
 1 Copyright © 2011 by ASME 

 

 

 

 

  

AN INVESTIGATION INTO TWO ALTERNATIVE APPROACHES FOR THE 

IDENTIFICATION OF SFD BEARINGS FOR AEROENGINE ANALYSIS 
 

 

Keir Groves 
School of Mechanical, Aerospace and Civil 

Engineering, University of Manchester 
Manchester, UK 

Philip Bonello 
School of Mechanical, Aerospace and Civil 

Engineering, University of Manchester 
Manchester, UK 

 

 

ABSTRACT 
Identification techniques provide a means of efficiently 

implementing complex nonlinear bearing models in practical 

turbomachinery applications. This paper considers both 

identification from an advanced numerical model and 

identification from experimental tests. Identification from 

numerical models is essential at the design stage, where rapid 

simulation of the dynamic performance of a variety of designs 

is required. Experimental identification is useful to capture 

effects that are difficult to model (e.g. geometric 

imperfections, compressibility and its effect on cavitation). 

With regard to identification from a numerical model, it was 

shown in a previous paper that the numerical solution of the 

incompressible Reynolds equation may be replicated using 

Chebyshev polynomial fits. Tests were performed on a simple 

rotor-bearing configuration incorporating an advanced 

numerical bearing model. The identified model was found to 

be able to match the accuracy of the numerical solution to the 

Reynolds equation while requiring a fraction of the 

computation time. In the present work the SFD identification 

scheme is applied to a realistically-sized representative whole-

aeroengine model. It is shown that using recently introduced 

nonlinear solvers combined with the identified high accuracy 

bearing models it is possible to run full engine rotor-dynamic 

simulations, in both the time and frequency domains, at a 

fraction of the previous computational cost. One major 

drawback of the Chebyshev technique is that it is not amenable 

to experimental identification of actual bearings. For this 

reason, a second identification approach, involving the use of 

neural networks, is considered in this paper. A test rig that 

enables empirical identification of SFD forces has been 

constructed and details of the building and operation of the test 

rig is presented. The method used to ascertain the training data 

required by the neural network identification scheme, is also 

described. 

1   INTRODUCTION 
Squeeze film dampers (SFDs) are frequently used for 

attenuating vibration and transmitted forces in rotating 

machinery. An SFD comprises a thin pressurised oil film 

within the annular clearance between the non-rotating outer 

race of a rolling-element bearing (the SFD journal) and its 

housing. Its compact size and robustness make it 

commonplace within modern aircraft gas turbine engines. 

However, in order to ascertain smooth running, the 

deployment of these bearings in such machinery necessitates 

the ability to perform unbalance response analysis that takes 

account of the bearing nonlinearity. The challenges faced by 

the analyst are twofold: (a) the complexity of the structural 

dynamics of two/three-spool aeroengines; (b) the reliability of 

the model used to represent the SFDs. Recent developments by 

the authors in the area of identification techniques [1] 

(addressing challenge (b)), alongside advances in the 

computational speed of nonlinear whole-engine solvers of 

Bonello and Hai [2, 3] (addressing challenge (a)), have opened 

the possibility of using advanced numerical SFD models in 

whole-engine simulations, where previously such analysis was 

computationally prohibitive. 
 

 The nonlinear solvers used to calculate the unbalance 

response work either in the time domain or in the frequency 

domain. Time domain solvers progress forward in time until a 

steady-state response is obtained that may not necessarily be 

periodic. Frequency domain solvers are inherently much faster 

since they extract steady-state solutions that are assumed to be 

periodic of given fundamental frequency. Previous studies e.g. 

[3] have illustrated the benefit of a computational facility that 

takes advantage of the relative merits of both time and 
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frequency domain methods through an integrated approach 

that makes effective use of both. Prior to the research in [2, 3], 

such time/frequency domain calculations on realistic 

aeroengine models were prohibitive due to the large number of 

assembly modes that need to be considered. This problem has 

been overcome by the novel Impulsive Receptance Method 

(IRM) and the Receptance Harmonic Balance Method 

(RHBM), which efficiently solve the nonlinear problem in the 

time and frequency domains respectively [2, 3]. The IRM is an 

implicit integration algorithm. Its equations relate the 

instantaneous relative displacements and velocities at the 

nonlinear elements (SFDs) with the motion-dependent 

excitations (SFD forces, gyroscopic moments) and other 

excitations (unbalance, distributed rotor weight) acting on the 

linear part of the system. Hence, unlike conventional implicit 

integrators, the IRM‟s computational efficiency is largely 

immune to the number of modes since the number of equations 

to be solved at each time step is dependent only on the number 

of SFDs [2]. The RHBM is the frequency-domain counterpart 

of the IRM. It is similarly immune to the number of modes 

since it makes use of frequency response functions 

(„receptances‟) to relate the harmonics of the relative 

displacements at the SFDs with the corresponding harmonics 

of the excitations (motion-dependent and otherwise) acting on 

the linear part of the system [3]. The unknowns to be solved 

for are the harmonics of the relative displacements at the 

SFDs. Since the SFD forces are known nonlinear functions of 

the relative displacements and velocities, the harmonics of the 

SFD forces are determined through a Fourier analysis of their 

time histories for an assumed solution. This allows solution by 

iteration [3].  
 

The reliability of the response prediction clearly hinges on 

the reliability of the model used for the SFDs. Moreover, like 

conventional methods, these new methods still require a 

number of SFD force computations per time step (IRM) or 

iteration (RHBM). In the case of RHBM, one iteration 

requires the calculation of the SFD forces at each of an 

adequate number of time points over the period of vibration in 

order to obtain their Fourier coefficients. The iterative process 

also requires a Jacobian matrix that is obtained through 

repeated calculation of these Fourier coefficients. The SFD 

model can cripple a time/frequency domain solver unless the 

SFD forces are rapidly computed. In summary, the speed 

/reliability of the unbalance response solution is wholly 

dependent on the speed/reliability of the SFD model   
 

To enable rapid computation of SFD forces, SFD models 

based on one dimensional approximations of the Reynolds 

lubrication equation are commonplace within industry and the 

literature [2-4]. Such one-dimensional analytical solutions are 

achieved by assuming that pressure gradients in one direction, 

either circumferential or axial, are negligible and are 

respectively named short and long bearing solutions. In the 

literature there are many variants of the long and short bearing 

approximations [4, 5]. The most prominent of these variants 

involves the combination of the short and long pressure 

solutions through an empirical „end-leakage factor‟   that 

accounts for the degree of end-sealing [5, 6]. This model is 

popular with industry and was used recently for whole-engine 

analysis with 5 SFDs using IRM and RHBM [7]. As stated in 

[1], the factor   can only be related to the parameters of a 

given bearing when it is hosted in a given experimental setup. 

Attempts to theoretically relate it to the SFD parameters have 

proved unsuccessful [5]. Moreover, this  -model cannot 

account for the effect of the groove and feed-ports. 
 

A numerical scheme such as finite difference (FD) [8] or 

finite element (FE) [9] is required if the Reynolds equation is 

to be solved in its full two-dimensional form with realistic 

boundary conditions. The use of such a numerical scheme 

within a time/frequency domain solver is computationally 

unattractive, even prohibitive for large engine simulations. 

This leads to the work of a previous paper [1], wherein a novel 

identification technique was presented that provides a rapid 

means for FD models to be deployed. Boundary conditions 

were developed to allow the SFD model to include any 

combination of end-plate seals, grooves and feed-pipes. The 

technique has benefit over previous similar works of 

Rodrigues et al. [10] and Chen et al. [11] since no assumption 

was made about the range of input variables, the cavitation 

pressure or the axial symmetry of the pressure boundary 

conditions. 
 

The technique introduced in [1] was only tested on a 

simple test rig. In Section 2 of this paper, the first whole-

aeroengine analysis is performed using an advanced two-

dimensional numerical bearing model, which can account for 

an arbitrary number of non-axisymmetric boundary conditions. 

The engine-model analysed is a twin-spool 5-SFD engine that 

was previously analysed in [2, 3] using the  -model. The 

identification technique introduced in the current work is an 

even more efficient version of the identified FD model 

presented in [1]. 
 

Despite the significant developments regarding the 

identification of advanced theoretical models in [1], there are 

still inherent limitations. The use of the incompressible 

Reynolds equation means that the effects of compressibility 

due to air entrainment are not accounted for. Variable 

cavitation pressure is often observed in experiments [5, 12], 

suggesting that air entrainment and therefore cavitation is 

dependent upon the bearing dynamics. Although attempts have 

been made to account for compressibility of the fluid film e.g. 

[13, 14], these have always come at the expense of other 

significant effects, namely the prescription of realistic 

boundary conditions. Moreover, a theoretical model may fail 

to account for geometric imperfections that exist within the 

SFD assembly. Due to the scale of a typical SFD, deviation 

from theoretical geometry is highly likely; such imperfections 

can have a significant effect on SFD behaviour e.g. seal gap 

dimension and clearance shape. 
 

For the reasons given in the previous paragraph, 

identification from empirical data is also considered. Section 3 

of this paper gives details of a test rig that is capable of 

measuring SFD forces and relative motion across the film. 

Using a sophisticated identification technique it is possible to 

„learn‟ the empirical relationship between SFD force and 
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relative journal motion. This technique provides an SFD 

model that is individual to the particular SFD. The model will 

intrinsically contain all complexities of the SFD force 

relationship and account for any imperfections within the SFD 

geometry. Once identified, the SFD model may be applied to 

any rotor-dynamic system, enabling the realisation of a truly 

realistic response. 
 

Previous works e.g. [15, 16] have performed empirical 

identification on rotordynamic systems. However, works 

involving SFDs (e.g. [15]) are limited to the use of linearised 

force coefficients to compute SFD forces. The linear 

assumption is only valid for small amplitude vibrations about a 

fixed location; thus limiting them to highly idealised 

conditions which are unsuitable for realistic engines. Medina 

and Parada [16] use a neural network based scheme to identify 

the open loop response of an active magnetic bearing.  A 

NNARX (neural network autoregressive external input model) 

neural network with multilayer perceptron topology was used 

to relate amplifier current demand to shaft position 

information, while operating in closed loop with a plant 

controller. The system was trained using data generated by 

adding a chirp signal to the output of the plant controller. 

Identification was successfully validated using unbalance 

applied to the rotating shaft. Despite successful identification, 

applications of the technique are somewhat limited to use in 

controller design. 

 

2 TWIN SPOOL ENGINE MODEL WITH 

THEORETICAL IDENTIFICATION 
In the present section the first full aeroengine analysis that 

includes two-dimensional SFD models with advanced 

geometric boundary conditions is presented. The analysis 

considers the same representative twin-spool aeroengine, from 

a leading manufacturer, used in [2, 3]. The schematic layout of 

this engine is reproduced in Figure 1. As can be seen from 

Figure 1, a parallel retainer spring („squirrel cage‟) is only 

used with one SFD at the end of each rotor for axial location. 

 

 
Figure 1: Schematic of a typical twin-spool engine [3] 

 

2.1 Rotor-dynamic Solution Procedure 
The reader is referred to references [2, 3] for a full 

description of the workings of the IRM and RHBM solvers. 

The complete nonlinear rotor-dynamic assembly is regarded as 

a non-rotating linear part acted on by „external‟ excitation 

(comprising the unbalance, the distributed rotor weight, the 

gyroscopic effect and the SFD forces). By “linear part” is 

meant the structure left after all SFDs in the schematic of Fig. 

1 are replaced by „gaps‟. A realistically-sized finite-element 

(FE) model of the linear part (including the casing) was 

provided by the engine manufacturer. 
 

The IRM and RHBM require a preliminary one-off 

eigenvalue analysis of the undamped linear part at zero 

rotational speed.  The modal displacements (eigenvectors) 

were then extracted at the degrees of freedom of interest (e.g. 

those at the SFD positions) and used as input data for the IRM 

and RHBM solvers to calculate the unbalance response of the 

complete nonlinear rotating system.  
 

For the case analysed in this paper the unbalance was 

restricted to the LP rotor only (corresponding to the single 

frequency unbalance (SFU) excitation case analysed in [3]). 

The unbalance was applied at two locations, one at each end of 

the LP rotor, to simulate unbalance in the fan and the LP 

turbine. The unbalances were in-phase and of magnitude 6.3 

kgmm. Reference [3] provides a figure detailing the relative 

axial positions of the SFDs and the unbalance locations, as 

well as the distribution of the weights of the two rotors. The 

gyroscopic effect was discretised at 7 points on the LP rotor 

and 12 points on the high-pressure (HP) rotor.  
 

The bearing housings were assumed to be perfectly 

aligned with each other prior to rotor assembly. As in [2, 3], 

the SFDs considered for this study were single-land and end-

fed with oil of viscosity 0.0049 Nsm
-2

 at a pressure of 3 bar 

(gauge). The overall bearing dimensions were the same as 

those used in [3]: the bearing diameters and radial clearances 

were typically 200 mm, 0.1 mm respectively and the land 

lengths ranged from 16 to 34 mm. Those dimensions of the 

SFD features that were not modeled in the simplified bearing 

model used in [2, 3] (namely the groove, the end-seal and the 

feed-ports) were assumed by the authors and do not 

correspond to any particular bearing used by the manufacturer.  
 

The nonlinear analysis was performed for a fixed speed 

ratio     2.112   where  1 ,  2  are the speeds of the 

LP, HP rotors respectively. All 934 modes of the linear part 

over the range 0-1kHz were included in the nonlinear analysis 

due to high shaft speeds and harmonics in the response. In the 

case of the IRM, the number of equations solved at each time 

step is 20 [1]. In the case of the RHBM since the case 

considered is SFU, the fundamental frequency of the response 

was taken to be synchronous with the speed of the unbalanced 

shaft (  1 ). As in [3], eight harmonics of this frequency were 

considered and so the total number of unknown Fourier 

coefficients was 174. A predictor-corrector continuation 

scheme was used to advance the RHBM solution process over 

a range of speeds tracing out a „speed-response‟ curve [3]. The 

initial approximation („predictor‟) to the Newton-Raphson 

solver at an attempted solution point on the speed response 

curve was estimated from the previous solution points. The 

initial approximation to the first solution point (only) was 

provided by the Fourier coefficients of a time-domain solution. 
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All simulations were performed in Matlab on a standard 

desktop pc with Intel Pentium D CPU 3GHz processor. 

 

 
Figure 2: Axial cross-section of SFD 

 

2.2 SFD models 
The SFDs used in the engine are end-plate sealed, end-fed 

bearings as per Figure 2. The SFD modeling techniques are 

taken from [1], where detailed information may be found. 

However, a brief description is given below. Fluid film inertia 

effects are neglected in the SFD model as the identification 

technique, in its present state, does not lend itself to the 

inclusion of the extra acceleration variables. 

 

 
Figure 3: Polar coordinate system 

 

With reference to Figure 3, the instantaneous pressure 

distribution  ,zp  is given by the solution to the 

incompressible Reynolds equation [17]: 
 

 


cossin12
1

2

2
33

2
ee

z

p
h

p
h

R
 






























     (1) 

 

…. where cosech  . The radial and tangential SFD 

forces T,RQ  are then given by: 
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... where  ,zp t  is a pressure distribution that is truncated to 

account for oil film rupture due to cavitation: 
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In this research, the cavitation pressure cavp  is set to -101.325 

kPa (absolute zero) as recommended in [13, 18] and used in  

[1-3].  
 

The Reynolds equation is solved by converting partial 

derivatives into central difference formulas and using Castelli‟s 

column method [8] to solve for a grid of pressures jip ,  over 

the SFD land where j refers to node locations in the   

direction and i refers to locations in the z direction. The FD 

solution is then identified using Chebyshev polynomials. Using 

the technique introduced in [1], the identification is performed 

upon the static and dynamic components of each mesh point 

pressure: 

    ,,,,
,,, epeepp
jiji statdynji      (4) 

 

 This allows the addition of arbitrary boundary conditions 

cavitation pressure while maintaining the benefits of the 

reduction technique of Chen et al. [9]. This reduction 

technique exchanges e  and   in the first term of (4) for a 

single variable 2/1q  with limits of  1. The reader is referred 

in [1] for the details of this manipulation. 
 

Two alternative SFD models are identified in this analysis. 

The first SFD model is termed the deep groove model, it has 

moderate end-plate sealing and pressure at the groove is 

assumed to be constant. The end-plate seal boundary condition 

assumes a constant pressure gradient within the seal and 

constant outlet pressure. By performing a volume flow balance 

at the seal entrance it may be shown that considering the 

pressure mesh jip , : 
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The second model maintains moderate sealing and accounts 

for the added damping effect of the groove as well as the 

hydrodynamics of the feed-ports; this model is termed the 

feed-port model. To model the feed-groove an extra land is 

added onto the existing model. The relationship between the 

land and groove is established by continuity of flow in the z 

direction at the boundary between them. Equating flow rates 

gives 
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The feed-port boundary condition is achieved by implementing 

a pipe flow relationship [19], the volume flow rate is expressed 

as a function of the variable pressure at the feed-port outlet 

and the constant supply pressure sp in the pipe leading to the 

feed-port : 
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Once more, by performing a volume flow balance at the port 

the boundary condition may be obtained. 
 

In the present work, the polynomial computation routine 

used in [1] is greatly improved by reducing the number of 

redundant calculations performed. The pressure function is 

identified for a grid of nodes covering the bearing land and is a 
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function of 1 to 3 variables, dependent upon the component of 

pressure being considered (static or dynamic) and the axial 

symmetry of the boundary conditions. A Chebyshev 

polynomial of degree r is defined as     xrxTr arccoscos , 

for 11  x  and m,,r 210 . Letting  ,ef fit  denote 

the Chebyshev polynomial fit of the function  ,ef with two 

dependant variables, then: 
 

     
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s
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where, s,rC  are the coefficients that may be determined by 

invoking the orthagonality of the polynomials [10], e~  and ~  

are e  and   normalised over the range 1 :   
 

    minmaxminmax eeeeee~  212    (9) 
 

…similarly for ~ . For efficiency within Matlab®, 

computation of the pressure grid is performed as a matrix 

operation. Although immensely faster than computing 

sequentially, it has the drawback that at each pressure location 

the same number of polynomial coefficients C must be used. 

This causes much redundant processing since high order 

polynomials are only necessary at more central locations 

within the grid. At locations away from the centre of the 

pressure grid, high order polynomial fits result in a large 

amount of near zero coefficients that are included in the 

pressure computation. To reduce computations on near zero 

polynomial coefficients, while retaining the benefit of parallel 

computation, a reduction technique has been implemented. 

The technique identifies regions within the pressure grid that 

require a similar number of coefficients and arranges them into 

smaller matrices while a vector of their origin is recorded. 

Splitting the calculation into three segments was found to give 

the best balance between time saving from reduction of null 

coefficients and time cost from the system working 

sequentially combined with the re-indexing process. The 

reduced system can perform forward computation in 

approximately half the time with no loss of accuracy. 

 

2.3  Engine analysis with deep grove bearing model 
Two key tests were performed on the engine model. First, 

a transient analysis was performed using a combination of 

solvers and bearing models to demonstrate agreement between 

the different methods and to profile the time savings that can 

be achieved using the identification technique described in 2.2 

and the IRM time domain solver of [2]. Second, steady-state 

speed responses were performed using the RHBM solution 

method of [3] to demonstrate the computational savings that 

may be achieved by using identified bearing models in 

frequency domain analysis. In the following discussion, the 

identified SFD model is referred to as the „FD-Chebyshev‟ 

SFD model. 
 

The transient analysis was performed over 10 LP rotor 

revolutions from default initial conditions (corresponding to 

zero relative displacements and velocities at each SFD). The 

low pressure (LP) and high pressure (HP) rotor speeds were 

10,000 and 12,000 rev/min, respectively. The SFD model used 

a seal gap ratio d/c of 0.5 with a seal length of 3mm. The 

pressure grid used 101 nodes on the   axis and 51 nodes in 

the z axis. In testing, convergence of the pressure mesh was 

observed at 61 nodes on the   axis and 31 nodes in the z axis. 

The highest degree of Chebyshev polynomial used for each 

variable is shown in Table 1. The analysis was performed for 

three cases: (a) using the IRM solver and the (unidentified) FD 

SFD model; (b) using the IRM solver with the FD-Chebyshev 

SFD model and (c) using a conventional implicit integrator 

(i.e. Matlab® ‟s ode23s© routine) with the FD-Chebyshev 

SFD model. This latter case was included to confirm the 

robustness of the IRM. Figure 4 shows the relative 

displacement (i.e. journal relative to housing), relative velocity 

and force orbits obtained from the LP-rear bearing (SFD no.5 

in Figure 1) for the IRM-FD case. Plots from the other cases 

have been omitted as the orbits are indistinguishable. The LP-

rear bearing was chosen to be presented as it is the furthest 

from the retainer spring and will therefore have the most 

nonlinear response. To compute the IRM-FD response took 

11000 s; using Matlab® ‟s ode23s© with FD-Chebyshev took 

9600 s while using IRM-FD-Chebyshev took only 350 s. 

These results clearly show that the combined use of the IRM 

technique and the FD-Chebyshev can drastically reduce 

computation times. 
 

Pressure 
function 

Variabl
e 

Degree of polynomial 

 

for jidynp
,  

e  25 

21 /q
 

1 

for jistatp
,  

e  4 

Table 1: Highest degree of polynomials used to perform fit for 
the deep groove bearing model 

 

RHBM speed response curves were obtained using both 

the FD bearing model and the FD-Chebyshev bearing model 

over an LP rotor speed range of 150 to 200 rev/s. Figure 5 

shows the orbit amplitude obtained from the LP-rear bearing in 

the y direction, computed using the RHBM. The amplitudes 

were also checked by IRM at discrete speeds. From the plot, 

near perfect agreement is clear between FD, Chebyshev and 

IRM, equally excellent agreement was observed at the other 

four bearings. Figure 6 presents the times taken to produce the 

orbits for both the Chebyshev and FD bearing models. It is 

quite clear that the Chebyshev technique can accurately mimic 

a FD model in under 10% of the time. 

 

2.4 Engine analysis with feed-port bearing model 
The previous section verified the validity of using 

Chebyshev identification to implement FD models. In the 

present section the same steady-state analysis of section 2.3 is 

performed with the more advanced feed-port model that 

includes the groove as a damper land and models the 

hydrodynamics of the oil-feed arrangement. The inclusion of 

feed-ports increases the dimension of the pressure function 

input space as pressure becomes a function of   as well as e , 

e  and  . This causes the dimension of the polynomial 
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coefficient matrices to rise by 1 in accordance. The highest 

degree of Chebyshev polynomial used for each variable is 

shown in Table 2. For the FD scheme to function accurately, 

the node spacing must be equal throughout the pressure grid. 

Since both land length and groove length are fixed, careful 

selection of the number of nodes is necessary to ensure equal 

node spacing. The number of nodes in the z direction was 

always above 30 while greater than 60 nodes was maintained 

in the   direction as testing revealed that force computation 

accuracy degrades below these values. The groove cg was 

considered to be 1 mm deep with a length of 4 mm and the oil-

feed is modeled as three equispaced feed-ports of diameter 1 

mm and length 20 mm. 

 

 
 

 
Figure 4: Transient response of SFD 5 using the IRM solver 

and FD SFD model 
 

 

 
Figure 5: Speed response curves of the y  relative 

displacement at SFD 5 (vertical axis gives half-peak-to-peak 
amplitude normalised by the radial clearance) 

 

 
Figure 6: Chebyshev vs. FD with RHBM speed control-control 

continuation 
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Table 2: Highest degree of polynomials used to perform fit for 
the feed-port bearing model 
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Figure 7 shows the orbit amplitude obtained from SFD 1, 

computed with FD-Chebyshev and RHBM. Both the response 

using the deep groove model and the feed-port model are 

plotted. The plot clearly shows the increased damping 

introduced by the shallow groove over the complete speed 

range. This is attributed to the fact that in the feed-port model 

the groove is treated as an extra land, without a fixed boundary 

pressure at the feed end. Added damping was observed at all of 

the bearing locations but was found to be most pronounced at 

SDF no. 1. 
 

 
Figure 7: y-relative displacement amplitudes calculated for 

SFD 1 computed using RHBM for the deep groove and feed-
port model (vertical axis gives half-peak-to-peak amplitude 

normalised by the radial clearance) 

3 EMPIRICAL SFD IDENTIFICATION 
Using a purpose-built test rig, SFD forces and the 

hydrodynamic motion that acts to create them may be 

measured and used to train a neural network. The end goal is 

to deploy such an identified bearing model within an all-

encompassing engine model, as performed in section 2. At this 

stage however, identified SFD forces are compared to 

experimental readings and theory as a basis for future work. 

 

3.1 The test rig 
The test rig of figure 8 was converted from a rotating rig 

to a specially designed identification setup. The test rig 

consists of a heavy rotor with a self-aligning bearing support at 

the right hand end and a single bar spring at the left. Also at 

the left hand end is an SFD that is flexibly supported. The 

rotor is prevented from rotating and the excitation force is 

supplied by a pair of orthogonal shakers that can accept 

custom input signals. The bar spring is relatively flexible as it 

is designed to hold the static load of the rotor while allowing 

free movement of the SFD journal within the housing. The 

linear subsystem may be separated into its horizontal and 

vertical components. A point mass model of the system is 

presented in figure 9. Impact testing was performed upon both 

the housing and the journal and it was confirmed that a point 

mass model is applicable over the frequency range considered. 

The effective mass of the rotor at the SFD is 21.27 kg while 

the stiffness of the bar ( Jk ) is 305 kN/m in both the horizontal 

and vertical directions. The effective housing mass is 4.369 kg 

in the horizontal direction and 4.325 kg in the vertical and the 

housing stiffness values ( Hk ) are 601 kN/m and 592 kN/m 

respectively. The SFD in the test rig is a lightly sealed two-

land bearing with a relatively deep groove where oil supply is 

provided through 3 equispaced feed-ports in the bearing 

housing. The SFD parameters are presented in Table 3. 

 

 
 

 
 

Figure 8: Photo of the test rig converted for identification 
 

 

 
Figure 9: Point mass model of the test rig 

 
 

Journal radius 69.85 mm 

Radial clearance 0.90 mm 

Land length 6.23 mm 

Groove width 7.42 mm 

Groove depth 2.03 mm 

Seal gap 0.5 mm 

Seal length 3.15 mm 

Oil viscosity 0.0049 Pa s 

Feed-port diameter 1.5 mm 

Feed-port length 25 mm 

Feed pressure 80 kPa 

Table 3: SFD parameters 
 

 

 

Relative displacement across the film is measured by a 

pair of displacement probes attached to the SFD housing. The 

absolute displacement of the housing is measured by another 

pair of probes attached to a rigid frame. Accelerometers are 
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attached to the journal and housing and the force applied to the 

test rig is measured by force gauges fixed in the shaker 

stingers. To perform identification on the SFD, instantaneous 

relative displacement and velocity in two directions must be 

recorded, alongside the cross-coupled SFD forces. While 

relative displacement is measured directly by the probes, 

relative velocities are computed in two alternative ways. 

Firstly by differentiation of the filtered displacement signal, 

secondly by the integration of the relative acceleration that is 

ascertained by subtracting the housing acceleration from that 

of the journal. Computation of the SFD force is also performed 

in two ways to ensure that measurement is correct. With 

reference to figure 9, the SFD force is computed as: 
 

HHHH
H
y ykymQ                           (10) 

…and also as: 

yJJJJ
J
y FykymQ                     (11) 

 

3.2 The neural network 
Empirical identification is much better suited to the use of 

a backpropagation trained neural network identification 

scheme than Chebyshev polynomial approximations. The 

nature of the backpropagation scheme means that a certain 

degree of noise can be tolerated in the training data. This is 

due to the fact that the network weights and biases are only 

modified to reduce  the network error for an individual training 

vector and not fully eliminate it. Conversely to Chebyshev 

polynomials, a neural network can be trained on any data that 

is available. This means that the training data locations and 

shape of the input space is not prescribed by the network; the 

network adapts to the data it is fed. Since it is not possible to 

experimentally implement the reduction technique used in [1] 

the inclusion of 4 input variables is necessary. This is another 

reason why the use of Chebyshev polynomials is unsuitable. 

While Chebyshev identification for greater than 3 input 

variables is possible, the procedure becomes cumbersome 

[10]. 
 

Neural network training and implementation was 

performed using the Matlab® neural network toolbox. A feed-

forward network with 4 layers was used. The input layer had 4 

neurons while the two hidden layers both had 8 neurons and 

the output layer had 2 neurons. All layers used hyperbolic 

tangent sigmoid transfer functions and all inputs and outputs 

were normalised. Training was performed using Levenberg-

Marquardt optimization and was stopped by use of a validation 

data subset that comprised 20% of the initial training data. 

Inputs to the network were the displacements and velocities of 

the SFD journal relative to the housing, Rx , Ry , Rx  and Ry , 

while the outputs were xQ  and yQ . 
 

The range and quality of data is a key factor in achieving 

good identification. Since the data is empirically obtained it is 

not possible to prescribe data locations within the input space. 

Instead, a range of forcing functions must be selected that 

induce the desired coverage of the input space. It is also of key 

importance that the data, upon which the network is trained, is 

significantly different in nature from test data. For these 

reasons the training data was obtained by applying band 

limited random signals to the shakers of varying amplitude and 

frequency content. Table 4 presents the various signal 

properties used in the creation of training data. For each 

random signal, 60 seconds of data was taken in 10 second 

blocks, the data was sampled at 3,200 Hz. The raw data was 

filtered to remove excess noise and verified by testing 

agreement between the readings from different sensors. The 

data was processed to compute velocities Rx  and Ry  and SFD 

forces xQ  and yQ . Once processed, the data was re-sampled 

at 640 Hz to achieve a significant difference between 

consecutive data points. Finally, the data was jumbled to 

prevent similar training pairs being presented to the network 

successively. Training was performed 5 times and the network 

that achieved the lowest mean square error selected. 

 
 
 

Force 
N(RMS) 

Frequency 
content Hz 

37 10-50 

37 10-100 

50 10-30 

50 10-50 

50 10-100 

60 10-70 

60 10-200 

Table 4: Random force function parameters 
 
 

 

3.3 Results 
The network identification was tested by applying to the 

rotor orthogonal shaker forces that mimic the force from a 

rotating unbalance. Relative vibration across the film and the 

SFD forces were measured under steady-state conditions. The 

use of entirely different signals for training and validation 

ensures that the network has not simply learned to reproduce 

the data set but has learned the SFD input-output relationship. 

Figure 10 shows two revolutions of the steady-state orbit of the 

SFD when a shaker-generated rotating unbalance force of 

amplitude 80 N and frequency 40 Hz is applied to the rotor. 

Figure 10a,b show the displacement and velocity orbits 

respectively while 10c shows the SFD force obtained in three 

ways: (a) measured from the test rig using Eq. (11); (b) 

calculated using the trained neural network; (c) using the feed-

port FD scheme of section 2, with the bearing parameters of 

table 3. Figure 11 presents the same three plots but using a 

force signal with amplitude 115 N and frequency 60 Hz. 
 

The clearance boundary, although generally assumed to be 

circular, was found to be distorted. In view of the small radial 

clearance and the machining tolerances the assumption of a 

perfect circular boundary is somewhat idalised. This further 

supports the need for identification schemes and SFD models 

that are capable of accounting for non-axisymmetric boundary 

conditions. 
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Figure 10: Steady-state response of the test rig under circular 
force with 80 N amplitude and 40Hz frequency 

 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 11: Steady-state response of the test rig under circular 
force with 115 N amplitude and 60Hz frequency 
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The results clearly show that the neural network has 

identified the SFD force function well. In Figure 10c the SFD 

force is slightly overestimated in general, but the shape and 

size of the orbit closely resembles the measured force. The 

theoretical FD-computed forces somewhat underestimate the 

SFD force and therefore the damping effect of the bearing. The 

results of figure 11c show a similar result. The identified SFD 

force orbit is slightly bigger than the measured orbit but in 

general the fit is very good. Again, the neural network model 

performs much better than the theoretical model as again the 

damping capability of the SFD is underestimated. 
 

The slight discrepancy between measured and identified 

SFD forces in figures 10c and 11c may be attributed to the 

data used to train the neural network. The use of random 

excitation signals generated relative motion within the SFD 

with large variation of e and e  but somewhat lacking in   

and   variation. Therefore distribution of data within the 

training set may have adversely affected the training. 
 

Negating the inclusion of acceleration terms in the 

identification means inertia of the fluid film may not be 

accounted for by the network. However, the identification 

manages to reproduce the SFD relationship well despite this 

omission. The implication of this is that inertia is not having a 

notable effect on force computation, therefore the 

underestimation of FD computed SFD forces is not due to the 

omission of fluid inertia effects. The cause may lie in the 

assumption that the SFD clearance is perfectly circular. It is 

quite clear from figures 10a and 11a that the clearance is 

irregular and this will have an impact upon the SFD forces. 

4  CONCLUSIONS 
This paper has demonstrated the benefits that may be 

achieved in both computation time and accuracy by the use of 

identification techniques in SFD modeling. Time and 

frequency domain analyses on the nonlinear unbalance 

response of a whole-engine model were performed, for the first 

time, using a high accuracy two-dimensional bearing model 

that accounted for the effects of complex geometric boundary 

conditions. The ability of Chebyshev polynomial identification 

to reduce computation times by more than a factor of 10 while 

maintaining accuracy was demonstrated. The improved 

identification technique presented in this paper is shown to 

enable whole-engine analysis with advanced numerical SFD 

models within reasonable time frames on a standard desktop 

computer. The study also concluded that the use of a shallow 

groove in SFD design results in a significant reduction in 

vibration amplitude when compared to a deep groove model.  
 

A novel identification technique based upon empirical 

data was then presented and preliminary investigations were 

shown to produce highly encouraging results. Previously, two-

dimensional FD solutions to the Reynolds equation, with 

boundary conditions designed to replicate the hydrodynamic 

interaction of the fluid with the geometry of the land(s) and the 

feeding and sealing arrangement, were shown to be superior to 

approximate analytical solutions [1]. However, in the present 

paper it is shown that empirical neural network identification 

can provide more reliable predictions than an advanced 

numerical model. The presented investigation into empirical 

identification, although instructive, performed only basic 

testing of the technique. Future work will focus on testing the 

ability of the technique in predicting the response of a test rig 

that incorporates an identified bearing as well as the inclusion 

of the empirically indentified bearings in whole-engine 

analysis. 
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NOMENCLATURE 

hA  Area of the feed-port hole 

c  Clearance of a centred SFD (m) 

iC  Chebyshev polynomial coefficients 

d  Gap between sealing plate and journal (m) 

e  Journal eccentricity (m) 

F  Shaker force (N) 

h  Squeeze film thickness (m) 

k Spring stiffness (N/m) 

sl
 

Effective length of end-plate seal (m) 

m  Mass (kg) 
p  Pressure (Pa) 

q Reduced form of e  and   

Q
 

Squeeze film force (N) 

R  Radius of SFD journal (m) 

iT  The Chebyshev polynomials 

  Angular location (rad) see Figure 2 
  Dynamic viscosity (Pa s) 
  Attitude angle (rad) 

  Rotor speed (rev/min) 

)(  differentiation with respect to time t 

R()  Relative property 

J()  Journal property 

H()  Housing property 
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