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ABSTRACT 

Although the liquid balancer has nearly a century of 

having been introduced by LeBlanc, little information is 

available on the dynamic response and stability behavior of this 

kind of device. Earlier author‟s research using a high-speed 

camera and a Particle Image Velocimetry (PIV) technique 

showed the existence of a fluid backward traveling wave inside 

the balancer cavity. This damping phenomenon helps enhance 

the unbalance response of the rotating system and also raises 

the stability limits. This paper shows that a flexible rotor 

employing a LeBlanc balancer has remarkable increase in the 

threshold speed of instability for aerodynamic cross-coupling 

and viscous internal friction damping. 

 

NOMENCLATURE 
c Damping, N·s/m 

d = z rf
2 /(ro

2- rf
2)  Distance from C to F, m 

k Stiffness, N/m 

h Balance ring height, m 

f = /cr  Frequency ratio, dimensionless 

j = -1  Imaginary unit, dimensionless 

m,n Circumferential and lateral modes of vibration 

m Mass, kg 

r radius, m 

x,y Cartesian coordinates, m 

z = z ro
2 /(ro

2- rf
2)  Distance from O to F, m 

C Disk center 

F Fluid center of gravity 

M Disk center of gravity 

O Bearing center 

q = ci  Aerodynamic cross-coupling coefficient, N/m 

z = x + jy Complex disk motion, m 

z1= x1 + jy1 Complex journal motion, m 

K = k1/kr  Stiffness ratio, dimensionless 

M = mf/mr  Total fluid mass ratio, dimensionless 

Mb = mb/mr  Backward traveling wave mass ratio, dim‟less 

  Unbalance response phase angle, rad  

 = c/2 mrcr  Damping ratio, dimensionless 

ρ Fluid density kg/ m3 

 Frequency, rad/s 

 

Subscripts 

1 Bearing property 

b Fluid traveling backwards property 

cr Rotor critical speed on rigid supports, rad/s 

d Whirl frequency, rad/s 

e Effective property 

f Fluid property 

i Rotor internal property 

i Inner 

m Maximum value 

o Outer 

 op Optimum value 

r Rotor property 

INTRODUCTION 
There has been considerable work in the area of the dynamics 

of rotors with internal damping that is well-documented in the 

literature, particularly with regard to internal friction arising 

from micro-slip at shrink-fit interconnections of built-up rotors. 
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Newkirk [1] pointed that internal rotor damping created by 

shrink fits of impellers and spacers is a predominant cause of 

whirl instability. Kimball [2] by means of deriving the 

equations of motion showed that the internal friction force 

tends to put the shaft motion in an ever-increasing spiral path. 

Gunter [3] developed a linear rotordynamic model in which 

internal friction was modeled as a cross-coupled force. He 

demonstrated that if external damping is added, the threshold 

speed could be greatly improved. He also showed that 

foundation asymmetry without foundation damping can cause a 

large increase of the onset speed of instability. Black [4] 

investigated a variety of models (viscous, Coulomb and 

hysteretic) for internal friction and differentiated between 

various models in reference to their ability to accurately predict 

the onset of instability. Lund [5] also investigated internal 

friction models, specifically due to micro-slip at axial splines 

and shrink fit joints. Srinivasan [6] showed that at some values 

of low interference fit, the system became unstable at high 

speeds, while no instability was noted for tighter fits. Damping 

for the low interference fit was higher than for the high 

interference. The aforementioned is due to the fact that when 

the fit is tight, slipping at the interference between the disk and 

the shaft is reduced. In most cases, the whirl instability can be 

suppressed with hardware fixes such as changing the bearings 

to softer supports with asymmetric stiffness, adding more 

damping in the bearings or tightening the interference fits. This 

paper proposes an alternative mechanism for improving rotor 

stability by using a LeBlanc balancer.  

 

The LeBlanc balancer is basically a hollow ring equipped with 

a number of pockets formed by radial walls and partially filled 

with liquid. The limited information on this liquid balance ring 

made public can be found on a number of patents and a few 

technical papers and thesis work. Back in 1914, LeBlanc [7] 

first introduced a passive dynamic balancing device for turbine 

rotors consisting of an annular cavity partially filled with a 

liquid of high viscosity. However, this kind of device has not 

received much attention for practical use in turbomachiney 

since then. It has extensively been demonstrated that when a 

flexible rotor is partially filled with liquid, the motion is 

unstable over some operating range [8-11]. The extent of this 

operating range depends on various system parameters such as 

rotor damping, stiffness, fluid viscosity, the amount of fluid 

present, etc. However, when the cavity filled with liquid is 

provided with a number of radial baffle boards, the unstable 

behavior changes dramatically, helping the rotating system 

achieve higher stable operating speeds. 

 

Linear stability analysis is carried out on a balance ring 

equipped with a number of eight baffles boards and partially 

filled with a brine solution at a ratio of 0.5. Experimental 

results reported by Urbiola-Soto and Lopez-Parra [12] on fluid 

flow visualization and Particle Image Velocimetry (PIV) are 

used to understand the fluid-solid interaction of the brine 

solution employed and the balance ring baffles. The onset of 

unstable dynamic response is examined. Balance ring blades 

and fluid inertia are found to play an important role in the onset 

of instability.  

EXPERIMENTAL APPARATUS 
Fluid flow visualization and PIV experiments were 

performed on a vertical axis washing machine equipped with a 

liquid balance ring on top of the rotating drum and running up 

to 1000 rpm. The test rig experimental settings are fully 

described in [12]. The balance ring employed mainly consists 

of an annular cavity of 3.709E-03 m3 equipped with a number 

of eight radial baffles equiangularly spaced. Sodium chloride 

with a density of 1300 kg/m3 was employed to fill the cavity. 

Figure 1 shows the balance ring under study consisting of a 

thermoformed Polyethylene Terephthalate (PET) ring 

assembled by two parts. The bottom part houses the baffles, 

which are inserted in machined guiding grooves. The upper 

part works as a top cover bolted to the bottom portion. The 

balance ring assembly is rigidly mounted on top of the rotating 

drum through a set of brackets. Clearances are provided with 

the inner and outer wall, and also with the top cover. This helps 

achieve higher order fluid modes of vibration. 
 

 
(a) 

 

 
(b) 

Figure 1. Transparent balance ring; (a) top view, and (b) 
radial baffle, dimensions in mm. 

 

A high-speed camera at 1000 frames/s and a set of white 

light sources of Xenon lamps type were used for direct fluid 

flow visualization. A laser beam was orthogonally oriented 

with respect to the direction of the observing camera by using 

an articulated arm system.  

FLUID FLOW VISUALIZATION AND PIV RESULTS 
As reported by Urbiola-Soto and Lopez-Parra [12], the 

removal of baffles inside the ring rendered a partially wetted 

cavity as shown on Fig. 2. A strong unstable vibration occurred 

at speeds as low as 200 rpm, this behavior is similar to trapped 

fluids (e.g., oil from bearing sumps, steam condensate, etc.) in 

the internal cavity of high-speed hollow rotors [8]. As 

explained by [13], the fluid does not remain in simple radial 

orientation. The spinning surface of the cavity drags the fluid 

(which has some finite viscosity) in the direction of rotation. 

This fluid shear stress results in a tangential force in the 

direction of rotation. This force is called follower force and is 

the fundamental condition for instability. On the contrary, the 
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addition of baffles showed that the fluid is not stationary 

relative to the rigid body, see Fig. 3. Furthermore, the baffles 

increased the natural frequency of the fluid and induced a 

complex fluid mode of vibration. The experimental rig was 

always stable at speeds as high as 1000 rpm once the baffles 

were put in place inside the ring. 

Fluid attached to rigid body

Rigid body motion

 
(a) 

Rigid body motion

Fluid attached to rigid body
 

(b) 

Figure 2. Fluid bulk-flow in a hollow ring with no baffles; 
(a) top view, and (b) side view. 

 

Backward traveling wave

Rigid body motion

 
(a) 

Rigid body motion

Backward traveling wave

+

-

 
(b) 

Figure 3. Backward traveling wave, (a) top view, and (b) 
side view, (+) and (-) indicate a crest and valley, 

respectively. 
 

As shown on Fig. 1(b) the radial baffles placed in the cavity 

account with gaps with the inner and outer walls, this enables a 

backward traveling fluid wave that describes a swirl at low 

speeds, Fig. 3(b). As the speed increases, the fluid motion 

occurs throughout the liquid interior and is thus called an 

internal wave or inertia oscillation [14]. The stability 

mechanism is due to this backward traveling wave present in 

the fluid, which acts as an added damping force. The fluid mass 

of such wave has been found to be a fraction of the total fluid 

mass and synchronous with the rotor speed [12]. 

 

The motion in the rotating body is transmitted to the 

contacting liquid by shear stress; this suggests that waves are 

occurring in the fluid. Since the spin axis does not coincide 

with the angular momentum vector, the drum rotor appears to 

oscillate about its transverse x and y axes. This oscillation or 

whirling causes the liquid in the ring to move relative to the 

rigid body. If the drum rotor spins about a major moment-of-

inertia axis, the liquid motions tend to damp the whirling. The 

energy dissipated by the oscillatory motions is extremely large 

when the whirling motion excites the liquid into resonance. 

This motion does not relate to free surface sloshing. In fact, the 

motion occurs throughout the liquid interior and is thus called 

an internal wave or inertia oscillation [14]. Urbiola-Soto and 

Lopez-Parra [12] used Miles and Troesch [14] three-

dimensional equations to compute the oscillating fluid 

frequency for a balance ring with 8 baffles boards exciting 

fluid coupled vibrating modes; m = 4 and n = 8. They showed 

analytically and experimentally that the backward traveling 

wave is synchronous with the rotor running frequency. The 

fluid relative velocity map was built by superposition of PIV 

frames for different portions of the balance ring as illustrated 

on Fig. 4. This mass induces a tangential force 90o phase 

lagged with the solid body motion, thus behaving as a positive 

damping stabilizing effect. The effective mass (mb) traveling 

backwards is a fraction of the total fluid mass given by Eq. (1) 

 

nceCircumfereZonesVelocitylativeReHigh
3

1
120815   

 

Therefore, the effective “fluid damping mass” is one third 

of the total fluid mass 

 

fb m.m 330  

 

High velocity-

Backward zone 
(15o)

Low velocity-

Forward zone

Low velocity-

Forward zone

Low velocity-

Forward zone

High velocity-

Backward zone 
(15o)

m/s



rori

 
Figure 4. Balance ring relative velocity map. 

(2) 

(1) 
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UNBALANCE RESPONSE 
Figure 5 provides a 2-dof dynamic model of a flexible 

rotor in flexible symmetric damped bearings and with a 

LeBlanc balancer. It has been assumed that the bearings cross-

coupled stiffness and damping coefficients are negligible as 

might be the case of tilting pad journal bearings and squeeze 

film dampers. Thus bearings are not considered to be a source 

of instability in this analysis. Furthermore, for the sake of 

simplicity, the bearings are assumed to be essentially identical 

and symmetric. 

 

Then, for the flexible rotor, the differential equations of 

motion of the rotor are given by  

 

  tj
rbfrr eummmkm  22

1 2 dzzzz   

  011111  zzzz ckk r  

 

Eqs. (3) and (4) are combined to give 

 
tj

becr euξ  222 MM22 zzdzz   
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rf

ri

ro

2mbdω

 
Figure 5. Dynamic model of a flexible rotor with a 

LeBlanc Balancer. 
 

Note that a damping term 2mbd˙ has been added, which 

can be thought mainly as viscous dissipation in the bulk-flow. 

In other words, this additional damping is due to the mass 

fraction moving backwards relative to the rigid body. The 

acceleration of the backward traveling wave, which mass is mb , 

has no radial component and only possesses tangential or 

Coriolis acceleration given by 2d˙. Therefore, its tangential 

force is defined by the term 2mbd˙., where the wave 

frequency is synchronous with . Solution of Eqs. (3) and (4) 

renders 
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The phase lag is given by 
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Where 
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Note that  is the rotor critical speed on flexible supports. 

 

   21
2

1

f21K ξ

ξ
ξe


  

 

Gunter et. al. [19] has shown that the effective damping 

can be maximized with respect to the bearing damping by 

finding the value of 1 which satisfies e/ 1 = 0. Hence 

 

 1K4

1


emξ  

2

1K
1


opξ  

 

The effects of aerodynamic cross-coupling and rotor 

internal damping will now be considered. 

STABILITY WITH OPTIMUM DAMPING AND A 
LEBLANC BALANCER 

Rotor bearing systems are frequently subjected to self-

excited instabilities mechanisms including bearings, seals, 

aerodynamic effects, and internal rotor friction damping. For 

free damped vibrations with aerodynamic cross-coupling and 

optimum bearing damping, Eq. (5) becomes 

 

   tj
bemcr eujξ  222 MQ)(M22 zzdzz   

(3) 

(9) 

(10) 

(6) 

(4) 

(7) 

(8) 

(11) 

(12) 

(5) 

(13) 
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Where em is given by Eq. (11) and Q = q/mr  
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With viscous internal friction damping Eq. (5) becomes 
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Assuming an exponential function of the form z = zest, the 

characteristic equation is of the form 
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The values of s satisfying Eq. (15) are the system 

eigenvalues. Since s is complex, Eq. (16) represents a complex 

function. In order to be zero, both the real and imaginary parts 

must be simultaneously zero. Substituting s =  + jd into Eq. 

(16) and equating individually the real and imaginary part to 

zero results in  a pair or polynomial with real coefficients, 

which need to be solved simultaneously. A rather simple 

solution for which the rotor becomes unstable can be found by 

substituting  = 0 to deliver  
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Whereas with viscous internal friction damping, the rotor 

will only be stable if the operating speed is 
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According to Eq. (17), when the rotor is unstable, it whirls 

at the undamped natural frequency plus the rising term 

depending on the traveling backwards mass of the LeBlanc 

balancer and its geometrical properties as well. On the other 

hand, Eq. (18) shows that for the rotor to be unstable due to 

internal friction damping, the rotational speed must exceed the 

undamped natural frequency plus a destabilizing term 

depending on the internal friction damping, plus a rising term 

depending on the traveling backward mass of the LeBlanc 

balancer and its geometrical properties.  
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EXAMPLES 
Industrial rotor cases will be taken form reference [15] to 

analyze the effect of the LeBlanc balancer to improve their 

stability. The internal damping for those rotors is unknown a 

priori. Some guessed values for the internal damping will be 

assumed for two conditions, namely loose and tight fit. The 

first example is a ten-stage centrifugal compressor, designated 

in the following as the “light-rotor”. The unit is nearly 

symmetrical and the rotor is supported in two five-pad tilting 

pad bearings. A second example, considers the seven-stage 

centrifugal compressor, designated from now on as the „heavy 

rotor”. This is a rotor mounted on very rigid pressure dam 

journal bearings with different stiffness values on the 

horizontal and vertical directions. The third example deals with 

an eight-stage centrifugal compressor supported on tilting pad 

journal bearings mounted in series with squeeze film dampers, 

where the stiffness values on the horizontal and vertical 

direction differ greatly from each other. The final example is 

the Space Shuttle Main Engine-High Pressure Fuel Turbopump 

(SSME-HPFTP). The HPFTP consists of a three-stage 

centrifugal pump section and a two-stage turbine section as 

shown in Fig. 6. Details of the pump configuration are given in 

reference [16]. The rotating assembly is supported in flexible 

mounted ball bearings and is acted on by aerodynamic cross-

coupling forces in the turbine section. For the purpose of 

analyzing the stabilizing effect of the LeBlanc balancer, it will 

be assumed that little damping is provided to the rotor from the 

bearings, supports and seals. The supports will be considered 

symmetric and isotropic. Different bearing stiffness values will 

be considered.  

 

 
 

Figure 6. Space Shuttle Main Engine-High Pressure Fuel 
Turbopump (SSME-HPFTP). 

 

 

 

  

(15) 

(17) 

(18) 

(14) 

(16) 

(19) 
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Table 1. Summary of stability results of industrial example rotors employing a LeBlanc Balancer. 
 

Rotor Direction
Operating 

speed [rpm]

Balance 

ring
K

Modal 

mass 

[kg]

Critical 

Speed 

[rpm]

Whirl 

frequency 

[cpm]

Loose Tight
ωd op 

[rpm]

% of 

increase

ωd op 

[rpm]

% of 

increase

qm op 

[N/cm]

% of 

increase

Without 3735 5148 6398 21390

2 3776 5377 6794 24244

Without 4912 7928 10597 42749

2 4990 8381 11382 48056

Without 2519 2872 3185 29320

2 2522 2890 3216 30521

Without 3735 5148 6398 21390

2 3776 5377 6794 24244

Without 3038 12505 20883 143313

2 3088 12853 21494 147815

Without 13880 31076 46295 213187

2 15903 39450 60290 291923

Without 15072 25646 35004 131085

2 16954 32946 47099 198260

Without 15660 22243 28069 81610

2 17478 29051 39293 143471

Loose Tight

Threshold speed of instability [rpm]

23

6

7

1

6

3

23

26

29

27

34

43

4

5

1

4

3

21

22

0.059 0.0313

12

11

4

12

3

3821306

SSME-

HPFTP
Symmetrical 28000 29

0.71

2.02 16500

10.2

0.36

4.04

215

2524

5100

2540

0.118 0.0626

Light rotor

0.059 0.0313

0.059 0.0313

3.4

5.9

Horizontal

Vertical

Above 

critical

0.118 0.0626

Symmetrical
Above 

critical

0.118 0.0626

0.059

Rotor Internal 

Heavy rotor

Horizontal
8-stage 

compressor
Vertical

10,000

0.059 0.031329.2

0.0313

 
 

 

A balance ring with dimensions ro = 0.102 m (4 in), ri = 

0.076 m (3 in), h = 0.076 m (3 in), filled with a liquid density 

of ρ = 1300 kg/m3 at ratio of 0.5 as recommend by [16] to 

maximize the balancing capabilities of the trapped fluid in the 

cavity. The fluid free surface radius rf is given by Eq. (20). 

 

   50222 rrr50r
.

ooif .   

 

Table 1 summarizes the threshold speed of instability and 

maximum aerodynamic cross-coupling improvements for all 

the example rotors. 

DISCUSSION 
The optimum bearing damping for all the rotors 

exemplified was determined and used as an input in the 

analysis. Despite of the optimization of the external damping 

and the relatively high internal rotor damping values employed 

significant improvements in the threshold speed of instability 

and maximum aerodynamic cross-coupling were obtained. 

However for the “heavy rotor” case, with the extremely stiff 

bearings, the flexible bearing critical speed is very close to the 

rigid bearing critical speed and even the external damping 

provided by the balance ring has little stabilizing effect since 

the bearing amplitudes are very small. The 8-stage centrifugal 

compressor with K = 0.36 in the vertical direction is another 

situation where the balance ring does not contribute much to 

the stability characteristics. In this case, the bearing supports 

flexibility is so large, that the external damping provided by the 

tilting pad journal bearings in series with the squeeze film 

dampers, is successful to provide enough damping to move 

forward the threshold speed of instability. The balance ring is 

of great help in the case of the SSME-HPFTP rotor, the internal 

rotor damping values used in this example are twice those for 

the other cases though. The apparent benefit is due to the high 

operating speed. This will need further experimental 

verification to ascertain whether the fluid behaves entirely as a 

solid at such high speed and confirm if the fluid backward 

traveling wave that provide the damping effect persists or 

vanishes. 

 

The added mass of the balance ring was only 1.845 kg, the 

dimensions of the ring are feasible and relatively easy to fit in 

the rotors design with some engineering work. This kind of 

devices can be particularly attractive for using in hollow rotors. 

Note that the balance ring will show even better stability 

improvements in rotors that by design do not have optimum 

external damping. The analysis can be further extended to 

consider asymmetric and orthotropic supports and other models 

for internal damping available in the literature. 

CONCLUSIONS 
Built-up rotors are prone to instability due to internal 

damping. The assembly interface causes internal friction to 

arise. Some turbomachines account with shrink-fit aluminum 

wheels that may be potential sources of instability. In many 

other cases separating steel wheels and sleeves in between 

stages also interference fitted can add internal rotor damping. 

This paper presents for the first time the stabilizing capabilities 

of the LeBlanc balancer. Hollow rotors with fluid trapped 

inside, suspension segregation centrifuges, liquid-cooled gas 

turbines, spin-stabilized satellites, spinning rockets containing 

liquid fuel, home appliances such as washer machines, liquid-

filled flywheel apparatus for motorcycles, automobiles, trailers 

and heavy vehicles tires self-balancing are just few examples of 

machines for which this kind of balancer is applicable not only 

(20) 
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to balance the rotating system but also to achieve much higher 

stable rotational speeds. 
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APPENDIX 1- DERIVATION OF DISTANCE FROM 
FLUID C.G. TO POINTS C AND O 

Assuming the fluid center of gravity F to be coincident 

with its centroid, the distance of the former to C is obtained 

according to 
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Where n stands for the n-esim area An which centroid is at 

a distance Cn to the point C. 

 

Similarly, the distance of the fluid center of gravity to O is 

given by 
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Note that by employing d and    as expressed above, Eqs. 

(5) and (15) are put in terms solely of z and its derivatives, such 

that easily solvable second order ordinary linear differential 

equations with constant coefficients are obtained. The terms d 

and    are further useful substitution to simplify both, the 

unbalance response solution shown in Eq. (6), and the 

characteristic polynomial stated in Eq. (16). 

APPENDIX 2- SIMPLIFICATION OF EQUATION OF 
MOTION 

The differential equations of motion of a Jeffcott rotor 

mounted on symmetric flexible bearings are given by Eqs. (3) 

and (4). 

 

Dividing Eq.(3) by mr and since cr
2 = kr/mr 
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Similarly, Eq. (4) renders Eq. (22). 
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Since K = k1/kr  and 1 = c1/2mrcr   
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(21) 

(22) 
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Assuming particular function solutions of the form z = ze jt 

and z1 = z1e
 jt and dividing by cr

2    

 

0Kf2 1111  zzzzjξ  

 

Rearranging and solving for z1 in terms of z. 
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Multiplying by the complex conjugate in the numerator 

and denominator 
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Let D = (K+1)2 + (21f )
2, then 

 

zzz 
cr

ξ







D

2

D

1K 1
1  

 

Substitution of Eq. (23) into Eq. (21) delivers 
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Which with further algebraic manipulation reduces to 
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The latest has the form of Eq. (5) 
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