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ABSTRACT 
Misalignment is one of the most common sources of 

trouble of rotating machinery having couplings between the 

shafts. Ideal alignment is a chimera and the coupling flanges of 

the shafts are never ideally aligned, presenting angular and/or 

parallel misalignment (defined also as radial misalignment or 

offset). In particular, during the shaft rotation, if coupling 

misalignment between the shafts of a statically aligned line is 

excessive, a periodical change, of the load on the bearings in 

hyperstatic shaft-lines, occurs. If the rotating machine is 

equipped with oil-film bearings, the change of the loads on the 

bearings causes also the variation of their oil-film dynamic 

characteristics, i.e. damping and stiffness, and the complete 

system cannot be considered as linear. 

In the paper, this phenomenon is modelled accurately and 

analyzed by considering the simulated response of a misaligned 

rotor train in the time domain. A finite element model is used 

for the hyperstatic rotor, while bearing characteristics are 

calculated by integrating Reynolds equation (considering the 

actual type and dimensions of the bearings) as a function of the 

instantaneous load acting on the bearings, caused by the 

coupling misalignment. Nonlinear effects are highlighted and 

the spectral components of system response are analyzed, in 

order to give pertinent diagnostic information. 

 

INTRODUCTION 
Rotor misalignment is considered as the second most 

common malfunction after unbalance, as observed by 

Muszyńska [1], which remarked also that this interesting topic 

has not been object of much attention by researchers.  

The authors share this position and want to contribute by 

presenting a paper aimed at explaining the reason of the 

presence of super-harmonic components, i.e. of nonlinear 

behaviour, in rotor vibration spectrum as a consequence of rigid 

coupling misalignment, owing to wrong assembly or of 

imperfect flange machining, of a hyperstatic shaft-line 

equipped with journal bearings. 

Various kinds of rotor misalignment are analyzed in 

literature. Some papers consider the misalignment of the 

journal with respect to the bearing, without dealing with the 

complete dynamics of the shaft-line; an example is given by 

Bou-Saïd and Nicolas [2]. The causes of the misalignment in 

rotating machinery are discussed by Bently [3], which also 

mentions the additional loading on the bearings, but does not 

present any mathematical model on the matter. Xu and 

Marangoni [4-5] studied the misalignment of a flexible 

coupling, highlighting the similarities with universal joint 

operation and the presence of 2X component in the vibration 

spectrum. In that study, the shaft-line was supported by ball 

bearings and the cause of the 2X component was ascribed to the 

presence of the variable stiffness of the flexible coupling as a 

consequence of the misalignment. Often papers in literature 

report that misalignment causes 2X components, but they 

neither consider the type of joint nor the type of the bearings. 

Also Sekhar and Prabhu [6] considered flexible coupling, used 

Gibbons’ theoretical model [7] and performed some simulations 

in which 2X components were evident. Lee and Lee [8] used a 

test rig, equipped by ball bearings and flexible coupling, to 

verify the results of their theoretical model and observed the 

results on the orbit shape. Hu et al. [9] designed a test rig with 

flexible rotors equipped by three or more journal bearings 

suitable to study the misalignment. However, in this case, the 

focus is on “lateral misalignment” of the supports, rather than 

on coupling misalignment. Al-Hussain and Redmond [10] 

presented a theoretical model of two coupled Jeffcott rotors 

supported on rigid bearings. Radial misalignment was 

simulated and only 1X component resulted in the lateral 

vibration steady-state spectra. They observed also excitation of 

torsional vibrations. Al-Hussain proposed a further model about 

angular misalignment [11] affecting the flexible joint 
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connecting two Jeffcott rotors installed on journal bearings. In 

this case only stability conditions were analyzed. 

Lees [12] observed that the term “misalignment” is used to 

label several situations corresponding to different physical 

processes and the authors agree also with this point of view. He 

focused his interest on rigid couplings, introducing a simple 

model that considers orientation and different tightening of the 

coupling bolts and neglects the presence of journal bearings. 

Nonlinear system response resulted as a consequence of 

coupling between torsional and lateral vibrations. Tsai and 

Huang [13] used a transfer matrix to model radial misalignment 

and found results similar to [10], even if they gave different 

motivations to the presence of 1X component only. More 

recently, Balahoo et al. [14] studied speed transients of a 

misaligned rotor with a simplified model. On the contrary, the 

model presented hereafter by the authors is suitable to study the 

behaviour of real rotating machinery, considering all the 

possible features. 

From the analysis of the current literature it results that a 

complete analysis of the dynamic effect of rigid coupling 

misalignment on a real shaft line, i.e. a hyperstatic rotor with 

several bearings and couplings, is lacking. In this paper, the 

authors propose a complete and original method to simulate the 

behaviour of real shaft line, supported by several oil-film 

bearings, with rigid coupling misalignment. Nonlinear effects 

are highlighted and the spectral components of system response 

are analyzed, in order to give pertinent diagnostic information. 

MODEL OF COUPLING MISALIGNMENT 
Let’s consider a hyperstatic shaft-line, like that represented 

in Fig. 1, which is composed by three different rotors, 

connected by two rigid couplings. In particular, the first rotor is 

the HP-IP (high pressure – intermediate pressure) turbine, the 

second is the LP (low pressure) turbine and the last one is the 

generator. The model proposed is anyway applicable for other 

types of machines, with different number of couplings or rotor 

bearings. 

 

Fig. 1. Hyperstatic shaft-line. 
 

The shaft-line is modelled in a standard way by means of a 

finite beam model and rigid disks, considering only the lateral 

vibrations, and 4 degrees of freedom (d.o.f.s) - two translational 

and two rotational - are considered per each node (see Fig. 2). 

On the contrary, axial and torsional vibrations will be 

neglected. Considering the general j
th

 element of the shaft-line, 

the generalized displacement vector 
( )r

jx  of the j
th

 rotor node is 

ordered as follows: 

 
T

( ) ( ) ( ) ( ) ( )

j j

r r r r r

j j x j yx y x  (1) 

Two subsequent nodes, the j
th

 and the j+1
th

, define the j
th

 

element of the machine. Index j is the main index used to order 

shaft nodes and elements. If the shaft has rn  nodes, thus 1rn   

elements, the vector ( )r
x  of the generalized displacements of 

all the rotor nodes is composed by all the ordered vectors 
( )r

jx , 

as shown in Eq. (2): 

 
1 1

T
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 r n r nr r

r r r r r r r r r

x y n x n yx y x y   x  (2) 

The mass matrix of the coupled rotors 
( )[ ]r

M , which takes 

also into account the secondary effect of the rotatory inertia, the 

internal damping matrix 
( )[ ]r

C , the stiffness matrix 
( )[ ]r

K , 

which takes also into account the shear effect, and the 

gyroscopic matrix 
( )[ ]r

G , all of order (4 4 )r rn n , can be 

defined by means of standard Lagrange’s methods, considering 

beam elements and rigid disks, as shown e.g. in [15-16]. 

Damping and gyroscopic matrices will be used in the following 

for the dynamic simulations. 

 

Fig. 2. General rotor element. 
 

The shaft-line is supported on bn  oil-film bearings. They 

are located in correspondence of some nodes of the shaft, which 

are labelled by the indexes belonging to the set: 

 Brg.#1 Brg.# bc nI j j  (3) 

Shaft nodes whose indexes belong to cI  are defined as 

constrained nodes and indicated as 
( )r

cx , while the remaining 

nodes are the free nodes 
( )r

fx : 

( ) ( ) ( ) ( );
c c

r r r r

c j I f j I  x x x x  (4) 

During the machine installation, the shaft-line is statically 

aligned, using several methods like those described in [17], in 

order to have null static bending moments on the rigid coupling 

flanges. This is realized by displacing the supports in vertical 

directions, so that elements of 
( )r

cx  are generally not all null. 

The static centreline is a catenary. If rigid couplings were also 

ideally aligned, without any radial or angular misalignment on 

their flanges, the static reaction forces on the bearings could be 

calculated, in order to determine the oil-film dynamic 

characteristics. 

Otherwise, like described in this paper, it is necessary to 

take into account the effect of rigid coupling misalignment on 

the static centreline and, as a consequence, on the reactions of 

the bearing, considering that these reactions are changing due 
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to the rotation of the shaft, i.e. to the orientation of the 

misalignment with respect to the phase reference. 

Effect of rigid coupling misalignment on the shaft-line 
Let’s consider Fig. 3 in which a close up of a rigid coupling 

of the machine is shown. For the sake of simplicity, only a 

coupling is considered, being the model presented easily 

generalizable to Cn  couplings. In the general case, the coupling 

faces are connected in correspondence of the jC
th

 node and both 

radial and angular misalignment may occur as a consequence of 

wrong mounting or imperfect machining. However, not only 

the magnitudes of these misalignments have to be considered, 

but also the relative phase with respect to the phase reference 

and the fact that the shaft is rotating with rotational speed . 

Thus both types of misalignments are conveniently represented 

by means of vectors, using for simplicity a complex notation 

[18]: 

i i

i i

angular misalignment: e e

radial misalignment: e er

t

tr





 






 (5) 

 

Fig. 3. Scheme of the coupling misalignment. 
 

Therefore, the effect of the rigid coupling misalignment is 

to impose generalized displacements ( )j x , which are 

function of the angular position t    of the shaft, on the 

d.o.f.s corresponding to the jC
th

 coupling node. Vector ( )x  

has the same size of ( )r
x , because the d.o.f.s not corresponding 

to coupling nodes are set equal to 0.  

Calculation of the static reactions on the bearings 
The static reactions ( )R  on the bearings can be calculated 

by imposing the static equilibrium of the free-body shaft-line 

and considering the imposed shaft alignment conditions, that is: 

 ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

r r

r r r

r r

C

 

 

 

       

          

     

K x x W R

K x K x W R

K x F W R

 (6) 

where W is the weight force vector that can be calculated as: 

 
T( ) 0 0 0 0 0 0r g g    W M  (7) 

and ( )C F  is the equivalent force due to the coupling 

misalignment. The only elements of vector ( )C F  that are 

different from zero are those corresponding to the d.o.f.s of jC
th

 

node and can be calculated by considering the stiffness sub-

matrix corresponding to the jC
th

 node: 

i

( ) i

i

1 0

0 i e
e

i 0 e

0 1

r

C
C

r

C j j j j

r






 

 
 

          
 
 

F K  (8) 

After these considerations, Eq. (6) can be re-written by 

reordering the d.o.f.s of the nodes and grouping the free and the 

constrained ones: 

( ) ( ) ( )

( ) ( ) ( )

( )

( )

f

r r r
Cfff fc f

r r r
ccf cc c





           
           

           

FWK K 0x

WK K Rx 0
 (9) 

since, obviously, ( )
cC  F 0 . 

The static free displacements as function of the angular 

position   of the shaft are obtained as: 

 
1

( ) ( ) ( ) ( )( ) ( )
f

r r r r

f ff fc c f C 


         x K K x W F  (10) 

and the reactions on the bearings as: 

( ) ( ) ( ) ( )( ) r r r r

cf f cc c c         R K x K x W  (11) 

Notice that, as a consequence of the presence of the 

coupling misalignment, the reactions of Eq. (11) have generally 

both the vertical and the horizontal components and that they 

are 1X periodical. 

Calculation of the oil-film dynamic characteristics 
It is commonly agreed that the static reactions on the 

bearings are used as the input loads to calculate the oil-film 

dynamic characteristics, being that static reactions are largely 

predominant on the dynamical ones, due for instance to 

unbalances. However, in the case considered in the paper, as a 

consequence of the presence of the coupling misalignment, the 

loads are not constant and depend on the angular position   of 

the shaft, see Eq. (11). Hence, also the dynamic characteristics 

of the oil-film in the bearings have to be calculated as a 

function of  . For the sake of simplicity, only constant 

rotational speeds will be taken into account. 

Therefore, starting from the actual type and geometry of 

each one of the bn  bearings, Reynolds equation in the 

isoviscous form [19-20] is used: 

3 3

6 12
h p h p h

U W
      

       
     

       
 (12) 

where   is the coordinate in the sliding direction,   that in the 

axial direction,   the dynamic viscosity, h  the film thickness, 

p  the pressure, U  the entraining velocity and W  the squeeze 

velocity. Equation (12) is then expressed in non-dimensional 

form. Effect of small displacements and squeeze velocities are 

also introduced. 

node -1 j 

node j

r



node 1 j +
C

C

node j
C

C

node -1 j 

node 1 j +

C

node j
C

C
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The integration of Reynolds equation is performed by 

using finite difference and the journal static equilibrium 

position is found that is balancing the reactions ( )R  in an 

iterative way. Dynamic fluid film forces ( )b F
 

are then 

calculated by using the method of the perturbation of 

equilibrium position. 

SIMULATION OF SHAFT-LINE DYNAMICAL 
BEHAVIOUR 

In order to perform the simulation of the dynamical 

behaviour of the shaft-line at the operating speed, a dynamical 

model should be set-up. The matrices of the coupled rotors 

have been already introduced and now the effects owing to the 

foundation dynamics and to the oil-film forces are accounted 

for. 

Different methods can be used to model the foundation. 

For the sake of brevity, only pedestals, i.e. lumped 2 d.o.f.s 

systems, will be considered. A discussion about other methods 

(modal or rigid) is reported in [21]. In a similar manner to the 

rotor, also the d.o.f.s of the foundation, horizontal and vertical 

displacements, which are connected by the bn  bearings to the 

rotor, can be ordered in a vector: 

 
T

( ) ( ) ( ) ( ) ( )

1 1 b b

f f f f f

n nx y x yx  (13) 

The complete vector of the generalized displacements of 

the system is therefore: 

 
T

( ) ( )r fx x x  (14) 

The structure of 
( )[ ]f

M , 
( )[ ]f

C  and 
( )[ ]f

K  is not relevant 

in this paper and depends on how the supporting structure is 

implemented, see [21].  

The remaining external forcing systems acting on the rotor 

are the weight W  and the residual unavoidable unbalance 

distribution, which will be taken into account by the equivalent 

unbalance in the ju
th

 node:  

 
T i2 i( ) 0 1 0 0 0 e eu t

u u ut i m r
  F  (15) 

By considering all the external forcing and Eq. (6), the 

fully assembled system of equations is nonlinear, because many 

terms of it depends on the angular position t   : 

      [ ]

( ) ( ) ( )C u bt 

   

    

M x C G x K x

F W F F
 (16) 

where the over-bars indicate that the corresponding vectors are 

padded with zeros on the foundation d.o.f.s, and the matrices 

are those of the fully assembled system. 

The nonlinear system of equations in Eq. (16) is integrated 

in the time domain using the Newmark’s implicit method, in 

which all the quantities depending on   are evaluated for each 

integration step.  

Simulation results 
The model of the machine, used to show the results 

obtained with the described method, is relative to a steam 

turbo-generator unit of about 320 MVA, already sketched in 

Fig. 1. Node number is equal to 175 and bearing #1, #2 and #7 

are of tilting pad type, while the others of 2-lobes type.  

The system response is calculated at the operating speed of 

3000 rpm, considering also the presence of an unbalance on 

about the mid of the LP turbine (0.3 kgm with phase 0°). 

Different combinations of radial and angular misalignment 

conditions of the rigid coupling between HP-IP and LP turbines 

have been analysed. An example is shown in Figs. 4-7, where 

only the shaft orbits, in nodes corresponding to the vibration 

measuring planes close to the bearings #1-#4 of the actual 

machine, are shown. In this case, radial misalignment of 

100 m @ 90° and angular misalignment of 15 mrad @ 0° 

have been applied.  

 

  

Fig. 4. Rotor orbit close to Brg. #1, Rad. Mis. 

100 m @ 90°, Ang. Mis. 15 mrad @ 0°. 
 

  

Fig. 5. Rotor orbit close to Brg. #2, Rad. Mis. 

100 m @ 90°, Ang. Mis. 15 mrad @ 0°. 
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Fig. 6. Rotor orbit close to Brg. #3, Rad. Mis. 

100 m @ 90°, Ang. Mis. 15 mrad @ 0°. 

  

Fig. 7. Rotor orbit close to Brg. #4, Rad. Mis. 

100 m @ 90°, Ang. Mis. 15 mrad @ 0°. 
 

Orbits in generator bearings are less affected by the 

misalignment and are not shown. Similarly, the orbits in the 

other nodes of the rotor are not displayed both for the sake of 

brevity and because they are never measured in the practice. 

The case considered is already critical and vibration 

amplitudes would be dangerous for the actual rotating machine, 

because the bearing clearance would be exceeded. Orbits, in the 

measuring planes close to bearings #1 - #3, show rather clearly 

the presence of super-harmonics components (owing to the 

deformed shape respect to the elliptical one) and the presence 

of nonlinear effects. These considerations are clearer if 

vibration spectra are considered and Figs. 8-11 show the 

corresponding ones to the orbits close to bearings from #1 to 

#4.  

Even though a logarithmic scale is used for the amplitudes, 

it is easy to observe that at least 2X and 3X components have 

remarkable amplitudes (i.e. measurable, the horizontal dashed 

lines in the figures indicate the amplitude of 1 m) in the HP-IP 

bearings and the LP one close to the rigid coupling. Bearing #4 

is rather “far” from the rigid coupling and does not “feel” so 

much the effect of the misalignment: higher harmonic 

components are much smaller than the 1X component. 

 

Fig. 8. Vibration spectrum, Brg. #1, 100 m @ 90°, 
Ang. Mis. 15 mrad @ 0°. 

 

Fig. 9. Vibration spectrum, Brg. #2, 100 m @ 90°, 
Ang. Mis. 15 mrad @ 0°. 

 

Fig. 10. Vibration spectrum, Brg. #3, 100 m @ 90°, 
Ang. Mis. 15 mrad @ 0°. 
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Fig. 11. Vibration spectrum, Brg. #4, 100 m @ 90°, 
Ang. Mis. 15 mrad @ 0°. 

 

Effect of radial misalignment 
As it has been shown in the previous section, the model is 

able to consider simultaneously both radial and angular 

misalignment, with arbitrary combination of amplitudes and 

phases, and to explain the arising of nonlinear effects. Anyhow, 

because of the infinite possible combinations of radial and 

angular misalignment, a comprehensive analysis is rather 

awkward. Thus, the effects of radial and angular misalignment 

are analysed separately, starting from the former one. 

In order to have the evaluation of the “degree” of 

nonlinearity, the ratios between the super-harmonic component 

amplitudes and the synchronous one are considered.  

Figures 12-14 show respectively 2X/1X, 3X/1X and 

4X/1X ratios for increasing magnitudes of radial misalignment 

from 50 to 210 m with phase of 0°, i.e. in phase with the 

unbalance, for the vibration measuring planes close to bearings 

from #1 to #4.  

 

Fig. 12. Increasing magnitudes of radial misalignment 
@ 0°: 2X to 1X ratio. 

 

Fig. 13. Increasing magnitudes of radial misalignment 
@ 0°: 3X to 1X ratio. 

 

 

Fig. 14. Increasing magnitudes of radial misalignment 
@ 0°: 4X to 1X ratio. 

 

 

With the exception of the 2X/1X ratio for vertical vibration 

in bearing #1, the ratios have more than linear increasing trends 

as a function of radial misalignment magnitude. The 

contributions of 4X components become significant only for 

high radial misalignment magnitude. 2X horizontal component 

becomes almost equal to 1X one when the misalignment is 

210 m. 

For the considered machine model, if the radial 

misalignment is considered in quadrature to the unbalance, the 

increasing of the ratios becomes quicker than in the case of 0° 

phase, as shown in Fig. 15for the 2X/1X ratio. In this case, 2X 

amplitude is about equal to 1X amplitude in horizontal and 

about one and half in vertical, when the misalignment is 

100 m. Similar results, in terms of quicker increasing when 
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the misalignment phase is 90°, are obtained for 3X/1X and 

4X/1X, but are not shown for the sake of brevity. 

 

 

Fig. 15. Increasing magnitudes of radial misalignment 
@ 90°: 2X to 1X ratio. 

Effect of angular misalignment 
The effect of increasing magnitude of angular 

misalignment from 5 to 35 mrad with phase of 0° is shown in 

Figs. 16-18. Also in this case, nonlinear effects are evident. 

Even if the direct vibrations, corresponding to the maximum 

value of the angular misalignment considered, are comparable 

to those of the maximum values of radial misalignment, the 

ratio of the super-harmonics components to 1X component are 

much greater.  

 

 

Fig. 16. Increasing magnitudes of angular 
misalignment @ 0°: 2X to 1X ratio. 

 

Fig. 17. Increasing magnitudes of angular 
misalignment @ 0°: 3X to 1X ratio. 

 

 

Fig. 18. Increasing magnitudes of angular 
misalignment @ 0°: 4X to 1X ratio. 

CONCLUSIONS 
Several studies in literature deal with rotor misalignment, 

but it looks like that this term is used to indicate different 

physical processes. In the paper, the authors have dealt with 

rigid coupling misalignment of a hyperstatic shaft-line 

equipped with journal bearings. A general model, which is able 

to consider every kind of rotating machines, has been presented 

in detail and used to perform some simulations. It has resulted 

that rigid coupling misalignments, in both radial and angular, 

and these combined, have generated nonlinear effects and the 

lateral vibration have resulted affected by super-harmonic 

components. 
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