and the JG model use Hertz 
solution in the elastic regime, the three models are consistent at 
small interference. However, at large interference, the plastic 
deformation induces the KE model and the JG model predicts 
smaller contact load than the Hertz solution, the discrepancy 
increases as the interference increases. As the KE model and 
the JG model all consider the plastic deformation, they are in 
accordance with each other when the interference in the range
0 110 c   . 

The contact load of Hertz solution, simplified JG model 
and JG model are plotted in Fig.4, while the contact 
interference in the region 110 c  . The Hertz solution 

predicts large contact loads than the two models, and the 
difference increases a lot with the increase of interference. The 
contact load of the simplified JG model and the JG model are 
consistent, the difference can be neglect. 

From the comparison of the contact load of the different 
single asperity deformation models, the consideration of plastic 
deformation will result in significantly difference to elastic 
deformation in heavily load situation. In the region

0 110 c   , the KE model and the JG model are consistent, 

and in the region110 c  , the simplified JG model is in 

accordance with JG model.  
In this paper, the KE model is adopted to describe 

deformation as the interference in the region 110c c    , 

and the simplified JG model is applied at large interferences. 

 
Fig. 3 Contact loads of the different single asperity deformation 

models at small interference 

 
Fig. 4 Contact loads of the different single asperity deformation 

models at large interference 
Modeling of the contact between two rough surfaces 

With the analysis of a single asperity model, the contact 
between rough surfaces can be modeled and analyzed. Based 
on the work of Greenwood and Tripp[17], the contact between 
two rough surfaces can be equivalent to the contact between a 
rough surface and a rigid plane, which simplifies the problem 
significantly. In this section, the contact between two rough 
surfaces is modeled based on statistical contact model.  
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In the statistical contact model, the rough surface is 
considered as a nominal flat plane with a large number of 
asperities distributed on it. All the asperity summits are 
spherical, with the same radius. The height z  of the asperities 
varies randomly, with the probability density function  z . 

Therefore, the probability of an asperity with height between z
and dz is  z dz . Suppose a rough surface contacting with a 

rigid smooth surface, the distance of the rigid surface of the 
rough surface and the other rigid surface is d , and the asperities 
on the rough surface with height larger than d will contact 
with the rigid surface, as shown in Fig.5. If the number of the 
asperities on the rough surface is N , the number of the 

asperities contact with the rigid surface is  
d

n N z dz


  . Then 

the contact interference   of a contact asperity with height 
z  is equal to z d . With the combination of the single 
asperity contact model, the contact area and contact load of the 
rough surface can be derived.  

 
Fig. 5 Schematic of contact between a rigid plane and a rough 

surface 
The classical GW model is the origin of the statistical 

model. However, the GW model adopts Hertz solution to 
describe the deformation of a single asperity, which indicates 
the GW model is limited as the elastic contact model of rough 
surfaces. The contact load of GW model is written as: 

    
31
22

4

3GW d
P NER z d z dz


   (9) 

In this paper, the elastic-plastic modeling of discs is based 
on statistical model, with the application of elastic-plastic 
model of a single asperity deformation. 

In elastic-plastic model introduced in the last section, the 
process of a single asperity deformation is divided into four 
sections: elastic deformation with 0 c   ; elastic-plastic 

deformation with 6c c    ; elastic-plastic deformation with 

6 110c c    and elastic-plastic deformation at large 

interference110 c  . With the ideas of statistical model of 

rough surfaces contact, the probability of an asperity with 
height z on the rough surface contacting with the rigid plane is 

 
d

z dz


 , and the probabilities of the deformation of the 

asperity in each region of the elastic-plastic model are 

 c
d

d
z dz






 ,  
6

c

c

d

d
z dz








 ,  
110

6

c

c

d

d
z dz








 and  
110

c
d

z dz






respectively. Supposed there are N asperities on the rough 
surface in all, the numbers of the asperities deformed in the 
four regions of the elastic-plastic model are

eN ,
1pN ,

2pN  and 

SJGN respectively. Based on statistical model, it can be derived 

that  cd

e d
N N z dz





  ,  

6

1

c

c

d

p d
N N z dz









  ,  

110

2 6

c

c

d

p d
N N z dz









   

and 
110

( )
c

SJG d
N z dz







  . 

Based on the contact load formulation of the single 
asperity elastic-plastic deformation model, the expected contact 
load of rough surface can be expressed as follows. 

 
   
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6

1

110

26 110
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c c

d d
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d

p SJGd d

PP N N

N N

P z dz P z dz
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 





 

 

 

 



 

 

 

 

 

 
 (10) 

The four parts on the right side of the expression indicate 
the contribution of the four regions of deformation. 

The total number of the asperities on a rough surface can 

be written as
n

N A , where  is the surface density of 

asperities on nominal contact surface, 
n

A is the area of nominal 

contact surface. The Gaussian distribution function is a good 
approximation for many surfaces, so the distribution of 
asperities on rough surfaces can be written as

 
21

21

2

z

z e 


   
  , where  is the standard deviation of the 

asperities height distribution on rough surface. 
It is convenient to normalize the model to dimensionless 

variables. In this paper, the length variable is normalized by the 
standard deviation of the asperities height distribution. Then the 
contact model can be normalized as: 

The dimensionless contact load of GW model: 

    
331
22 2 *4

3GW n h
PP A ER s h s ds  


   (11) 

The dimensionless contact load of elastic-plastic contact 
model: 

 

   

   

   

     

31
2 2*

33
22 *

6 1.4251.425 *

110 1.2631.263 *

6

1101 *

6

4

3
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1.40

4.6
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h

h
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h
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
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
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



 
 
 
 
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 
 
 
 



 

 

 






 (12) 

Where  
21

* 21
2

s
s e




 is the dimensionless distribution 

function ,  
2

2

8.88 10.13( 0.089)

6.82 7.83( 0.0586)
C





 


 

and c


 . 

Based on the expression of contact load between rough 
surfaces, the contact stiffness on unit nominal contact area can 
be derived by the definition of stiffness: 

 
 
 

*

n
n

d PP
k

A d h
  (13) 
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Rigid plane

Rough surface reference plane
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The elastic contact stiffness based on GW model and the 
elastic-plastic contact stiffness can be obtained respectively. 

The contact stiffness on unit area of nominal contact 
surface derived by GW model is: 

 
1 1 1
2 2 22 ( ) ( )nGW h

k ER s h s ds  
    (14) 

The contact stiffness on unit area of nominal contact 
surface derived by elastic-plastic contact of rough surfaces is: 
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With the contact stiffness on unit area of nominal contact 
surface, tie-bolt fastened rotor can be modeled and analyzed. 

MODELING OF TIE-BOLT FASTENED ROTOR 
A tie-bolt fastened rotor model is illustrated in Fig.6. 

There are twenty discs and two ends, which are tightened by 
eight rods distributed circumferentially. Based on the contact 
models introduced, the contact between discs can be modeled 
by the mechanical model proposed by RaoZhushi [2].  

 
Fig. 6 Schematic of the tie-bolt fastened rotor 

In the mechanical model, the contact between the two 
contact discs’ surfaces is represented by distributed springs, 
which stiffness can be obtained by the contact analysis with the 
model mentioned above. In the modeling of rotor, the bending 
stiffness between the contacting discs is required. Therefore, 
the distribution spring should be equivalent to the bending 
stiffness.  

The equivalent bending stiffness of the contact surfaces 
can be obtained by the following formulation. 

 ep n aG k I  (16) 

Where aI  the cross sectional moment of inertia of 

contact surfaces. 
The mechanical model is shown in Fig.7. 
With the equivalent bending stiffness between the contact 

surfaces, the tie-bolt fastened rotor can be modeled by finite 
element method. The two ends and discs are modeled as 
Timoshenko beam, and the contact is modeled as a bending 
spring which connects the two nodes on the two contact 
surfaces respectively. 

The mass matrix  M and the stiffness matrix  K can be 

obtained by assembling the relative matrix of discs and springs. 
The stiffness matrix  K  should be reminded. As the contact 

between discs only transfers the forces, the contribution of the 
contact mainly on the stiffness matrix of tie-bolt fastened rotor, 
and the influence on the mass is negligible. Therefore, the 
stiffness matrix  K includes the matrixes of the discs and the 

two ends, as well as the matrix of the contact equivalent 
bending stiffness. In the forming of the stiffness matrix, the 
stiffness matrix of discs and ends are assembled directly, and 
the matrix of the bending stiffness is added at the interface of 
the discs and ends, which represents the effect of contact. 
However, the mass matrix  M is same as the directly 

combination of each disc and end.  

 
(a) 

 
(b) 

Fig. 7 The mechanical model by RaoZhushi (a) the equivalent 
distribute springs between contact surfaces; (b) the equivalent 

bending stiffness between contact surfaces 
With the model of tie-bolt fastened rotor, the critical 

speeds can be acquired. 

RESULTS AND DISCUSSION 
In this section, a tie-bolt fastened rotor was modeled and 

analyzed. The sketch of the tie-bolt fastened rotor model is 
shown in Fig.8. 

 
Fig. 8 The tie-bolt fastened rotor model 

There are seventeen small discs, three big discs and two 
ends, and all of them are tightened by eight rods 
circumferentially. The discs are the ones in Rao’s work [2], so 
the statistical parameters of the contact surfaces of discs are 
adopted in this paper. The statistical parameters in Rao’s work 
are listed in Table 1. 

Table 1  The statistical parameters in Rao’s work 
  2.01 m  

R  95 m  

 25.625 7  1E m  

First of all, the contact between discs is modeled and 
analyzed. As the integration in the formulation of contact area 
and contact load cannot be solved analytically, the numerical 
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method is applied. In the assembling process of tie-bolt 
fastened rotor, the tighten force between discs is assigned at 
first. Therefore, in the simulation of the contact, the total 
tighten force between rough surfaces is provided, while the 
separation and the real contact area can be obtained by the 
models of the rough surfaces contact. The results of the analysis 
of the rough surfaces contact are plotted in the following 
figures. 

The dimensionless separation between the reference 
planes of the two contacting rough surfaces under various 
tighten forces is plotted in Fig.9 and Fig.10. The separation of 
the elastic contact is larger than the elastic-plastic contact under 
the same tighten force, the discrepancy of the separation 
increases with the increment of the tighten force. The difference 
of the separation between elastic contact and elastic-plastic 
contact results from that the plastic deformation makes the 
asperity softer than the elastic situation. From Fig.9, it can be 
found that when the contact load decreases to zero, the 
separations of elastic contact and elastic-plastic contact all tend 
to be infinite. It results from the theory of statistical contact 
model. As the zero contact load relates to no asperity on the 
rough surfaces interact with the rigid plane, only the asperity 
with infinite height has zero probability to interact with the 
rigid plane, and this relates to the infinite separation. 

 
Fig. 9 the separation between rough surfaces  

under low load 

 
Fig. 10 The separation between rough surfaces 

under high load 

The contact stiffness on unit area of nominal contact 
surface and the equivalent bending stiffness between discs can 
be obtained. As shown in Fig.11, the normal contact stiffness 
between discs of the elastic model is larger than the elastic-
plastic contact model, and the discrepancy of the two models 
increases with the increment of the tighten force. The 
equivalent bending stiffness has the same trend as the normal 
contact stiffness, as shown in Fig.12. It is due to the equivalent 
bending stiffness is linear with normal contact stiffness. This is 
reasonable as under small tighten forces, the plastic 
deformation plays little part in the whole deformation, and the 
differences of the two models are small. However, under large 
tighten forces, the plastic deformation increases and becomes 
dominant in the total deformation, the stiffness of the elastic-
plastic model becomes much smaller than the elastic model. 

 
Fig. 11 The normal contact stiffness on unit nominal contact 

surface 

 
Fig. 12 The equivalent bending stiffness 

With the equivalent bending stiffness between the contacts 
of discs, the tie-bolt fastened rotor is modeled by the method 
introduced above, and the critical speeds of the tie-bolt fastened 
rotor are obtained. As the equivalent bending stiffness varied 
with the tighten force, the critical speeds can be obtained under 
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a series of tighten forces. The first three orders of critical 
speeds for the tie-bolt fastened rotor model are plotted in the 
following figures. The results of elastic contact and the elastic-
plastic are all plotted in a figure. In order to illustrate the 
difference between the tie-bolt fastened rotor and the 
continuous rotor, the critical speeds of a continuous rotor with 
the same size of the tie-bolt fastened rotor are computed and 
plotted as well.  

 
Fig. 13 The first critical speed under various conditions 
As the critical speeds plotted in figs.13-15, the first three 

orders of the critical speeds has the same variation trend with 
the increase of tighten force. The critical speeds of the tie-bolt 
fastened rotor are much smaller than the continuous rotor, even 
the tighten force is sufficiently large. The critical speeds of the 
tie-bolt fastened rotor increase with the tighten force, while the 
increase becomes more slow with the increment of the tighten 
force. This can be explained by the increase trend of the contact 
stiffness with tighten forces. The critical speeds of tie-bolt 
fastened rotor with elastic contact are larger than the elastic-
plastic contact situation. 

 
Fig. 14 The second critical speed under various conditions 

 
Fig. 15 The third critical speed under various conditions 
The discrepancy of the critical speeds with the two contact 

stiffness is negligible at small tighten forces, while it increases 
to be constant with the growth of the tighten force. The current 
discrepancy of critical speeds is due to the trend of the stiffness  
the two models with the incerase of total tighten force. As the 
elastic-plastic contact model considered the plastic deformation 
of the asperities on the contacting rough surfaces, it is of 
greater fidelity in describing the contact effects between discs , 
and a more accurate model in predicting the critical speeds of 
tie-bolt fastened rotor should be considered. 

CONCLUSIONS 
The elastic-plastic contact of tie-bolt fastened rotor discs 

were modeled based on the elastic-plastic single asperity 
deformation model, and the stiffness of elastic-plastic contact 
was obtained. The tie-bolt fastened rotor was modeled with the 
elastic-plastic contact stiffness, and the critical speeds were 
computed. The comparison of the elastic contact and the 
elastic-plastic contact between discs were carried out.  

Results shows that, as the consideration of the asperity 
plastic deformation on rough surfaces, the elastic-plastic model 
has greater fidelity in describing the contact behavior of rough 
surfaces to elastic model, and the critical speeds of tie-bolt 
fastened rotor predicted by elastic-plastic contact should be 
more precise than the elastic contact results. 
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