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ABSTRACT 
This study is focused on the dynamic characteristics of a 

vertical turbomolecular pump (TMP) rotor-bearing system. The 

research methods can be divided into two parts, which are 

numerical analysis and experimental measurements. In 

numerical analysis, we use the finite element analysis software 

DyRoBeS and ANSYS to construct a two- and three-

dimensional models of the rotor-bearing system. In the analysis 

process, by using the pump system assembly testing data, we 

can verify the rotor-bearing system finite element models under 

different boundary conditions. Next, we calculate the Campbell 

diagram to study the dynamic characteristics of the rotor-

bearing system, and to compare with the experimental results to 

verify the models. Finally, we found the relationship between 

the rotor critical speed and the bearing stiffness in order to 

study the design of the molecular pump rotor and the bearing 

system. Experimental measurements were divided into two 

parts: static modal tests and dynamic measurements. Static 

modal tests can provide the natural frequencies of the rotor-

bearing system. Waterfall diagrams of the dynamic tests can 

measure the pump system critical speed from zero speed up to 

the working speed crossing, and to insure that the pump 

working speed is far from the critical speed of at least 10% in 

the safe margin. In summary, the results of the experimental 

measurements and numerical analysis can provide the basis for 

the design tool for turbomolecular pump rotor-bearing system in 

order to identify and prevent pump vibrations. 

Keywords: turbo molecular pump, rotor-bearing, mode shape, 

vibration characteristics, critical speed 

 

NOMENCLATURE 
DyRoBeS Dynamics Rotor Bearing System 

FEM Finite element methods 

FFT Fast Fourier Transform 

H(f) Frequency Response Function  

TMP Turbomolecular Pump 

x1 , y1 represent node 1’s displacements, and ,  

x2 , y2 represent node 2’s displacements 

Greek Symbols 

}{  
The amplitude displacement vector or 

eigenvector and 

θx1 , θx2 represent node 1’s displacements 

θx2 , θy2   represent node 2’s displacements 

j  The natural frequency or eigenvalue 

 

INTRODUCTION 
Finite element methods (FEM) have been used in 

rotordynamic analyses since 1970. In the early days, only the 

bending vibrations under rotor linear displacement conditions 

were considered. Later on, rotor models were improved to 

include rotation inertia, gyroscopic moments, axial loads, 

internal and external damping, and shear deformations. Hibner 

[1] used a unique transfer matrix method applied to an idealized 

equivalent engine system for predicting vibratory responses that 

accounted for nonlinear viscous damping effects. Glasgow and 

Nelson [2] applied a common mode synthesis method and 

showed that a significant reduction in the scope of the problem 

is achieved when analyzing the stability of a dual rotor system. 

Li and Hamilton [3] applied a simplified transfer matrix method 

with squeeze film dampers on two-spool rotor systems. Huang 

[4] developed a transfer matrix impedance coupling method to 

predict frequency responses of multiple rotor systems. Zeng and 

Hu [5] used a gyroscopic mode synthesis technique for 

multishaft rotor-bearing-casing systems. Gupta et al. [6] used a 

modified transfer matrix method to study the energy 

distributions in a multispool rotor system. However, due to 

assumptions of the transfer matrix method [7], it sometimes 

resulted in numerical instability problems or in missing-root 

problems [8].  

In this article, the presented analyses are based on the 

methods used by Nelson [9, 10] and Lalanne [11]. The finite 

element rotor-bearing system models were established using 

inertial coordinate systems. The models were used to predict 

natural frequencies, mode shapes, critical speed maps, and 

bearing stiffness. Figure 1 shows the TMP analysis system 

development flow chart. Based on the Lagrangian formulation, 

this general model of continuous rotor-bearing systems was 
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established and the gyroscopic moments, rotary inertias, 

bending, and shear deformations are included. The rotor-

bearing analysis system was then applied to the turbomolecular 

pump system applications and can provide industry with design 

guidelines for future TMP developments. 
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Figure 1. Molecular Pump Rotor-Bearing System Analysis Flow 

Chart 

 

ROTOR-BEARING SYSTEM MODEL 
Figure 2 shows a typical turbomolecular pump as will be 

analyzed in this study. A flexible rotor-bearing system model 

will be used to model the TMP and will consist of discrete disks, 

rotor segments with distributed masses and elastic 

characteristics, and discrete bearings.  

 
Figure 2. Parts of a Molecular Pump Dimension 

A. Element Divisions and Structural Nodal Displacements 
The rotor system can be divided into rigid disks, rotor 

segments, and linear bearing supports as shown in Figure 3. 

Also shown are nodal displacements in an inertial coordinate 

system, where 

{q}={x1 , y1 ,θx1 ,θx2 , x2 , y2 ,θx2 ,θy2},       (1) 

and where x1 , y1 , θx1 , θx2 represent node 1’s displacements, 

and x2 , y2 , θx2 , θy2  represent node 2’s displacements. 

 

 
Figure 3. Rotor Element 

 

B. Component Equations 
In this section, the beam element was based on Timoshenko 

theory. A rigid disk equation of motion is developed for the 

rotor-bearing system using a Lagrangian formulation. 

 

1. Rigid Disk 
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2. Finite Rotor Elements 
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T   .       (3) 

In Equation (3), ],M[ e
T  ],M[ e

R  ],G[ e  and ]K[ e
B  are 

provided in Appendix A. 

 

3. Linear Bearings 
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4. Rotor-Bearing System 
The assembled system equation of motion, consisting of 

component equations of Equations (2)-(4), is of the form 

}F{}q]{K[}q]){G[]C([}q]{M[ ssss  
,
       (5) 

where {q
s
} =[x1, y1, θx1, θy1, …, xn, yn, θxn, θyn]

T
. 

 

5. Natural Frequency Calculation 
To solve for the principal mode shapes and natural 

frequencies of the system, we can use Equation (5) as 

undamped system equation of motion and without gyroscopic 

moments. 

}F{}q]{K[}q]{M[ sss 
.
       (6) 
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For nontrivial solutions for }{ , we need to satisfy the 

following: 

0])M[]Kdet([ 2
j 

,
       (9) 

where }{  is the amplitude displacement vector or 

eigenvector and j  is the natural frequency or eigenvalue. By 

solving Equation (9), we can have the natural frequency j . 

Then by substituting j into Equation (8), we can solve for 

}{ . For system vibration at j , we have the principal mode 

shape as 
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Each frequency will have its corresponding mode shape. By 

combining all the corresponding frequencies and mode shapes, 

we will have the principal mode shapes for the entire system, 
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6. Rotor System Critical Speed Calculation 
In order to solve for the critical speed of the system, we 

need to solve the following homogeneous Equation (12): 

}0{}q]{K[}q]{C[}q]{M[
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 

.
      (12) 

In other words, it is an eigenvalue problem. In structural 

dynamics, there are many ways to solve a large-scale sparse 

matrix eigenvalue problem. However, it is only good for small 

damping and symmetrical matrices. Since we have included the 

effects of gyroscopic moments, anisotropic bearings, and 

material damping, the damping and stiffness matrices become 

nonsymmetric and dependent on speed. Therefore, we have to 

solve the Equation (12) in a different way. Normally we may 

reduce the second order homogeneous Equation (12) into 2n 

times first order differential equations. Introducing the 2n order 

column vector }x{ , 
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Equation (14) can be simplified as Equation (15), 

}0{}X]{B[}X]{A[ 
.
      (15) 

Now assuming 
te}{}x{ 
 

and 
t

e}{}x{

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.
      (16) 

Substituting Equation (16) into Equation (15), we have 

0}){BA( 
.
      (17) 

Using QR or Lanczos method, we can solve for the 

eigenvalues and eigenvectors for Equation (17). Due to 

Equation (14) containing the damping term C, the eigenvalues 

and eigenvectors are complex numbers. From the eigenvalue λK 

= αK  iωK, we can find out the damped critical speed and the 

onset of speed instability. 

 

RESULTS AND DISCUSSION 

   Static and dynamic testing was performed to investigate the 

TMP rotor-bearing system. Three static tests were performed 

including (1) rotor shaft only static testing, (2) pump rotor static 

testing, and (3) pump assembly static testing. Finally, dynamic 

testing was performed. 

 

Rotor Shaft Only Static Testing (1) 
In this study, a hammer impact experimental method is used. 

A free-free support boundary condition was assumed for the 

modal testing, which implies that the test object is 

unconstrained. In order to satisfy this assumption, the test object 

was suspended using an elastic string to simulate the free 

support condition. An impact hammer was then used with a load 

cell to apply the impact force. An accelerometer on the test 

object recorded the response due to the impact. Both the impact 

force and the response are amplified and input to a Fast Fourier 

Transform (FFT) analyzer to obtain a Frequency Response 

Function (H(f)). Through the use of a routine identification 

procedure, the mode shape related parameters could be 

determined. An experimental setup is shown in Figure 4. 
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Figure 4. Single Input and Output System and Free-Free 

Modal Testing Facility 

 

For the rotor shaft only static test (rotor shaft as shown in 

Figures 8&9), the first two mode frequencies were found as 

following: F1 is 2,191 Hz, and F2 is 9,000 Hz, as shown in 

Figure 5. 
Coherence value closer to 1                                   

F1 F2

F1: 2191 Hz F2: 9000 Hz

Higher data reliability

 
Figure 5. Shaft Frequency Response Function 

 

Pump Rotor Static Testing (2) 
After we assembled the entire rotor including the shaft and 

rotor blades (as shown in Figures 10&11) and performed the 

static test, the first six mode frequencies (1 from rotor shaft and 

5 from rotor blades) were found as shown in Table 1. 

Table 1. Rotor Static Free-Free Modal Testing 

Frequency 
F1 

(Rotor) 

F1 

(Blade) 

F2 

(Blade) 

F3 

(Blade) 

F4 

(Blade) 

F5 

(Blade) 

Hz 1,125 1,599 2,115 2,630 3,375 5,296 

 

Pump Assembly Static Testing (3) 
In order to test the complete pump assembly, we further 

assembled the entire pump including the shaft, the rotor blades, 

the stator vanes, the casing, and all the rest to complete the 

pump module and to perform the static test. As shown in Table 

2, we found two frequencies: F1 is 100 Hz, and F2 is 1,200 Hz. 

Table 2. Rotor Assembly Static Modal Testing 

Frequency F1 F2 

Hz 100 1,200 

 

It was interesting to find the lower 100 Hz frequency, which 

was not present from the previous component static test. We 

concluded this low frequency is from the complete assembly of 

the TMP, as shown in Figure 2. 

 

Dynamic Testing (4) 
Figure 6 shows a molecular pump dynamic testing facility 

established for this study. This facility was composed of the 

turbomolecular pump, a test stand, instrumentation, and a PC 

based data acquisition system. An accelerometer was mounted 

on the pump to measure the critical speeds. 

 
Figure 6. Molecular Pump Dynamic Testing Facility 

 

Figure 7 shows the order tracking plot results from the 

engine dynamic testing. The 1
st
 order and the 2

nd
 order critical 

speed were 117Hz and 492Hz as obtained from the test results 

shown in Figure 7. Comparing the later calculated critical speed 

map results (Figure 13) with the results from dynamic testing, 

both the front and the rear bearing stiffness can be roughly 

estimated to be 5.0×10
5
 N/m. 

 
Figure 7. Molecular Pump Dynamic Testing Waterfall 

 

FINITE ELEMENT MODEL RESULTS  
Using equation (5), the first six (6) mode frequencies and 

mode shapes were solved using two analyses, DyRoBeS and 

ANSYS, producing the results shown in Figures 8-11. 

DyRoBeS is considered a 2D analysis tool for rotor dynamics, 

while the ANSYS code is a full 3D simulation model. For the 

rotor shaft only static test (1), Figures 8 and 9 show the first and 

the second mode shapes predicted by both DyRoBeS and 
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ANSYS. Table 3 has demonstrated that both DyRoBeS and 

ANSYS agree well with the test data (within 2% error). 

Table 3. Shaft Static Free-Free Modal Testing and Simulation 

Item  F1(Hz) F2(Hz) 

Testing 2,191 9,000 

DyRoBeS 2,210 9,149 

Error 1.0% 1.6% 

ANSYS 2,160 9,013 

Error 1.5 % 0.1% 

 

 
Figure 8. Shaft in the 1

st
 Mode Shape (Free-Free Simulation) 

 

 
Figure 9. Shaft in the 2

nd
 Mode Shape (Free-Free Simulation) 

 

Table 4 was for the pump rotor static test (2) comparison. 

Figure 10 shows the first mode shape predicted by both 

DyRoBeS and ANSYS. As DyRoBeS model shows, the first 

mode frequency is from the shaft first bending mode. The 

ANSYS model showed similar results for the rotor shaft first 

mode. Table 4 shows both code predictions agree well with the 

data. In addition, Table 5 ANSYS results are showing the 2
nd

-6
th

 

mode frequencies are from the first bending mode of the 1
st
-5

th
 

stage rotor blades with good agreements with the data. This is 

beyond DyRoBeS code can predict since these are blade modes. 

Table 4. Rotor Static Free-Free Modal Testing and Simulation 

Item  F1(Hz) 

Testing 1,125 

DyRoBeS 1,165 

Error 3.4% 

ANSYS 1,087 

Error 3.4% 

 

Table 5. Blade Static Modal Testing and Simulation 

Item  L1 L2 L3 L4 L5 

Testing 1,599 2,115 2,630 3,375 5,296 

ANSYS 1,532 2,068 2,670 3,354 5,035 

Error 4.2% 2.2% 1.5% 0.6% 5.0% 
DyRoBeS ANSYS

1165 HZ                            1087HZ

 

Figure 10. Rotor in the 1
st
 Mode Shape (Free-Free Simulation) 

 

For the pump assembly static test (3), Figure 11 has 

predicted the first 3 mode shapes for the assembled pump static 

test by both DyRoBeS and ANSYS. Table 6 shows the 

comparison with the data. As shown, the first and third mode 

frequencies from both codes agree well with the data, except 

that the second mode frequency was not found from the test 

data. However, later during the dynamic test (4), we were able 

to confirm the existence of the second mode. 

 

Table 6. Rotor Assembly Modal Testing and Simulation 

Item  F1 F2 F3 

Testing 100 N/A 1,200 

DyRoBeS 96 381 1,222 

Error 4.0% N/A 1.8% 

ANSYS 102 435 1,160 

Error 2.0% N/A 3.3% 

 

96 Hz

381 Hz

1222 Hz

DyRoBeS ANSYS

102 Hz

435 Hz

1160 Hz

1st Mode

2nd Mode

3rd Mode

 
Figure 11. Rotor Assembly in the 1

st
, 2

nd
, and 3

rd
 Mode Shape 

 

For the dynamic test (4), only ANSYS was used for the 

predictions since DyRoBeS neglects the centrifugal effects. 

Table 7 shows very good agreement between the data and the 

analysis. Also, the missing 400 Hz frequency from the static test 

was verified from both the data and the analysis. 

 

 

Table 7. Rotor Critical Speed Testing and Simulation 

Item F1 F1 

Testing 117 492 

ANSYS 111 (Forward) 520 (Forward) 

Error 5.1% 5.4% 

 

Figure 12 was created using ANSYS to predict the TMP’s 

Campbell diagram. The Campbell diagram predicted the first 

and second crossings will be at 6,600 rpm and 31,000 rpm, 
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respectively. However, the third crossing will be well above the 

operating point of 51,600 rpm. Therefore, we can conclude that 

the TMP will have enough safety margins for the operating 

point. From the foregoing, it is concluded that the analyses 

correlate reasonably well with all the test data. 

 

Frequency

Rotor Speed (rpm)

Rotor 

Speed

F1

F2

 
Figure 12. Rotor-Bearing System Campbell Diagram 

 

CRITICAL SPEED MAP CALCULATION 
By neglecting the damping term in Equation (5), and 

transferring to rotating coordinate system or rotor symmetry 

condition, we can obtain the critical speed map directly as 

shown in Figure 13. This map is based on the assumptions of 

equal stiffness for both front and rear bearings. Comparing the 

critical speed map results with results from dynamic testing, we 

can roughly estimate both the front and rear bearing stiffness to 

be 5.0×10
5
 N/m. Therefore, the pump operation close to the 

critical speeds should be avoided to prevent bearing damage. If 

the pump rotor support design could be modified to a stiffer 

support (K > 5.0×10
5
 N/m), then a comfortable speed margin 

could be maintained between the operating speed (51,600 rpm) 

and the second order critical speed. Also shown in Figure 13, 

the rotor-bearing system with elastic supports has first and 

second critical speeds that increase as the stiffness increase, 

while the third order critical speed is almost constant. However, 

with a rigid support condition, the first two critical speeds 

remain almost constant as the stiffness is increased, while the 

third critical speed increases with the increase in the stiffness 

due to gyroscopic effects. 

The first three critical speed mode shapes were also shown 

in Figure 11. The second order critical speed mode shape seems 

most likely to cause the frequent damages of the pump bearing 

near the bottom end.  

 

Speed (rpm)

Bearing Stiffness (N/m)

51,600

5x105

 
Figure 13. Rotor System Critical Speed Map 

 

CONCLUSIONS 
In this study, we are using a typical small size 

turbomolecular pump as our test study. Two finite element 

model analyses, DyRoBeS and ANSYS, were used to predict 

the natural frequencies and mode shapes, to produce Campbell 

diagrams and critical speed maps, and to estimate the bearing 

stiffness. Both theoretical and experimental analyses were used 

to study the rotor-bearing system. Modal testing and dynamic 

test were used to verify the analytical results, including the 

Campbell diagrams, critical speed maps and the bearing 

stiffness. 

Using 2D DyRoBeS model, very good results can be 

obtained for the rotor shaft frequencies and mode shapes. 

However, the full 3D ANSYS model does provide more 

detailed analysis for the complete rotor blade model as well as 

the dynamic test simulations. Very good agreement was 

demonstrated between the overall analyses and the test data. 

The analysis demonstrated that the rotor operation of 51,600 

rpm is very close to the 2nd critical speed, which may have 

caused the recent pump bearing failures near the pump bottom. 

The analysis can also provide guidelines to avoid the second 

order critical speed mode shape failures. 
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Appendix A: Finite Rotor Element Matrices 

 
 


