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ABSTRACT

In this study, the dynamic analysis of a domestic high
speed rotor bearing system in turbo machines by using global
assumed mode with different polynomial is investigated. This
system consists of rotating multi flexible shaft, rigid disks and
stiffness bearing effects. The analysis includes the whirl
speeds, critical speeds, and mode shapes. The Global Assumed
Modes Method (GAMM) and Finite Element Method (FEM)
are employed to model the rotor-bearing system, and the
accuracy of the results is discussed. With the application of
GAMM, similarity transformation of different types of
polynomials and interval has been investigated. The results
show that using different polynomial function in GAMM have
similar results, and which are also be agreed with the FEM.
The results also show that the number of polynomial can be
increased as the interval of the assumed mode function is
altered. Consequently, the convergence of higher order modes
will be more accurate.

Keywords: rotor bearing system, global assumed modes
method, finite element method, Chebyshev polynomial,
Legendre polynomial

I. INTRODUCTION

Several numerical approximations have been developed to
analyze the dynamic behavior of rotor bearing system. The
Finite Element Method (FEM) was popular in the published
literatures for the analysis of the rotor dynamics. Ruhl and
Booker [1] applied the finite element technique to study the
dynamics of rotor system, but their study only included the
translational inertia and bending stiffness. Many other
important effects such as the rotary inertia, shear deformation
and gyroscopic moments were neglected. Nelson and
McVaugh [2] improved Ruhl’s model [1] with a Rayleigh
beam finite element model. It was included the effects of
rotary inertia, gyroscopic moments, viscously damped
bearings and axial load for a flexible rotor system supported
on elastic supports. Zorzi and Nelson [3] extended the work by
incorporating the effects of both internal viscous and hysteretic
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damping in the same model. Nelson [4] also utilized
Timoshenko beam theory for establishing the shape functions.
Based on the shape functions, he derived the system matrices
of governing equations. The governing equations can be
quickly changed into a Rayleigh beam or Euler beam model if
the shear parameter is zero. Ozqiiven and Ozgkan [5]
presented the combined effects of shear deformations and the
internal damping in their finite element formulation. They
analyzed the natural whirl speeds and unbalance response of
multi-bearing rotors in their study. Many other works which
utilized the finite element technique for rotor dynamic analysis
can be found in [6, 7, 8 and 9]. Those works showed that using
finite elements for the modeling of rotor-bearing systems
sometime makes the formulation be complicated. The
Generalized Polynomial Expansion Method (GPEM), which
was proposed by Shiau and Hwang [10, 11 and 12], is
employed in this paper. The method described the
deformations of rotating shaft with a series of polynomials.
This method can be applied to both linear and nonlinear rotor
systems. Shiau also demonstrated the efficiency and accuracy
by using the GPEM as compared with the FEM in their studies.
Shiau et al. [13] used the Timoshenko beam model to devise
the global assumed mode formulation. In their study, they
called the GPEM as a different name: “Global Assumed Mode
Method” (GAMM). The GAMM was used to analyze the
dynamic behavior of a spinning Timoshenko beam which is
subjected to a moving skew force with different general
boundary conditions.

NOMENCLATURE

A : Cross section area of the shaft

(a,.b,) : Coefficients of polynomial

E : Modulus of elasticity

e Eccentricity distribution of the shaft
& Eccentricity of the i-th disk
[G] : Gyroscopic matrix
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: Unit matrix
. Area moment of inertia of the shaft

. Diametral and polar mass moment
" of inertia distribution of the shaft

Diametral and polar mass moment

. of inertia distribution of the i-th

disk

. System stiffness and shaft stiffness
" matrices

. Direct stiffness matrix for linear
" supports

. Cross coupled stiffness matrix for
" linear supports

. Direct stiffness coefficients of the j-
" th bearing

. Cross coupled stiffness coefficients
" of the j-th bearing

. Total length of the shaft

. Translational and rotational mass
" matrices

. Mass of the i-th disk

- Total number of disk and bearing

- The number of terms of polynomial
. Legendre polynomials

_ Generalized coordinates  vector
" represents coefficient vector a and b
- Vectors of generalized forces

. Similarity transformation matrixes
. Total kinetic energy

Kinetic energy contributed by

: flexible shaft, rigid disk and mass

eccentricity

: Chebyshev polynomials
. Total potential energy

_ Potential energy components by
" flexible shaft and bearing

. Strain energy stored in j-th bearing
" for the n-th natural whirl mode

. Lateral  deflection in (Y,Z)
" directions

- Lateral deflection of the i

. Lateral deflection of the j

- Fixed reference frame

- Rotating reference frame

. Positions of the i-th disk and the j-th
" bearing

- Real part of eigenvalues

- Angle of rotation about (Y,Z) axes
: Whirl ratio (1 = Q/w)
. Mass density per unit volume of the

" shaft
- Generalized polynomial vector

)] - Phase angle
,Q - Whirl speed and rotating speed
@° . The n-th critical speed

I . DYNAMIC ANALYSIS OF LINEAR ROTOR-
BEARING SYSTEM

Figure 1 shows the configuration of simple rotor-bearing
system, which usually consists of rotating flexible shaft, rigid
disks and bearings. Two reference frames are utilized to
describe the system motion. One is a fixed reference frame X-
Y-Z, and the other is a rotating reference x-y-z. The rotating
frame rotates about the X axis with a whirl speed of @ Q

denotes the rotating speed of shaft about the X axis.

Figure 1 The configuration of simple rotor-bearing system.

The deflections of the cross section of shaft include two
translations (¥, W) and two rotations (B, I). By this
assumption, the deflections as functions of positions along the

rotating axis x and time ¢ Which are expressed as:

V=V(xt), W=W(x,t)

ey
B=B(x,t), I'=T(x,1)
The rotations (B, I') are related to the translations (V, W) as
Blx0y=- 0y = V0 @
Ox 0x

With the GAMM [10], the associated deflections can be
expressed as

V(X,t):zpan(l‘)x’kl, W(x,t) :zpbm(t)xm—l (3)

n=l1

The Lagrangian approach is used to derive the equation of
system motion. The kinetic energy 7 and the potential
energy U of the rotating shaft are given by

U=U+U,

4
T=T+T,+T, @

where U, and U, are the potential energy of the shaft and
bearing, respectively. 7. and T, are the kinetic energy of the

shaft and disk, and 7, is the kinetic energy related to the
eccentricity.
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With the Lagrange approach

i{i_(r_y)}_ﬁ(r—u):o 5)

dt| oq, oq,
where g, =ta,.a,,-ay bbby }

107 B

Substituting equation (4) into equation (5), the equation of
motion can be expressed as:

M el ©
PP R R
where a={a,,az,"'%,,}r, b={b,,bz,"'bN,,}T, [M.],[M,],

[G],[Ks] ,[KWJ , [KyZJ , [KWJand [K.]are NpxN, real
symmetric matrices, which are expressed as:

M, (m,n) = J-ol Apx”””*zdx_i_ imld (xld )m+n—2
M (m I’l) (m—l)(n—l){j [ X" 4dx+zl (X )m+n 4}

G(m,n) = (m—l)(n—l){j I,x"" 4dx+2] (e 4}

)
K (m,n) = (m—=1)(m=2)(n=T1)(n - 2)I0 EL Sy
Nh
Koy (mm) = Zkﬁy, @), K (man) = 3K ()
Jj= =
N, .
K (mm) =Y kb, ("2, K (mym) = D KL ()"
=1 Z
R, and R, are the form of
_{Ral’ aZ’“'RaNp} (8)
=Ry, bz""Rpr}
where
1
R, :IO e(x)p(x) A(X) cos(Q +@)x"*dx
N,
+ Zm,d (e‘;i ) cos(Q +(/);i )(xlff)Npq )

i=1
R, = [/ e()p() A sin( + )
Ny
+ Z m;i (6‘;1 )Q2 sin(Qt + (P,d )(x,d )prl

i=1

m . SIMILARITY
NORMALIZE

TRANSFORMATION AND

The other assumed mode functions, which are based on
the GAMM, will be derived and applied in this paper. The
governing equations can be assumed as Legendre polynomials

and Chebyshev polynomials model by using the similarity
transformation matrix.

3.1 Classical Orthogonal Polynomials

In mathematics, an orthogonal polynomial sequence is an
infinite sequence of polynomials for one variable x. The
sequence P, =[R,P,---P] has n degrees and any different

two polynomials in this sequence are orthogonal to each other
by definition the inner product. The simplest classical
orthogonal polynomials are the Legendre polynomials, which
interval of orthogonality is [—1, 1], and the weight function is a
simply one.

[ 2B (xx=0 (10)

Let P,(x) be the Legendre polynomial with » degrees, and
choose P=1 and P;=x. The recursion formula for the Legendre
polynomial is

(n+ DA, (x) = 2n+DxP,(x) - nF,_(x) (11

With equation (11) the sequence Legendre polynomial can be
generated easily. The first six polynomials of the sequence are
shown in Figure 2.

The Chebyshev polynomials are orthogonal with the
inner product

[ 7,7, ()01 -22) " dx =0 (12)
where

I(x) =1, Ti(x)=x, T,,(x)=2xT,(x)=T,,(x) (13)

The first six Chebyshev polynomials are shown in Figure 3

a0
------- e
—— Ty
%
e T
—— Ty

Figure 3 The first six sequence of Chebyshev polynomial.
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Both the Legendre and Chebyshev polynomials are based
on generalized polynomial [I,x,x?,---,x"'] , therefore
equation (11) and (13) can be arranged as the matrix form:

B(x) 1
R(x) (14)
R =[P],. 1
P(x) e
P(x)

and
T (x) 1
T,(x) (15)
=[], 1
T,(x) e
T,(x)

The matrices [P] and [7] represent the similarity
transformation matrix, [P] is the Legendre polynomial
similarity transformation, and [T] is the Chebyshev
polynomial similarity transformation. In this paper, [P] and [T]
are signed as [S]. With the similarity transformation matrix
[S], equation (3) can be rewired as

1
X
V(x,t)= {a] a, ay, }1pr [S]N,,XNP :
Nl
Npxl
e (16)
X
W(x,t)= {b] b, pr }1pr [S]N,,XN,, :
s
Npxl

Substituting equation (16) into equations (6), the system
equation of motion with orthogonal polynomial can be
represented as

[ Bl o[, S
eI CHEO I C HEO S

(17)

5] O} (18)

were [L]:{ 0 [s]

3.2 Normalize of Shaft Length

In the process of applying GAMM, the numerical
instability will occur in the higher order terms when the shaft
length is not equal the distance of end points in [-1,1]. In the
applying of the assumed mode method, normalize of length
means using a different assumed mode function. The
orthogonality intervals of both the Legendre and Chebyshev
polynomial are [—1, 1]. The optimal interval of generalized
polynomials interval is the same as [—1, 1], for the reason that
the interval of assumed mode function is consistent with the
shaft length. Therefore, using shifting function to convert the

interval can prevent numerical instability and improve
convergence. For example, the shifting function is defined as
#(x)=¢(2x—1) . As the shifting function is changed, the
interval is converted from [0,1] to [-1, 1]. Figures (4) and (5)
show the first six sequences of generalized polynomial ¢(x)

and ¢(x) individually.

— 0=l
....... dn)=x
—— g =
Bun)="
——
—— )=

L L L L L L L L L L L
- 08 06 04 D2 [1} 02 04 06 08 1

Figure 4 The first six sequence of generalized polynomial ¢(x)

drin)=t
JE— dfry=ar1
DEF| —v— dm=@n1)
Al Ft=(2x-1)°
e gy=an1)*

[| —— dm=eor1)’

-
2 I I Lo
-1 08 0B 04

Figure 5 The first six sequence of generalized polynomial ¢(x)

IV. NUMERICAL RESULTS AND DISCUSSIONS

Three cases are discussed in this paper. Case 1 studies the
multi-stepped rotor system, which are used to illustrate the
accuracy of the GAMM, FEM, and GAMM based on
Legendre and Chebyshev polynomials. Case 2 studies the dual
rotor-bearing system, and discusses the convergence of the
critical speed with GAMM at different intervals. Case 3
studies the multi-shaft rotor-bearing system, and also discusses
the effects of bearing stiffness and contact stiffness on the
critical speeds.

Case 1:

The Nelson’s rotor system model [2] is applied to
illustrate the accuracy of GAMM, FEM and the GAMMs
based on Legendre and Chebyshev polynomials. Figure 6 and
Table 1 show the configuration of the rotor system and
corresponding data. Table 2 shows the whirl speeds with
Legendre, Chebyshev, GAMM and FEM. The whirl speed
map is shown in Figure 7. In Figure 7, the polynomial
numbers Np for GAMM, Legendre and Chebyshev are selected

4 Copyright © 2011 by ASME



as 23, and the element number for FEM is selected as 18. As our o v o

this figure shown, the GAMM, Legendre and Chebyshev have S 3 ‘Tﬁ—w ----- w | : u o ==t
the same result in whirl speed map, but the result is different 0 }‘ l‘ -
with the FEM. Figure 8 shows the first three eigen-modes with ol J_Mi

forward and backward motions, which indicates that by using o0y - - . : s T 3
the GAMM, Legendre, Chebyshev and FEM can get similar
results in the first two modes. In the third mode, the results are
different slightly. The percentages of difference for whirl

Figures 6 The rotor configuration of Case 1

GAMM

speeds of the first five terms are lower than 5.0%. X FEM
10000 +  Legendre
O  Chebysher
. . 2000
Table 1 Multi-stepped rotor configuration data of Case 1
Density=7806 Kg/m® Elastic modulus=2.078x10"" N/m* B
Polar inertia Diametral 7000
Disk :  Location (cm) Mass (Kg) > inertia .
(Kg.m") 2 o
(Kg.m”) % e
D1 -9.01 1401 0.002 0.00136 £
Bearing © Location (cm) K=K, (107 N/m) Ky,:K,y(IO7 N/m) g 5000
Bl -1.39 3.503 -0.8756 &
B2 10.8 3.503 -0.8756 é 4000
Node location  Element  Bearing & Outer  Inner radius
Node no. . . 000
(cm) length (cm) Disk radius (cm) (cm)
1 179 1.27 0.51 0 o
2 -16.63 3.81 1.02 0
3 -12.82 2.54 0.76 0 1000
4 -10.28 1.27 2.03 0 :
5 _901 127 D1 203 0 UEI - WEI‘EIEI QEIIEIEI C'KEI‘EIEI ADIEIEI EEIIEIEI EEI‘EIEI TEIIEIEI EEI‘EIEI
6 -7.74 0.51 3.3 0 Ratating Speed & (radfsec)
7 -7.23 0.76 33 1.52
8 -6.47 1.27 2.54 L78 Figures 7 The whirl speed map of Case 1.
9 -5.2 0.76 2.54 0
10 -4.44 3.05 1.27 0 x EénTM
11 -1.39 2.54 Bl 127 0 T Legenie
12 1.15 3.81 1.52 0 O Chebyshey
13 4.96 3.81 1.52 0
14 8.77 2.03 1.27 0
15 10.8 1.78 B2 1.27 0
16 12.58 1.02 3.81 0
17 13.6 3.04 2.03 0
18 16.64 1.27 2.03 1.52
19 17.91 - - -

Table 2 The whirl speeds using Legendre, Chebyshev,
GAMM and FEM of Case 2

Rotating whirl speed (w,, rad/sec)
Speed Legendre Chebyshev GAMM FEM
Q, (Np=23) (Np=23) (Np=23) (Ne=18)
rad/sec) F B F B F B F B

1760.2 | 1466.4 | 1759.8| 1466.7 | 1760.0| 1466.5| 1719.8 | 1459.8
2000.0 |5063.9|4177.5|5064.0| 4176.9 | 5064.1|4177.4| 4997.6 | 4140.9
8502.9 | 7127.2 | 8503.0| 7127.5 |8502.7|7127.1| 8019.4 | 6925.3

1788.8 | 1438.3 | 1788.8| 1438.3 | 1788.7|1438.3| 1737.2 | 1441.6
3000.0 |5062.4|4174.1|5062.4| 4174.0 | 5062.5|4174.1| 4999.6 |4136.3
8680.4 | 6994.9 | 8680.4| 6994.9 | 8680.3 | 6994.8| 8061.2 | 6875.7

1822.2 | 1405.8 | 1821.5| 1405.6 | 1822.1|1405.7| 1758.2 | 1419.4
4000.0 |5060.2 | 4169.1 [ 5059.9| 4171.8 | 5060.1|4169.5| 5002.2 |4130.0
8888.2 | 6850.0 | 8887.3 | 6849.6 | 8888.2| 6849.9| 8113.0 | 6813.1

1858.1 | 1370.7 | 1858.9| 1371.1 | 1858.0|1370.7| 1781.5 | 1394.7
5000.0 |5056.6 | 4163.6|5058.8| 4158.2 | 5056.9|4163.5| 5005.5 |4122.0
9115.2 | 6703.0 [9115.9] 6703.6 | 9115.1]6702.9| 8170.8 | 6741.5

1895.4 | 1334.7 | 1895.5| 1334.8 | 1895.2|1334.7| 1806.1 | 1368.5
6000.0 |5052.5|4155.8 5053.1| 4154.6 | 5052.6|4156.1| 5009.3 |4112.4

9355.1]6559.4 (9355.2| 6559.6 | 9355.0|6559.3| 8231.3 | 6664.1 1B
+ The interval of Legendre, Chebyshev and GAMM is [—0.18, 0.18] meter . . .
# Np : number of polynomial; Ne : number of element Figures 8 First three eigenmodes of Case 1 for Q=2000
F : forward; B : backward rad/sec.
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Table 5 Convergence analysis of the critical speed at different
intervals for Case 2

The rotor system with multiple shafts is studied by Rajan Np=8 | Np=10 | Np=12 | Np=14 | Np=15 | Np=16 | Np=18
[9] and Shiau [10]. Figure 9 and Table 3 show the configuration | shaft 1] 1F| 868.18 | 868.04 | 867.94 | 867.91 | 867.91 VA0
and parameters of this dual rotor system. The inner shaft | shaft2| 2F| 161733 | 1616.10 | 1615.68 | 1615.44 | 1615.40 7777777077777/
denotes shaft 1 with rotating speed Q; and the outer shaft (1] | 3F| 231377 ] 2309.19 | 2308.16 | 2307.12 | 2306.96 //,//f/// 2,

Case 2:

X ; . 4F| 4426.28 | 4419.97 | 4404.50 | 4402.18 | 4401.56
denotes shaft 2 with rotating speed €2,=1.5€Q;. Figure 10 shows sFT 58211 5778 011 568129 | 5666.70 | 5651.32 ///’//////’//;//’////,//
the whirl speed map and Table 4 shows the synchronous line 6F| 21252.30] 1762051 17544.67| 17184.01] 17156 280007,
A=1 and A=2/3 of the critical speeds by the FEM and GAMM. Np=24 | Np=26 | Np=27 | Np=28 | Np=29 | Np=30] Np=31

The percentages of difference between the first six terms are [Tpar 1| 1F| 867.75 | 867.74 | 867.74 | 867.74 | 867.74 /i)
lower than 2.0%. Table 5 shows the convergence analysis of the | shaft2| 2F| 1615.09 | 1615.06 | 1615.05 | 1615.06 | 1615.04 | 1615.02] 1615.02
critical speed at different intervals. The two shafts can be | [+0.3][3F| 2306.58 | 2306.57 | 2306.58 | 2306.57 | 2306.57 | 2306.01 22227

assumed with different mode function individually. Therefore, AF| 4389.68 | 4388.33 b7 777774777707, W;///%’f 75
two polynomial functions of different intervals are used in the SFl 560223 | 5596.70 | 5595.16 ,5593'75 ,5593'50 //////W
6F| 16826.35| 16757.42] 16743 5000000000000

g]ual. rotor 1sysftem]. In add;t;sn, tgs shov;n. il Table 5, alldjustlpgl Np=18 | Np=24 | Np=26 | Np=27 | Np=28 | Np=29] Np=30
¢ mterval of polynomial functions and 1mproving polynomial - SSPeSme=0 o === | g67.72 | 867.74 | 867.74 | 867.74 ] 86774

numbers can increase the accuracy. Figure 11 shows the | 1.o3) 5] 161524 | 1615.09 | 1615.06 | 1615.05 | 1615.06 | 1615.04 /000
comparison of forward mode shapes with the GAMM and FEM. | shaft 2| 3F| 2306.68 | 2306.58 | 2306.58 | 2306.57 | 2306.57 | 2306.57| 2306.57

[+,0.2][ 4F| 4393.46 | 4389.83 | 4389.60 | 4386.93 /7 {//////?//////

SF| 5624.90 | 5602.24 | 5596.71 | 5595.11 | 5593.74 | 5593.57

Forward |Backward |Forward |Backward|Forward|Backward|Forward | Backward
867.74 | 660.38 | 824.95 | 687.17 | 853.72 | 664.00 | 815.83 | 689.40

1615.05| 1439.16 |1593.38| 1475.47 [1595.13| 1443.46 |1575.52| 1473.80
2306.58| 2141.21 |2295.78| 2190.63 [2277.51| 2157.16 |2268.06 | 2194.42
4389.70| 2319.18 [3678.92| 2517.63 |3625.49| 2289.58 |3314.87 | 2478.53
5595.16| 2470.52 |4934.04| 2560.14 |5411.93| 2474.66 |4833.47| 2603.81 :
+ The interval of GAMM is [—0.3, 0.3] meter ok’ .

1 Il 1
4 . fool ial: - number of elemen i 500 1000 1500 2000 2500
I Np : number of polynomial; Ne : number of element Rotor 1 Rotating Speed O, (rad/9)

=)
=)
=]

Table 3 The dual rotor configuration data of Case 2. 6F| 16962.66] 1682635 16757.41| 16743 51 7707070000777
Node 1;123;1 Element Bearing & Outer radius :;?;rs [ . numerical unstable
no. length (cm) Disk (cm)
(cm) (cm)
1 0 7.62 Bl 1.524 0 Disk 1 Disk 2
2 7.62 17.78 D1 1.524 0
= 3 25.4 15.24 1.524 0
£ 4 40.64 5.08 Bec 1.524 0
5 4572 5.08 D2 1.524 0 1 2 3 4 6
6 50.8 - B2 - - T . * 2
7 15.24 5.08 B3 2.542 1.905 Disk 3 Disk 4
o 8 20.32 15.24 D3 2.542 1.905 Bl Bc B2
£ 9 35.56 5.08 D4 2.542 1.905 — 8 -t
10 40.64 - B¢ - - 10
Density=8304 Kg/m’ Elastic modulus=2.069x10"" N/m B3
S Location Polar inertia Diametral inertia
Disk : (cm) Mass(Kg) (Kg.m?) (Kg.m?)
DI 7.62 4,904 0.0271 0.0135
gg ‘2‘(5);2 ;gg; 8'8%22 8'82)3; Figures 9 The dual rotor model of Case 2.
D4 35.56 2.277 0.0097 0.0048
— 0
Bearing : Node Kn=Kal10 K=Ky
N/m) ) ) Rotor 2 Rotating Speed &, (rad/s)
B1 1 26.2795 0 - ’15 750 1500 2250 3000 750
B2 6 17.5197 0 N ‘ 7
B3 7 17.5197 0
Bc 4-10 8.7598 0 _—
.. % 2000
Table 4 The critical speeds of Case 2. 3
GAMM (Np=27) FEM (Ne=16) s
®=Q(rad/sec) ®=Q,(rad/sec) ®=Q(rad/sec) =0 (rad/sec) E 1500
=1 =1 | =23 =2/3 | =1 =1 [ 23 =-2/3 &

A00

Figures 10 The whirl speed map of Case 2.
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Table 6 The multi-shaft rotor configuration data of Case 3.

Shaft No. Densityp(Kg/m’®) Elasticity E(N/m’) poisson ratio y
shaft 1 7800 1.960x10" 0.28
shaft 2 8010 1.957 x10"! 0.35
shaft 3 7900 2.00 x10" 0.29
Disk : Mass (kg) Diametral inertia (Kg.m?) Polar inertia (Kg.m®)

DI 5.5 0.0202 0.04

D2 1.8 0.0059 0.0115
Bearing : Kw=K,, Ky =Koy

Bl 1310 (N/m) 0

B2 13107 (N/m) 0
Contact stiffness :

Kcl 1x10° (N/m) 0

Kc2 1x10° (N/m) 0

Kc3 1x10° (N/m) 0

Kr2  1x10°(N - m/rad) 0

Kr3  1x10°(N - m/rad) 0

Table 7 The convergence analysis of critical speeds using
GAMM and FEM for Case 3.

~ _ _ _,<||GAMM[ FEM | . Y
Np=17 | Np=18 | Np=19 |Ne =45 (Np=19)|(Ne =45) difference(%)
1F] 795.85 | 795.85 | 795.84 [ 792.28 || 795.84 | 792.28 0.45
2F[1027.50[1027.45[1027.44[1009.45| [ 1027.44 [ 1009.45 1.75
3F|1857.36(1857.31]1857.33]1818.11|[1857.33 | 1818.11 2.11
4F[2567.94|2567.81[2567.58[2540.36| [ 2567.58 | 2540.36 1.06
5F|5308.01]5308.035307.70|5171.98] [5307.70 [ 5171.98 2.56
6F|6050.44[6050.34|6051.16]5712.32] [ 6051.16 | 5712.32 5.60
0.04 I —— I I I I
0.02
. an -
Figures 11 Mode shapes of Case 2 for A=1 0
-0.02

-0.04
06

Case 3:

The multi-shaft rotor configuration is shown in Figure
12, which consists of two isotropic bearings, two rigid disks and
three shafts for single speed. The multi-shaft rotor system is
composed of different types of combinations and the system
model is assumed to be the three-shaft system as Figure 13. The
configuration data are given in Table 6. The numerical results of
critical speeds using GAMM and FEM are shown in Table 7,
and mode shapes using GAMM and FEM are shown in Figure
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f
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01 o 0.1 0z

Figures 12 The multi-shaft rotor configuration of Case 3.
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14. The percentages of difference are lower than 5.6%.
Similarly, Figure 15 shows the corresponding whirl speed and
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Figure 16 shows the critical speeds with bearing stiffness in the
region 10° to 10’ (N/m). Figure 17 shows the critical speeds
with the change in contact stiffness. According to the results,
the bearing stiffness has great influence in critical speed.
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Figures 13 The three shaft model of Case 3.
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Figures 14 The comparison of mode shapes and potential
energy for Case 3. ( continue)
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Figures 15 The whirl speed map of Case 3.
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Figures 16 Effects of bearing stiffness Bl and B2 on the
critical speeds for Case 3.
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V. CONCLUSIONS

This paper investigates the dynamic analysis of a rotor
bearing system with linear supports using the Global Assumed
Mode Method (GAMM) for different polynomials. The Finite
Element Method (FEM) is also applied to compare the results
with this assumed mode method. As the results show, both the
GAMMs based on Legendre and Chebyshev polynomials are
feasible to analyze the dynamic characteristics of rotor bearing
systems. The polynomial number can be increased as the
interval of the assumed mode function is altered, and the
convergence of high order mode will be accurate more.
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