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ABSTRACT 
The mathematical model of film thickness is developed 

with considering the compressibility of the gas and the 

deformation of the foil in this paper. By employing the Newton-

Raphson method and the finite difference method, the 

compressible gas lubricated Reynolds equation and the film 

thickness equation are solved coupling together. The static 

characteristics such as pressure distribution and film thickness 

distribution for equivalent bump foil stiffness model are 

obtained to verify the validation of the proposed method. The 

gas film thickness model is modified by modeling the top foil as 

the one dimension curved beam, to meet the case of the real 

physical model. The numerical results of this modified 

structural model are compared with the other finite element top 

foil models. It indicates that the pressure distribution for bump 

foil gas bearing is in good agreement with the test data.  

 
INTRODUCTION 
 Bump-type foil bearings are compliant, self-acting hydro-

dynamic air bearings which are used in high-speed rotating 

machinery such as turbo expander etc [1]. Compared with oil 

bearings and rolling element bearings, these bearings have 

excellent reliability, environment durability and can be operated 

at high speeds and temperatures [2]. Moreover, the foil bearings 

have less environmental pollution because the lubricate media is 

gas. The main process of predicting bump-type foil bearings is 

modeling the foil structure and solving compressible gas 

lubricated Reynolds equation coupled with the compliant 

surface.  

Blok and van Rossum [3] did analytical work in foil 

bearing analysis and design in the early 50’s, but only in the last 

two decades the interest in this type of bearing has increased 

considerably. In 1975 Wallowit and Anno [4] first gave the 

theoretical model of a single bump static stiffness equation 

using mechanical beam model. In this bump static stiffness 

model, the two ends of bump were fixed and the friction 

between the bump foil and top foil were not considered. This 

bump static stiffness equation was used by Heshmat et al to 

analysis gas lubricated foil journal bearing and gas lubricated 

compliant thrust bearing [5, 6]. Peng and Khonsari [7, 8 and 9] 

employed this static stiffness equation to predict the 

hydrodynamic performance of a foil journal bearing such as 

load-capacity and film thickness. The model was established 

based on the compliance of the bearing surface. Iordanoff [10] 

presented a very simple method for an aerodynamic compliant 

foil thrust bearing. In order to carry out the calculation faster, 

the structural analysis has been simplified. The model 

considered the different stiffness of welded bump and free 

bump, which was different from the models mentioned in the 

above literatures.  

Some other authors established finite element model of 

bump foil and top foil to predict hydrodynamic performance of 

foil journal bearings. Le Lez et al. [11] proposed a new bump-

type foil bearing structure analytical model which accounted for 

friction interfaces, bump interactions, and nonisotropic stiffness, then 

finite element method is used to simulate. The model that 

described the FB structure as a multidegree of freedom system 

of interacting bumps. Each bump included three degrees of 

freedom linked with elementary springs. Lee et al. [12] modeled 

the top foil as a elastic beam-like to present the effects of bump 

stiffness on the static and dynamic force performance of gas foil 

bearings. The bump is represented by a linear spring coefficient.  

San Andrés and Kim [13] analyzed gas foil bearings integrating 

finite element top foil models. They used more complex finite 

element (FE) models coupled the elastic deformations of the 2D 

shell and 1D beam-like top foil to the bump deflections as well 

as to the gas film hydrodynamics. The results of predictions like 
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journal attitude angle and minimum film thickness were 

compared with a gas foil bearing experiment data decades ago 

and illustrated the sagging phenomenon clearly.  

Kim et al. [14] used a 1-D analytical beam model of the top 

foil for prediction of top foil deflection and sagging effects 

under hybrid (both hydrostatic and hydrodynamic) mode. 

Furthermore, Kim and Creary [15, 16] designed, manufactured 

and modeled mesoscale foil bearings for palm-sized 

turbomachinery. The radius of gas foil bearings mentioned is 

only several millimeters which is far smaller than traditional gas 

foil bearings. In this scale, the curvature of top foil may not be 

neglected when modeling.   

In this paper, a mathematical model of film thickness is 

developed with considering the compressibility of the gas and 

the deformation of the foil. The Newton-Raphson method and 

the finite difference method are employed to solve the coupled 

Reynolds equation and film thickness equation. A top foil model is 

developed as the one dimension curved beam. The finite 

element method and the finite difference method are coupled 

together to predict this foil bearing model. Predictions are 

compared with other numerical results and experimental results 

published in the literature.  

NOMENCLATURE 
,Bi jc  Equivalent viscous damping coefficient of bump 

Bi 
e  Journal eccentricity (m) 

f  Bump friction coefficient 

,Bi jf  Total pressure force on a bump with index Bi 

h  Gas film thickness (m) 

minh  Minimum gas film thickness (m) 

B
h  Bump height (m) 

h  Dimensionless gas film thickness 

,Bi jk  Stiffness coefficient of bump Bi 

l  Half of the bump length (m) 

xl  Foil arc circumferential length (m) 

m  Element number between two adjacent bumps 
p  Gas pressure (Pa) 

ap  Ambient pressure (Pa) 

Ap  Average pressure along axial direction (Pa) 

p  Dimensionless gas pressure 

1 2, ...p p  

 

Pressures acting on the top foil element nodes 

(Pa) 

,Bi jp  Nodal pressures 

, ( )Bi jq x  Unit force distribution function on top foil 

0r  Outer radius of curved beam (m) 

ir  Inner radius of curved beam (m) 

nr  Radius of neutral axis of curved beam (m) 

s  Bump pitch (m) 

Bt  Bump foil thickness (m) 

Tt  Top foil thickness (m) 

1 2, ...u u  

 

Displacement of the top foil in x direction  

(circumferential direction) (m) 

,
c cx zu u  Displacement on ends of curved element in 

,c cx y directions (m) 

v  Top foil deflection in y direction (m) 

, ( )Bi jv   Local top foil sagging function 

dw  Top foil transverse deflection (m) 

, ( )Bi jw   Local top foil deflection 

, ,x y z  Coordinates for the structural model (m) 

, ,c c cx y z  Natural (local) curved element coordinates (m) 

, ,x y z  Dimensionless coordinates 

, ,c c cx y z  Generalized element coordinates (m) 

bA  Area of a bump for FEM (m
2
) 

C  Radial clearance (m) 

E  Beam plate elastic modulus (Pa) 

EI Bending stiffness of the top foil segment 

BE  Bump foil Young’s modulus (Pa) 

TE  Top foil Young’s modulus (Pa), ET = EB ×Sfc 

,
c cx zF F  

 

Forces on ends of curved element in 

,c cx y directions 

zI  Area moment of inertia about z axis for beam (m
4
) 

fK  Structure stiffness per unit area (N/ m
3
) 

ffK  

 

Bump foil stiffness per unit area for a free-free 

ends bump (N/ m
3
) 

fwK  Bump foil stiffness per unit area for a fixed-free 

end bump (N/ m
3
) 

BK  Stiffness of single bump (N/m) 

FFK  Stiffness for a free-free ends bump (N/m) 

FWK  Stiffness for a fixed-free end bump (N/m) 

L  Bearing length (m) 

bL  Length of Euler beam (m) 

,a bM M  Moment on ends of curved element about cy axis 

BN  Number of bumps (-) 

R  Shaft radius (m) 

cR  Radius of centroidal line of curved beam (m) 

,X Y  Coordinate system for the inertial axes (m) 

, ,c c cX Y Y  Global curved element coordinates (m) 

  / 2  (rad) 

  Structure loss factor 

,Bi j  Deflection of bump Bi 

  Local coordinate that defines local top foil 

http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Kim%2C+Daejong&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Kim%2C+Daejong&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Creary%2C+Andron&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
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sagging term 
  Air viscosity (Pa•s) 

  Top foil angular coordinate (rad) 

,a b   Rotation on ends of curved element about cy axis 

0  Air density (Kg/ m
3
) 

b  Bump foil Poisson’s ratio (-) 

  Attitude angle (rad) 

z  Rotation angle about z axis 

  Angle of curved beam (rad) 
  Angular speed of shaft (rpm) 

x  Bearing number 

Vectors and matrices 

{F
G
} Forces vector in global coordinate system 

ek  Finite element stiffness matrix of Euler beam 

k
i
 Curved beam element stiffness matrix in global 

coordinate system 

k
i
 Curved beam element stiffness matrix in the local 

coordinate system 

[K
B
] Bump foil stiffness matrix in global coordinate 

system 

[K
G
] Global stiffness matrix of total model 

[K
T
] Top foil model stiffness matrix in global 

coordinate system 

{U
G
} Displacement vector in global coordinate system 

T
i
 Transformation matrix for in-plane loading 

stiffness matrices 

Q, S  Coefficient matrices for curved beam element 

ANALYSIS 

Bump-type foil bearing structure description 

The structure of the first generation bump foil bearing is 

shown in Fig. 1. It consists of a thin top foil bump and a series 

of corrugated bump strip layer. The leading edges of both bump 

and top foil are spot welded to the bearing sleeve, the trailing 

edges of foils are free. The bump foils act as springs. As the 

shaft rotates, the top foil can be deflected when air pressure 

forces on its smooth surface. 

There should be some assumptions for simplifying the 

description of complex analysis: 

(1) The change of pressure in the direction of air film thickness 

is not considered.  

(2) The velocity of air on bearing sleeve surface is nil, and the 

velocity on shaft surface is R . 

(3) The fluid is idea gas. 

(4) The fluid is isothermal. 

According to above assumptions, the Reynolds equation 

can be expressed as follows: 

           
3 3

6
ph p ph p

ph
x x z z x


 

       
    

       

        (1) 

The following dimensionless parameters are defined: 

0

, , ,
0.5 0.5 0.002

x z p h
x z p h

L L p R
            (2) 

Substituting Eq. (2) into Reynolds Eq. (1), the dimensionless 

form of the Reynolds equation is given by: 

            
2 2

3 3

x

p p
h h ph

x x z z x

       
     

       

         (3) 

where 

2

6

(0.002 )
x

a

R L

p R


   

The film thickness (h) for the foil bearing is 

cos( ) dh C e w                  (4) 

where C and e are the radial clearance and journal eccentricity, 

  is the attitude angle. wd is the deflection of the support 

structure. 

θ

Y

X

Bearing housing

ω

Shaft

Gas film

Top foil

Bump foil

Welded edge



 
Figure 1 Structure of first generation bump foil bearing 

Simple elastic foundation model [5, 6] 

Heshmat used Wallowit’s bump static stiffness equation to 

analyze gas foil bearing by proposing some assumptions: 

(1) The stiffness of the bump foil is taken to be uniformly 

distributed and constant throughout the bearing surface. 

The stiffness of single bump KB is constant and 

independent of bump deflection. 

(2) The top foil is not deflect relative to the bumps but follows 

the deflection of the bumps themselves. 

So the support structure deflection wd can be written as: 

                       A
d

B

p
w

K s


                     (5) 

where
0

1 ( ) 
L

A aP p p dz
L

   , 
3

2 32(1 )

B B
B

b

E t
K

v l



, pa is the 

ambient pressure beneath the foil and s is the single bump pitch. 
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Figure 2 Configuration of bump foil [5, 6] 

1-D analytical beam model [14] 

Kim used the simple 1-D analytical beam model for top foil 

deflection by proposing some assumptions: 

(1) The top foil is divided into multiple foil strips of the same 

number as the computational grid points along the axial 

direction in order to consider the axial variation of the top 

deflection. 

(2) The axial deflection of each foil strip is dependent of the 

others. 

Fig. 3 depicts the computational scheme of 1-D analytical beam 

model for top foil deflection. Where
2 1,Bi jp 

, 
2 ,Bi jp  and 

2 1,Bi jp 
 are the nodal pressures force on top foil, 

,Bi jk  and 

1,Bi jk 
 are the stiffness of two adjacent bumps. 

1,Bi jk 



1,Bi jq 



,Bi jq

,Bi jk 1,Bi jk 

,Bi jk 1,Bi jk 

1x

2 1,Bi jp 

2 ,Bi jp

2 1,Bi jp 

 
Figure 3 1-D analytical beam model for top foil deflection [14] 

Each top foil segment (
10 2 x    ) is modeled as a slender 

beam with ends clamped at both sides but free to move along 

the horizontal direction. In order to obtain the top foil local 

deflection 
, ( )Bi jv  , both bump supports are assumed to be rigid, 

so the 
, ( )Bi jv   can be solved using the following equation with 

zero deflections and slopes at both ends: 

              

, ,

, , 1

, , 1

( )

(0) (2 ) 0

(0) (2 ) 0

Bi j Bi j

Bi j Bi j

Bi j Bi j

EIv q

v v x

v v x

 

  

   

             (6) 

where EI is the bending stiffness of the top foil segment. 

, ( )Bi jq   is the unit load distribution on each top foil segment 

between two adjacent bumps with index 
,i jB  and 

1,i jB 
, and it 

follows a parabolic function: 
2

, , , ,( ) ( )Bi j Bi j Bi j Bi jq a b c z              (7) 

where coefficients
,Bi ja , 

,Bi jb , and 
,Bi jc  are to be decided by 

pressures on the top foil, and z is the axial coordinate of the 

bearing.  

The coefficient
,Bi ja , 

,Bi jb , and 
,Bi jc  turn out to be  

2 1, 2 , 2 1,

, 2

1

2

2

Bi j Bi j Bi j

Bi j

p p p
a

x

  



 

           2 , 2 1, 2 1,

,

1

4 2 3

2

Bi j Bi j Bi j

Bi j

p p p
b

x

  



           (8) 

, 2 1,Bi j Bi jc p   

where 
1x  corresponds to the distance between computational 

grid points along the circumferential direction.  

The bump deflection under the parabolic load distribution 

given by Eq. (7) can be calculated from the following bump 

dynamic equation, neglecting the inertia of the top and bump 

foils:  

, , , , ,Bi j Bi j Bi j Bi j Bi jf k c               (9) 

where 
,Bi jk  and 

,Bi jc are the stiffness and equivalent viscous 

damping coefficients of the bumps, respectively. The equivalent 

viscous damping coefficient can be given by 
, , /Bi j Bi jc k   

through the structural loss factor   if the bump motion is 

assumed as sinusoidal during normal imbalance excitations. The 

force, 
,Bi jf  on a bump Bi,j can be calculated by integration of 

Eq.(7) over the region between the lower and upper limits in 

Fig. 3. 

  

 1 1

1

2

, , ,
0

2 2, 2 1, 2 , 2 1, 1

, 1

( )d + ( )d

1
       = ( 13 13 )

12

       = 

x x

Bi j Bi j Bi j
x

Bi j Bi j Bi j Bi j

Bi j

f q q z

p p p p x z

p x z

   
 



  

 

     

 

 

   (10) 

Once the bump deflection 
,Bi j  is calculated, the top foil 

deflection at   can be calculated by adding the top foil local 

deflection to the bump deflection 

        

, ,

, 1 1,

, , 1, ,

1 1

(0)

(2 )

( ) 1 ( )
2 2

Bi j Bi j

Bi j Bi j

Bi j Bi j Bi j Bi j

w

w x

w v
x x





 
   







 

 
    

  

  (11) 

Beam model for top foil [13, 17] 

For convenience, the top foil is usually modeled as 1-D 

Euler-beam in some literatures and the finite element stiffness 

matrix of Euler beam ke is: 

        
2 2

e 3

2 2

12 6 12 6

6 4 6 2
k

12 6 12 6

6 2 6 4

b b

b b b bz

b bb

b b b b

L L

L L L LEI

L LL

L L L L

 
 


 
   
 

 

       (12)  

where E is the plate elastic modulus, the Iz and Lb are the area 
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moment of inertia about z axis and the length of beam. But 

actually, the top foil in the bearing house is curved. So in this 

paper, the 1-D curved beam model is given to compare with 

other top foil models. 

Fig. 4 depicts the one dimensional model of the top foil. 

One end of the top foil is fixed with the transverse deflection 

and rotation equal to zero, while the other end is free. The bump 

strip layer beneath the top foil is in the same situation. The 

freedom degrees of 1-D model are shown as transverse 

deflections (wd) and rotations (
z ). 

x R

x

Top Foil

WeldFixed 

Bump
Free 

Bump

Pressure y

z

 
Figure 4 1-D structure model for bump foil bearing [13] 

The curved beam model is shown in Fig. 5. xc, yc, zc are the 

natural (local) curved element coordinates, , ,c c cx y z are the 

generalized element coordinates, and Xc, Yc, Zc are the global 

coordinates. For thin beams without shear deformation effects 

and rotary inertia, the radius of neutral axis of bar rn is equal to 

radius of centroidal line of bar Rc. Pilkey [17] details the 

elasticity equations for deformation in a thin curved beam. For 

the beam model, the finite element method is used to obtain the 

transverse deflections (wd). Curved beam element stiffness 

matrix k
i

in the natural (local) curved element coordinate 

system is: 

      k i QS                     (13) 

cR
nr

cy

cz

cx

0r
ir

Centroidal Axis

Neutral Axis



2



2



,
c cx b x bF u

,
c cz b z bF u

,
c cz a z aF u

,b bM 

,a aM 

cX

cz
cZ

cx

a

b

 
Figure 5 Curved beam element [17] 

where Q and S are the coefficient matrices for curved beam 

element and detailed in ANNEX A. The 6×6 element stiffness 

matrices k
i
in the global coordinate system are obtained using: 

Tk =T k T
ii i i

                    (14) 

where Ti is the transformation matrix for in-plane loading 

stiffness matrices and can be written as:  

  

cos cos 0 0 0 0

cos cos 0 0 0 0

0 0 1 0 0 0
T

0 0 0 cos cos 0

0 0 0 cos cos 0

0 0 0 0 0 1

c c c c

c c c c

i

c c c c

c c c c

x X z X

z X z Z

x X z X

z X z Z

 
 
 
 

  
 
 
 
 

  (15) 

where
c cx X is the angle between

cx and
cX ; and so on, for

c cz X , 

c cz Z . For the curved beam element model is one dimensional, 

the transformation matrix Ti is an identity matrix and the 

model deflections in x direction in Fig. 4 are not considered. 

The top foil model stiffness matrix [K
T
] in the global 

coordinate system can be obtained by adding the curved beam 

element stiffness matrices one by one. Meanwhile, the bump 

foil stiffness matrix in the global coordinate system [K
B
] is 

derived from the single bump stiffness using Iordanoff’s 

equation, KFF and KFW are the stiffness for a free-free ends 

bump and a fixed-free end bump respectively. The global 

stiffness matrix of total model [K
G
] shown in Fig. 6 can be 

obtained through adding the bump foil stiffness matrix [K
B
] to 

the top foil model stiffness matrix [K
T
], m is the element 

number between two adjacent bumps, the express is written as 

follows: 

                  [K
G
] = [K

T
] + [K

B
]              (16) 

For the top foil fixed end is welded, 0zv   where v is the 

top foil deflection in y direction and 
z is the rotation angle 

about z axis. The equation for deflections of total model in the 

global coordinate system is given by: 

                  [K
G
] {U

G
}= {F

G
}               (17) 

where {U
G
} is the vector of displacement and {F

G
} is the 

vector of pressures acting on the top foil. The expressions of 

{U
G
} and {F

G
} are written as follows: 

   G

1 1 1 2 2 2U
T

z zu v u v     (18) 

   G

1 2F 0 0 0 0
T

p p     (19) 

where u1, u2 … are the deflections of the top foil in x direction 

which are not considered in analysis process, p1, p2 … are the 

pressures acting on the top foil element nodes. 

The finite element analysis is taken before solving the thin 

gas film governed by Reynolds Eq. (3) and its results wd is used 

for Eq. (4) to update the film thickness. 
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1k i m 
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The position for 
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0

01k i

 
Figure 6 Stiffness matrix [KG] 

Solution with Newton-Raphson method 

Newton-Raphson iteration of function ( )F p  is written as 

follows: 

                   ' 0n nF p F p   　             (20) 

where 
1 0 1 2n np p n      ， ，，， ， 

Expanding function  F p   in the form of a Taylor series 

about p , and do the first derivative with respect to  , the 

approximate expression form is obtained: 

 
   0

dF p
F p F p

d









            (21) 

RESULTS AND DISCUSSION 
Method validating 

The purpose for this part is to verify the results of the 

proposed method by comparing with the numerical predictions 

reported in Ref. [9]. The simulated bearing is a first generation 

foil bearing and its data is shown in Table 1. 

According to Ref. [9], comparison of steady-state film 

thickness of bearing under the action of the corresponding 

hydrodynamic pressure is shown between foil bearing and rigid 

bearing in certain condition. In Fig. 8, the numeric results using 

the method mentioned in this paper are compared with 

predictions of gas foil bearing in Ref. [9]. The pressure 

distribution and film thickness are almost the same. 

Table 1. Bearing data. Ref. [9] 

Shaft radius (R) 50×10
-3 

m 

Bearing length (L) 75×10
-3 

m 

Radial clearance (C) 100×10
-6 

m 

Top foil thickness (tT) 101.6×10
-6 

m 

Bump foil thickness (tB) 76.2×10
-6 

m 

Bump foil Young’s modulus (EB) 207×10
-9 

N/m
2
 

Bump foil Poisson’s ratio (vb) 0.3 

Bump friction coefficient (f) 0 

Bump length (2l) 3.434×10
-3 

m 

Bump pitch (s) 4.064×10
-3 

m 

Bump height (hB) 0.63×10
-3 

m 

Air viscosity (η) 1.932×10
-5 

Pa•s 

Air density (ρ0) 1.1614 Kg/ m
3
 

Atmospheric pressure (pa) 1.01325×10
-5 

Pa 

 

1

θ ( ° )
0                           90                         180                        270                      360

p
/p

a
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Results in Red. [9]

Results in this paper

Pressure distribution

Film thickness

 

Figure 7 Comparison of pressure distribution and corresponding 

film thickness of a foil bearing with numerical results in [9] (ω = 30 

krpm, hmin = 16μm) 

Hydrodynamic performance 

The analysis results of foil bearing models are compared 

with experimental data in literature to verify its validity. The 

parameters for the test first generation foil bearing in Ref. [19] 

are summarized in Table 2. The top foil and bump foil are spot 

welded together at one end to the bearing house. The other ends 

of top foil and bump foil are both free. The bump foil stiffness 

per unit area (Kf) is given by Iordanoff’s equation [10, 18]: Kff = 

4.7×10
9
N/m

3
, Kfw = 10.4×10

9
N/m

3
 for a free-free ends bump 

and a fixed-free end bump respectively. 

Table 2. Bearing data. Ref. [19] 

Shaft radius (R) 19.05 mm 

Bearing length (L) 38.1 mm 

Radial clearance (C) 31.8 μm 

Top foil thickness (tT) 101.6 μm 

Bump foil thickness (tB) 101.6 μm 

Bump foil Young’s modulus (EB) 214 GPa 

Bump foil Poisson’s ratio (vb) 0.29 

Half bump length (l) 1.778 m 

Bump pitch (s) 4.572 mm 

Bump height (hB) 0.508 mm 

Foil arc circumferential length (lx) 120 mm 

Number of bumps (NB) 26 

The gas foil bearing simulation using the simple elastic 

foundation model, 1-D analytical beam model, 1-D Euler-beam 

model and 1-D curved beam model, predict the static 

performance of the test bearing. As the first generation bump 

foil bearing structure is symmetrical about the mid-plane, the 

results are presented for only half of the bearing. All of the 

models use a mesh of 78 and 10 elements in the circumferential 

and axial direction. So the bump stiffness for a free-free ends 

bump and a fixed–free end bump are: 
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40935.4 N/mFF ff bK K A    

90580.5 N/mFW fw bK K A    

Here the elastic modulus for the top foil is artificially increased,  

ET = EB × Sfc, where Sfc is a stiffening factor along the 

circumferential direction, EB and ET are the elastic modulus for 

the bump foil and top foil, respectively. In Ref. [13], Sfc = 4, so 

the modulus of top foil is ET = 856 GPa. 
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(a) 30,000 rpm 
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(b) 45,000 rpm 

Figure 8 Minimum film thickness at mid-plane versus static load 

for four foil structure models and test data [19] at two shaft speeds 

Fig. 8 presents the minimum film thickness versus static 

load for operation at shaft speed (a) 30,000 rpm and (b) 45,000 

rpm, respectively. The figure is comprised of predictions for 

four foil bearing models and the test data. The simulation and 

test data are both at the bearing mid-plane. For the same static 

load, the 1-D curved beam model prediction is almost the same 

as 1-D Euler-beam model prediction. However they are both 

smaller than simple elastic foundation model, especially on the 

heavy static load condition. The 1-D analytical beam model 

predictions agree best with the test data.  
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(a) 30,000 rpm 

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

Static load [N]

J
o

u
rn

a
l 
a

tt
it
u

d
e

 a
n

g
le

 [
d

e
g

]

 

 

Simple elastic foundation model

Euler-beam model

Curved beam model

1-D analytical beam model

Test point

 
(b) 45,000 rpm 

Figure 9 Journal attitude angle versus static load for four foil 

structure models and test data [19] at two shaft speeds 

Fig. 9 shows the journal attitude angle versus static load at 

shaft speed (a) 30,000 rpm and (b) 45,000 rpm. The figure 

includes predictions for four foil bearing models and the test 

data [19]. Predictions of simple elastic foundation model, 1-D 

Euler-beam model and 1-D curved beam model overestimate 

the test data below 80 N while underestimate the test data above 

80 N. These simulation results are different from numerical 

predictions in Ref. [13]. As the speed increase, predictions of 

all models above 80 N underestimate the test data increasingly, 

while it is just the contrary below 80 N. when static load is 

small, the discrepancy between 1-D analytical beam model 

predictions and the test data is small, but it becomes bigger with 

the increasing of static load.  

The predicted dimensionless pressure distribution (p/pa) 

and the top foil deflection for 1-D curved beam model are 

depicted in Fig. 10 and Fig. 11, respectively. The static load is 

134.1 N and the shaft speed is 30,000 rpm. The dimensionless 

pressure is smaller than 1(p<pa) and pressure decreases 
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dramatically from mid-plane to bearing edge. The top foil 

deflection values are corresponding to the dimensionless 

pressure along circumferential location. If the dimensionless 

pressure is smaller than 1, the foil deflection value can be 

negative. 
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Figure 10 Predicted dimensionless pressure distribution for 1-D 

curved beam model. Static load: 134.1 N, shaft speed: 30 krpm 
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Figure 11 Predicted top foil deflection for 1-D curved beam model. 

Static load: 134.1 N, shaft speed: 30 krpm  

The maximum top foil deflection is about 31.8μm and it is 

1.67 ‰ of the top foil radius. In this magnitude, curvature 

effects of beam model can be ignored. This is the reason for the 

predictions of 1-D Euler-beam model and 1D curved beam are 

similar. 

At the same operation condition, the predicted film 

thickness versus circumferential location for 1-D curved beam 

model and measured film thickness [19] are shown in Fig. 12. 

At the smallest film thickness zone, there exists sagging 

phenomenon for the prediction and the measurement. It is due 

to the softness of top foil in adjacent two bumps. The smallest 

film thickness zone for prediction is a little larger than test data, 

but at most smallest film thickness zone the two curves correlate 

well. 

Note that: the 1-D curved top foil structural model has the 

biggest computational costs than the other models due to its 

element stiffness matrix dimension. 
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Figure 12 Predictions of film thickness for 1-D curved beam model 

and test data [19] at bearing mid-plane. Static load: 134.1 N, shaft 

speed: 30 krpm 

The results presented here for the half bearing were 

calculated using a uniform mesh with 78 elements in the 

circumferential direction and 10 elements in the bearing length 

direction. The comparison of the results with 78 by 10 elements 

and 156 by 20 elements shown in Fig. 13 demonstrates that the 

results are independent of mesh density. 
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Figure 13 Comparison of gas film thickness for 1-D curved beam 

model at bearing mid-plane with different mesh density. 

Eccentricity: 52 μm, shaft speed: 30 krpm 

CONCLUSIONS 
A hydrodynamic analysis of a specific foil bearing is done 

to verify the accuracy of the Newton-Raphson method and finite 

difference method. The compressibility of the lubricant and the 

bearing compliance are both considered. Numerical results such 
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as pressure distribution and film thickness agree well with the 

numerical results applied from literature. 

On the basis of above work, specific gas foil bearing is 

analyzed and compared with existing experimental data. 1-D 

Euler-beam model and 1-D curved beam model are developed 

and analyzed using finite different method coupled with finite 

element method. Predictions of gas foil bearing minimum film 

thickness for increasing static loads and two shaft speeds agree 

well with the test data, especially at low shaft speed. Predictions 

of two beam models are almost the same and both 

underestimate the film thickness. Minimum film thickness 

predictions of 1-D analytical beam model are the closest to 

experimental results. Comparison of gas foil bearing attitude 

angle predictions between foil bearing models and test data is 

taken for increasing static loads and two shaft speeds. 

Predictions of all models (except 1-D analytical beam model) 

overestimate the test data above 80 N while underestimate the 

test data below 80 N. In addition, the predicted dimensionless 

pressure distribution (p/pa) and the top foil deflection for 1-D 

curved beam model under certain condition are presented. The 

predicted film thickness versus circumferential location for 1-D 

curved beam model is similar to experimental measurement at 

the smallest film thickness zone. The sagging phenomenon of 

the top foil can be seen due to the softness of top foil in 

adjacent two bumps. But as the measurements of film thickness 

had an uncertainty of 15% reported in [19], it is hard to make 

sure which model is the best. The present work in this paper is 

the preparation for future research of 2-D curved beam model 

which the stretch effect in circumferential direction is 

considered.  
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ANNEX A 

COEFFICIENT MATRICES FOR CURVED BEAM ELEMENT 
 

The modified top foil model used curved beam element 

based on the Pilkey’s work in Ref. (17). The coefficient 

matrices for curved beam element are: 
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12 3 2S ( cos ) /C     
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24 3 2S ( sin ) /C    

26 2 1S ( cos sin ) /R C                         (A.3) 
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43 2 1S [ cos ( sin cos )] /R C           

2
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and 

RRadius of centroidal line of beam 

E Modulus of elasticity 

AArea of cross section 

I Moment of inertia about yc axis 

 Half angle of curved beam 


