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ABSTRACT 

In this study, the dynamic analysis of a domestic high 
speed rotor bearing system in turbo machines by using global 
assumed mode with different polynomial is investigated. This 
system consists of rotating multi flexible shaft, rigid disks and 
stiffness bearing effects. The analysis includes the whirl 
speeds, critical speeds, and mode shapes. The Global Assumed 
Modes Method (GAMM) and Finite Element Method (FEM) 
are employed to model the rotor-bearing system, and the 
accuracy of the results is discussed. With the application of 
GAMM, similarity transformation of different types of 
polynomials and interval has been investigated. The results 
show that using different polynomial function in GAMM have 
similar results, and which are also be agreed with the FEM. 
The results also show that the number of polynomial can be 
increased as the interval of the assumed mode function is 
altered. Consequently, the convergence of higher order modes 
will be more accurate. 

Keywords: rotor bearing system, global assumed modes 
method, finite element method, Chebyshev polynomial, 
Legendre polynomial 

 
I.  INTRODUCTION 

Several numerical approximations have been developed to 
analyze the dynamic behavior of rotor bearing system. The 
Finite Element Method (FEM) was popular in the published 
literatures for the analysis of the rotor dynamics. Ruhl and 
Booker [1] applied the finite element technique to study the 
dynamics of rotor system, but their study only included the 
translational inertia and bending stiffness. Many other 
important effects such as the rotary inertia, shear deformation 
and gyroscopic moments were neglected. Nelson and 
McVaugh [2] improved Ruhl’s model [1] with a Rayleigh 
beam finite element model. It was included the effects of 
rotary inertia, gyroscopic moments, viscously damped 
bearings and axial load for a flexible rotor system supported 
on elastic supports. Zorzi and Nelson [3] extended the work by 
incorporating the effects of both internal viscous and hysteretic 

damping in the same model. Nelson [4] also utilized 
Timoshenko beam theory for establishing the shape functions. 
Based on the shape functions, he derived the system matrices 
of governing equations. The governing equations can be 
quickly changed into a Rayleigh beam or Euler beam model if 
the shear parameter is zero. Özqüven and Özqkan [5] 
presented the combined effects of shear deformations and the 
internal damping in their finite element formulation. They 
analyzed the natural whirl speeds and unbalance response of 
multi-bearing rotors in their study. Many other works which 
utilized the finite element technique for rotor dynamic analysis 
can be found in [6, 7, 8 and 9]. Those works showed that using 
finite elements for the modeling of rotor-bearing systems 
sometime makes the formulation be complicated. The 
Generalized Polynomial Expansion Method (GPEM), which 
was proposed by Shiau and Hwang [10, 11 and 12], is 
employed in this paper. The method described the 
deformations of rotating shaft with a series of polynomials. 
This method can be applied to both linear and nonlinear rotor 
systems. Shiau also demonstrated the efficiency and accuracy 
by using the GPEM as compared with the FEM in their studies. 
Shiau et al. [13] used the Timoshenko beam model to devise 
the global assumed mode formulation. In their study, they 
called the GPEM as a different name: “Global Assumed Mode 
Method” (GAMM).  The GAMM was used to analyze the 
dynamic behavior of a spinning Timoshenko beam which is 
subjected to a moving skew force with different general 
boundary conditions. 

 
NOMENCLATURE 

A : Cross section area of the shaft 
( , )n ma b  : Coefficients of polynomial 

E : Modulus of elasticity 
e  Eccentricity distribution of the shaft 
d
ie   Eccentricity of the i-th disk 

[G] : Gyroscopic matrix 
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[I] : Unit matrix 
I : Area moment of inertia of the shaft 
,D PI I  : Diametral and polar mass moment 

of inertia distribution of the shaft 
,d d

Di PiI I  
: 

Diametral and polar mass moment 
of inertia distribution of the i-th 
disk 

[K], [KS] : System stiffness and shaft stiffness 
matrices 

[ ],[ ]yy zzK K  : Direct stiffness matrix for linear 
supports 

[ ],[ ]yz zyK K  : Cross coupled stiffness matrix for 
linear supports 

,b b
yyj zzjk k  : Direct stiffness coefficients of the j-

th bearing 

,b b
yzj zyjk k  : Cross coupled stiffness coefficients 

of the j-th bearing 
l : Total length of the shaft 

[ ],[ ]T RM M  : Translational and rotational mass 
matrices 

d
im  : Mass of the i-th disk 

,d bN N  : Total number of disk and bearing 

PN  : The number of terms of polynomial 
Pn : Legendre polynomials 
q : Generalized coordinates vector 

represents coefficient vector a and b 
,a bR R  : Vectors of generalized forces 

[ ]S  : Similarity transformation matrixes 
T : Total kinetic energy 

TS, Td, Te 
: 

Kinetic energy contributed by 
flexible shaft, rigid disk and mass 
eccentricity 

Tn : Chebyshev polynomials 
U : Total potential energy 

US, Ub : Potential energy components by 
flexible shaft and bearing 

   
j

nU  : Strain energy stored in j-th bearing 
for the n-th natural whirl mode 

( , )V W  : Lateral deflection in (Y,Z) 
directions 

( , )d d
i iV W  : Lateral deflection of the i 

( , )b b
j jV W  : Lateral deflection of the j 

X-Y-Z : Fixed reference frame 
x-y-z : Rotating reference frame 

,d b
i jx x  : Positions of the i-th disk and the j-th 

bearing 
r  : Real part of eigenvalues 

(B,Γ) : Angle of rotation about (Y,Z) axes 

λ : Whirl ratio ( )    
ρ : Mass density per unit volume of the 

shaft 
  : Generalized polynomial vector 

  : Phase angle 
,   : Whirl speed and rotating speed 

c
n  : The n-th critical speed 

 

Ⅱ . DYNAMIC ANALYSIS OF LINEAR ROTOR- 
BEARING SYSTEM 

Figure 1 shows the configuration of simple rotor-bearing 
system, which usually consists of rotating flexible shaft, rigid 
disks and bearings. Two reference frames are utilized to 
describe the system motion. One is a fixed reference frame X-
Y-Z, and the other is a rotating reference x-y-z. The rotating 
frame rotates about the X axis with a whirl speed of  .   
denotes the rotating speed of shaft about the X axis. 

,X x

Y

Z
ty z

VW

B
Γ



 
Figure 1  The configuration of simple rotor-bearing system. 

 

The deflections of the cross section of shaft include two 
translations (V, W) and two rotations (B, Γ). By this 
assumption, the deflections as functions of positions along the 
rotating axis x  and time t . Which are expressed as: 

( , ), ( , )
( , ), ( , )

V V x t W W x t
B B x t x t
 
   

 (1) 

The rotations (B, Γ) are related to the translations (V, W) as 

( , ) ( , )( , ) , ( , )W x t V x tB x t x t
x x

 
   

 
 (2) 

With the GAMM [10], the associated deflections can be 
expressed as 

1 1

1 1

( , ) ( ) , ( , ) ( )
p pN N

n m
n m

n m

V x t a t x W x t b t x 

 

    (3) 

The Lagrangian approach is used to derive the equation of 
system motion. The kinetic energy T  and the potential 
energy U  of the rotating shaft are given by 

s b

s d e

U U U
T T T T
 
  

 (4) 

where sU  and bU  are the potential energy of the shaft and 
bearing, respectively. sT  and dT  are the kinetic energy of the 
shaft and disk, and eT  is the kinetic energy related to the 
eccentricity. 
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With the Lagrange approach 

    0
i i

d T U T U
dt q q
  

      
 (5) 

where 1 1 1 1{ , , , , , }
p pi N Nq a a a b b b    

Substituting equation (4) into equation (5), the equation of 
motion can be expressed as: 

0 0
0 0

0
0

T R

T R

yy yz S a

zy zz S b

M M a G a
M M b G b

K K K Ra a
K K K Rb b

       
             

        
          

       

 
   (6) 

where 1 2{ , , }
P

T
Na a a a  , 1 2{ , , }

P

T
Nb b b b  , [ ]TM , [ ]RM , 

 G ,  SK , yyK   , yzK   , zyK   and  zzK are P PN N  real 
symmetric matrices, which are expressed as: 

2 2

0
1

4 4

0
1

4 4

0
1

6

0

( , ) ( )

( , ) ( 1)( 1) ( )

( , ) ( 1)( 1) ( )

( , ) ( 1)( 2)( 1)( 2)

d

d

d

Nl m n d d m n
T i i

i

Nl m n d d m n
R D Di i

i

Nl m n d d m n
P Pi i

i

l m n
S

yy

M m n A x dx m x

M m n m n I x dx I x

G m n m n I x dx I x

K m n m m n n EIx dx

K

    



   



   



 

 

 
    

 
 

    
 

    








2 2

1 1

2 2

1 1

( , ) ( ) , ( , ) ( )

( , ) ( ) , ( , ) ( )

b b

b b

N N
b b m n b b m n
yyj j yz yzj j

j j

N N
b b m n b b m n

zy zyj j zz zzj j
j j

m n k x K m n k x

K m n k x K m n k x

   

 

   

 

 

 

 

 

 (7) 

aR  and bR  are the form of 

1 2

1 2

{ , , }

{ , , }
P

P

T
a a a aN

T
b b b bN

R R R R

R R R R








 (8) 

where 

12

0

12

1

12

0

12

1

( ) ( ) ( ) cos( )

( ) cos( )( )

( ) ( ) ( ) sin( )

( ) sin( )( )

P

d
P

P

d
P

l N
a

N
Nd d d d

i i i i
i

l N
b

N
Nd d d d

i i i i
i

R e x x A x t x dx

m e t x

R e x x A x t x dx

m e t x

 



 















   

   

   

   









 (9) 

 

Ⅲ . SIMILARITY TRANSFORMATION AND 
NORMALIZE 

The other assumed mode functions, which are based on 
the GAMM, will be derived and applied in this paper. The 
governing equations can be assumed as Legendre polynomials 

and Chebyshev polynomials model by using the similarity 
transformation matrix. 

3.1 Classical Orthogonal Polynomials 

In mathematics, an orthogonal polynomial sequence is an 
infinite sequence of polynomials for one variable x.  The 
sequence 1 2[ , , ]n nP P P P   has n degrees and any different 
two polynomials in this sequence are orthogonal to each other 
by definition the inner product. The simplest classical 
orthogonal polynomials are the Legendre polynomials, which 
interval of orthogonality is [−1, 1], and the weight function is a 
simply one. 

1

1
( ) ( ) 0m nP x P x dx


  (10) 

Let Pn(x) be the Legendre polynomial with n degrees, and 
choose P0=1 and P1=x. The recursion formula for the Legendre 
polynomial is 

1 1( 1) ( ) (2 1) ( ) ( )n n nn P x n xP x nP x      (11) 

With equation (11) the sequence Legendre polynomial can be 
generated easily. The first six polynomials of the sequence are 
shown in Figure 2. 

The Chebyshev polynomials are orthogonal with the 
inner product

  
1 2 1 2

1
( ) ( )(1 ) 0m nT x T x x dx


   (12) 

where 
0 1 1 1( ) 1, ( ) , ( ) 2 ( ) ( )n n nT x T x x T x xT x T x      (13) 

The first six Chebyshev polynomials are shown in Figure 3 

 
Figure 2  The first six sequence of Legendre polynomial. 

 
Figure 3  The first six sequence of Chebyshev polynomial. 

Copyright © 2011 by ASME



 4  

Both the Legendre and Chebyshev polynomials are based 
on generalized polynomial 12[1, , , , ]PNx x x  , therefore 
equation (11) and (13) can be arranged as the matrix form: 

 
 

0

1

2

3 1
1

4

( )
1

( )
( )
( )
( )

P P

P

P

N N

N
N

P x
P x

x
PP x

P x
x

P x






 
  
        

   
      



 (14) 

and 

 
 

0

1

2

3 1
1

4

( )
1

( )
( )
( )
( )

P P

P

P

N N

N
N

T x
T x

x
TT x

T x
x

T x






 
  
        

   
      



 (15) 

The matrices [P] and [T] represent the similarity 
transformation matrix, [P] is the Legendre polynomial 
similarity transformation, and [T] is the Chebyshev 
polynomial similarity transformation. In this paper, [P] and [T] 
are signed as [S]. With the similarity transformation matrix 
[S], equation (3) can be rewired as 

   

   

1 2 1

1
1

1 2 1

1
1

1

( , )

1

( , )

P P PP

P

P

P P PP

P

P

N N NN

N
N

T

N N NN

N
N

x
V x t a a a S

x

x
W x t b b b S

x











 
    
 
  

 
 
   
 
  







 (16) 

 Substituting equation (16) into equations (6), the system 
equation of motion with orthogonal polynomial can be 
represented as 

       

         

0 0
0 0

0
0

T TT R

T R

T T Tyy yz S a

zy zz S b

M M a G a
L L L L

M M b G b

K K K Ra a
L L L L L

K K K Rb b

       
              

        
          

       

 
 

 

   (17) 

were   [ ] 0
0 [ ]
S

L
S

 
  
   

(18) 

3.2 Normalize of Shaft Length 

In the process of applying GAMM, the numerical 
instability will occur in the higher order terms when the shaft 
length is not equal the distance of end points in [-1,1]. In the 
applying of the assumed mode method, normalize of length 
means using a different assumed mode function. The 
orthogonality intervals of both the Legendre and Chebyshev 
polynomial are [−1, 1]. The optimal interval of generalized 
polynomials interval is the same as [−1, 1], for the reason that 
the interval of assumed mode function is consistent with the 
shaft length. Therefore, using shifting function to convert the 

interval can prevent numerical instability and improve 
convergence. For example, the shifting function is defined as 

( ) (2 1)x x   . As the shifting function is changed, the 
interval is converted from [0,1] to [-1, 1]. Figures (4) and (5) 
show the first six sequences of generalized polynomial ( )x  
and ( )x  individually. 

 

 
Figure 4  The first six sequence of generalized polynomial ( )x  
 

 

Figure 5  The first six sequence of generalized polynomial ( )x  
 

Ⅳ.  NUMERICAL RESULTS AND DISCUSSIONS 

 Three cases are discussed in this paper. Case 1 studies the 
multi-stepped rotor system, which are used to illustrate the 
accuracy of the GAMM, FEM, and GAMM based on 
Legendre and Chebyshev polynomials. Case 2 studies the dual 
rotor-bearing system, and discusses the convergence of the 
critical speed with GAMM at different intervals. Case 3 
studies the multi-shaft rotor-bearing system, and also discusses 
the effects of bearing stiffness and contact stiffness on the 
critical speeds. 

Case 1:  

 The Nelson’s rotor system model [2] is applied to 
illustrate the accuracy of GAMM, FEM and the GAMMs 
based on Legendre and Chebyshev polynomials. Figure 6 and 
Table 1 show the configuration of the rotor system and 
corresponding data. Table 2 shows the whirl speeds with 
Legendre, Chebyshev, GAMM and FEM. The whirl speed 
map is shown in Figure 7. In Figure 7, the polynomial 
numbers NP for GAMM, Legendre and Chebyshev are selected 
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as 23, and the element number for FEM is selected as 18. As 
this figure shown, the GAMM, Legendre and Chebyshev have 
the same result in whirl speed map, but the result is different 
with the FEM. Figure 8 shows the first three eigen-modes with 
forward and backward motions, which indicates that by using 
the GAMM, Legendre, Chebyshev and FEM can get similar 
results in the first two modes. In the third mode, the results are 
different slightly. The percentages of difference for whirl 
speeds of the first five terms are lower than 5.0%. 

 

Table 1  Multi-stepped rotor configuration data of Case 1 
Density=7806 Kg/m3       Elastic modulus=2.078×1011 N/m2 

Disk： Location (cm) Mass (Kg) Polar inertia 
(Kg.m2) 

Diametral 
inertia 

(Kg.m2) 
D1 -9.01 1401 0.002 0.00136 

Bearing： Location (cm) Kyy=Kzz   (107 N/m) Kyz=Kzy (107 N/m)  
B1 -1.39 3.503 -0.8756  
B2 10.8 3.503 -0.8756  

Node no. Node location 
(cm) 

Element 
length (cm) 

Bearing & 
Disk 

Outer 
radius (cm) 

Inner radius 
(cm) 

1 -17.9 1.27  0.51 0 
2 -16.63 3.81  1.02 0 
3 -12.82 2.54  0.76 0 
4 -10.28 1.27  2.03 0 
5 -9.01 1.27 D 1 2.03 0 
6 -7.74 0.51  3.3 0 
7 -7.23 0.76  3.3 1.52 
8 -6.47 1.27  2.54 1.78 
9 -5.2 0.76  2.54 0 
10 -4.44 3.05  1.27 0 
11 -1.39 2.54 B 1 1.27 0 
12 1.15 3.81  1.52 0 
13 4.96 3.81  1.52 0 
14 8.77 2.03  1.27 0 
15 10.8 1.78 B 2 1.27 0 
16 12.58 1.02  3.81 0 
17 13.6 3.04  2.03 0 
18 16.64 1.27  2.03 1.52 
19 17.91 -   - - 

 

Table 2  The  whirl speeds using Legendre, Chebyshev,  
GAMM and FEM of Case 2 

Rotating 
Speed           
(Ω , 

rad/sec) 

whirl speed (ωr , rad/sec) 
Legendre 
(NP=23) 

Chebyshev 
(NP=23) 

GAMM 
(NP=23) 

FEM 
(Ne=18) 

F B F B F B F B 

2000.0  
1760.2 1466.4 1759.8 1466.7  1760.0 1466.5 1719.8  1459.8 
5063.9 4177.5 5064.0 4176.9  5064.1 4177.4 4997.6  4140.9 
8502.9 7127.2 8503.0 7127.5  8502.7 7127.1 8019.4  6925.3 

3000.0  
1788.8 1438.3 1788.8 1438.3  1788.7 1438.3 1737.2  1441.6 
5062.4 4174.1 5062.4 4174.0  5062.5 4174.1 4999.6  4136.3 
8680.4 6994.9 8680.4 6994.9  8680.3 6994.8 8061.2  6875.7 

4000.0  
1822.2 1405.8 1821.5 1405.6  1822.1 1405.7 1758.2  1419.4 
5060.2 4169.1 5059.9 4171.8  5060.1 4169.5 5002.2  4130.0 
8888.2 6850.0 8887.3 6849.6  8888.2 6849.9 8113.0  6813.1 

5000.0  
1858.1 1370.7 1858.9 1371.1  1858.0 1370.7 1781.5  1394.7 
5056.6 4163.6 5058.8 4158.2  5056.9 4163.5 5005.5  4122.0 
9115.2 6703.0 9115.9 6703.6  9115.1 6702.9 8170.8  6741.5 

6000.0  
1895.4 1334.7 1895.5 1334.8  1895.2 1334.7 1806.1  1368.5 
5052.5 4155.8 5053.1 4154.6  5052.6 4156.1 5009.3  4112.4 
9355.1 6559.4 9355.2 6559.6  9355.0 6559.3 8231.3  6664.1 

† The interval of Legendre, Chebyshev and GAMM is [−0.18, 0.18] meter 
‡ Np：number of polynomial; Ne：number of element 

F：forward; B：backward 
 

 
Figures 6  The rotor configuration of Case 1 

 

 
Figures 7  The whirl speed map of Case 1. 

3F 

3B 

2F 

2B 

1F 

1B 

Figures 8  First three eigenmodes of Case 1 for Ω=2000 
rad/sec. 
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Case 2:  

 The rotor system with multiple shafts is studied by Rajan 
[9] and Shiau [10]. Figure 9 and Table 3 show the configuration 
and parameters of this dual rotor system. The inner shaft 
denotes shaft 1 with rotating speed Ω1 and the outer shaft 
denotes shaft 2 with rotating speed Ω2=1.5Ω1. Figure 10 shows 
the whirl speed map and Table 4 shows the synchronous line 
λ=1 and λ=2/3 of the critical speeds by the FEM and GAMM. 
The percentages of difference between the first six terms are 
lower than 2.0%. Table 5 shows the convergence analysis of the 
critical speed at different intervals. The two shafts can be 
assumed with different mode function individually. Therefore, 
two polynomial functions of different intervals are used in the 
dual rotor system. In addition, as shown in Table 5, adjusting 
the interval of polynomial functions and improving polynomial 
numbers can increase the accuracy. Figure 11 shows the 
comparison of forward mode shapes with the GAMM and FEM. 

 

Table 3  The dual rotor configuration data of Case 2. 

 

Node 
no. 

Node 
location 

(cm) 

Element 
length (cm) 

Bearing & 
Disk 

Outer radius 
(cm) 

Inner 
radius 
(cm) 

sh
af

t 1
 

1 0 7.62 B 1 1.524 0 
2 7.62 17.78 D 1 1.524 0 
3 25.4 15.24  1.524 0 
4 40.64 5.08 B c 1.524 0 
5 45.72 5.08 D 2 1.524 0 
6 50.8 - B 2 - - 

sh
af

t 2
 7 15.24 5.08 B 3 2.542 1.905 

8 20.32 15.24 D 3 2.542 1.905 
9 35.56 5.08 D 4 2.542 1.905 
10 40.64 - B c - - 

Density=8304 Kg/m3      Elastic modulus=2.069×1011 N/m2 

Disk： Location 
(cm) Mass(Kg) Polar inertia 

(Kg.m2) 
Diametral inertia 

(Kg.m2) 
D1 7.62 4.904 0.0271 0.0135 
D2 45.72 4.203 0.0203 0.0101 
D3 20.32 3.327 0.0146 0.0073 
D4 35.56 2.277 0.0097 0.0048 

Bearing： Node Kyy=Kzz(106 
N/m) Kyz=Kzy  

B1 1 26.2795 0  
B2 6 17.5197 0  
B3 7 17.5197 0  
Bc 4 - 10 8.7598 0  

 

Table 4  The critical speeds of Case 2. 
GAMM (Np=27) FEM (Ne=16) 

ω=Ω1(rad/sec) ω=Ω2(rad/sec) ω=Ω1(rad/sec) ω=Ω2(rad/sec) 
λ=1 λ=-1 λ=2/3 λ=-2/3 λ=1 λ=-1 λ=2/3 λ=-2/3 

Forward Backward Forward Backward Forward Backward Forward Backward 
867.74 660.38  824.95 687.17  853.72 664.00  815.83 689.40  
1615.05 1439.16  1593.38 1475.47  1595.13 1443.46  1575.52 1473.80  
2306.58 2141.21  2295.78 2190.63  2277.51 2157.16  2268.06 2194.42  
4389.70 2319.18  3678.92 2517.63  3625.49 2289.58  3314.87 2478.53  
5595.16 2470.52  4934.04 2560.14  5411.93 2474.66  4833.47 2603.81  
† The interval of GAMM is [−0.3, 0.3] meter 
‡ Np：number of polynomial; Ne：number of element 

 

 

Table 5  Convergence analysis of the critical speed at different 
intervals for Case 2 

 Np=8 Np=10 Np=12 Np=14 Np=15 Np=16 Np=18 
shaft 1 1F 868.18 868.04 867.94 867.91 867.91   
shaft 2 2F 1617.33 1616.10 1615.68 1615.44 1615.40   

[±1] 3F 2313.77 2309.19 2308.16 2307.12 2306.96   
 4F 4426.28 4419.97 4404.50 4402.18 4401.56   
 5F 5872.11 5778.01 5681.29 5666.70 5651.32   
 6F 21252.30 17620.51 17544.67 17184.01 17156.24   

 Np=24 Np=26 Np=27 Np=28 Np=29 Np=30 Np=31 
shaft 1 1F 867.75 867.74 867.74 867.74 867.74   
shaft 2 2F 1615.09 1615.06 1615.05 1615.06 1615.04 1615.02 1615.02 
[±0.3] 3F 2306.58 2306.57 2306.58 2306.57 2306.57 2306.01  

 4F 4389.68 4388.33      
 5F 5602.23 5596.70 5595.16 5593.75 5593.50   
 6F 16826.35 16757.42 16743.50     

 Np=18 Np=24 Np=26 Np=27 Np=28 Np=29 Np=30 
shaft 1 1F 867.82 867.75 867.74 867.74 867.74 867.74 867.74 
[±0.3] 2F 1615.24 1615.09 1615.06 1615.05 1615.06 1615.04  
shaft 2 3F 2306.68 2306.58 2306.58 2306.57 2306.57 2306.57 2306.57 
[±,0.2] 4F 4393.46 4389.83 4389.60 4386.93    

 5F 5624.90 5602.24 5596.71 5595.11 5593.74 5593.57  
 6F 16962.66 16826.35 16757.41 16743.51    

：numerical unstable 

 
Figures 9  The dual rotor model of Case 2. 

 

 
Figures 10  The whirl speed map of Case 2. 
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ω5=5595.16 rad/sec 

 
ω4=4389.70 rad/sec 

 
ω3=2306.58 rad/sec 

 
ω2=1615.05 rad/sec 

 
ω1=867.74 rad/sec 

Figures 11  Mode shapes of Case 2 for λ=1 

 

Case 3: 

  The multi-shaft rotor configuration is shown in Figure 
12, which consists of two isotropic bearings, two rigid disks and 
three shafts for single speed. The multi-shaft rotor system is 
composed of different types of combinations and the system 
model is assumed to be the three-shaft system as Figure 13. The 
configuration data are given in Table 6. The numerical results of 
critical speeds using GAMM and FEM are shown in Table 7, 
and mode shapes using GAMM and FEM are shown in Figure 
14. The percentages of difference are lower than 5.6%. 
Similarly, Figure 15 shows the corresponding whirl speed and 
Figure 16 shows the critical speeds with bearing stiffness in the 
region 105 to 109 (N/m). Figure 17 shows the critical speeds 
with the change in contact stiffness. According to the results, 
the bearing stiffness has great influence in critical speed. 

 

 

 

 

 

Table 6  The multi-shaft rotor configuration data of Case 3. 
Shaft No. Densityρ(Kg/m3) Elasticity E(N/m2) poisson ratio γ 

shaft 1 7800 1.960×1011 0.28 
shaft 2 8010 1.957 ×1011 0.35 
shaft 3 7900 2.00 ×1011 0.29 
Disk： Mass (kg) Diametral inertia (Kg.m2) Polar inertia (Kg.m2) 

D1 5.5 0.0202 0.04 
D2 1.8 0.0059 0.0115 

Bearing： Kyy=Kzz Kyz=Kzy  
B1 1×107 (N/m) 0  
B2 1×107 (N/m) 0  

Contact stiffness：   
Kc1 1×109 (N/m) 0  
Kc2 1×109 (N/m) 0  
Kc3 1×109 (N/m) 0  
Kr2 1×109 (N．m/rad) 0  
Kr3 1×109 (N．m/rad) 0  

 

 

Table 7  The convergence analysis of critical speeds using 
GAMM and FEM for Case 3. 

 Np=17 Np=18 Np=19 Ne =45  GAMM 
(Np=19) 

FEM 
(Ne =45) difference(％) 

1F 795.85 795.85 795.84 792.28  795.84 792.28 0.45 
2F 1027.50 1027.45 1027.44 1009.45  1027.44 1009.45 1.75 
3F 1857.36 1857.31 1857.33 1818.11  1857.33 1818.11 2.11 
4F 2567.94 2567.81 2567.58 2540.36  2567.58 2540.36 1.06 
5F 5308.01 5308.03 5307.70 5171.98  5307.70 5171.98 2.56 
6F 6050.44 6050.34 6051.16 5712.32  6051.16 5712.32 5.60 

 

 

 
Figures 12  The multi-shaft rotor configuration of Case 3. 

 

 

 
Figures 13  The three shaft model of Case 3. 
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Figures 14  The comparison of mode shapes and potential 

energy for Case 3. ( continue) 

 

 

 

 

 

 

 
Figures 15  The whirl speed map of Case 3. 

 

 

 
Figures 16  Effects of bearing stiffness B1 and B2 on the 

critical speeds for Case 3. 

 

 

 
Figures 17  Effects of the contact stiffness of shaft-3 on the 

critical speeds for Case 3 
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Shaft 3 
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1027.44 rad/sec 
1009.45 

 

Shaft 2 

Shaft 1 

Shaft 3 

ω3= 
1857.33 

rad/sec 
1818.11 

ω4= 
2567.58  

rad/sec 
2539.42  

Shaft 3 

Shaft 1 

Shaft 2 

ω5= 
5307.70 

rad/sec 
5164.84 

 

ω6= 
6051.16 

rad/sec 
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Shaft 2 

Shaft 1 

Shaft 3 

Shaft 2 

Shaft 1 

Shaft 3 

Shaft 2 

Shaft 1 

Shaft 3 
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Ⅴ.  CONCLUSIONS 

This paper investigates the dynamic analysis of a rotor 
bearing system with linear supports using the Global Assumed 
Mode Method (GAMM) for different polynomials. The Finite 
Element Method (FEM) is also applied to compare the results 
with this assumed mode method. As the results show, both the 
GAMMs based on Legendre and Chebyshev polynomials are 
feasible to analyze the dynamic characteristics of rotor bearing 
systems. The polynomial number can be increased as the 
interval of the assumed mode function is altered, and the 
convergence of high order mode will be accurate more. 
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