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ABSTRACT 
The dynamic characteristics of a hybrid aerostatic bearing are 
experimentally investigated on a test rig consisting of a rigid 
rotor driven by an impulse turbine located at its midlength. The 
rotor is horizontally mounted and is supported by two identical 
aerostatic bearings at its ends. Both the impulse turbine and the 
aerostatic hybrid bearings are fed with air. The actually 
available resources enable to attain feeding pressures up to 5 
bar in the bearings and rotation speeds up to 60 krpm. Under 
these conditions the dynamic load on the rotor is much larger 
than the static load engendered by its weight. Dynamic loads 
consist either of impacts provided by a hammer or of added 
unbalance masses. The test rig can measure the bearing feeding 
pressures, the rotation speed, the impact force, the 
displacements of the two bearings and the bearing housing 
accelerations. This experimental information together with the 
equations of motion of the rotor enables the identification of the 
dynamic coefficients of the bearings. A second identification 
procedure using the same impact hammer is enabled by the fact 
force transducers are mounted between the bearing housing and 
its support. The dynamic coefficients of the bearings can then 
be obtained from the equation of motion of its housing.  
Unbalance response provide a convenient way for verifying the 
accuracy of the identified dynamic coefficients. Therefore these 
coefficients are injected in the equations of motion of a four 
degrees of freedom rigid rotor and the theoretical results are 
compared with values measured on the test rig. Comparisons 
show that predictions are acceptable but become less accurate 
at high rotation speeds where large dynamic forces are needed 
for exciting the corresponding synchronous frequencies. 
 
INTRODUCTION 
Aerostatic bearings are well known components that entered in 
use almost fifty years ago. Many textbooks tackle this subject 
in a more or less extensive manner [1-4]. These bearings are 

used when needing high precision, very high rotation speed and 
good stiffness and when a source of compressed air is easily 
available. The main applications are small turbomachinery 
lubricated with the process fluid or air spindles for the 
machining industry. In these applications they are intended to 
replace ball or roller bearings that have limited life duration; 
when subject to wear ball or roller bearing generate high 
supersynchronous vibrations that affect precision and consume 
more power. Hybrid aerostatic bearings don’t suffer from these 
drawbacks and have a theoretically infinite life duration that is 
affected only by start and stop phases. However they are not 
products on the shelf and each new bearing necessitates a 
dedicated design. This aspect is enforced by the fact that 
contrary to ball or roller bearings, hybrid aerostatic bearings are 
prone to self induced vibrations (“pneumatic hammer” and “oil 
whirl”). These instabilities are discussed in the above cited 
textbooks and are of paramount importance because, once 
entering these regimes, the aerostatic bearing has no possibility 
of generating supplementary damping and will generally lead to 
contact. Theoretical prediction methods are therefore of 
paramount importance. There is a very large amount of work 
tackling the theoretical analysis of aerostatic bearings. Most of 
them are based on Reynolds equation, other few on the “bulk 
flow” system of equations. All these methods have an acute 
need of experimental validations because the theoretical 
analysis of aerostatic bearings must take into account the 
presence of restrictors (orifices, capillary, slits, etc.) or film 
discontinuities that cannot be dealt with in the simplifying 
frame of Reynolds or “bulk flow” equations. Experimental 
validations have then a similar importance to theoretical 
prediction methods. 
The most recent and complete work dealing with the 
experimental analysis of aerostatic bearings are those of San 
Andres et al. [5-9] and of the research team at Politecnico di 
Torino [10-12]. The experimental results of San Andres and co-
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workers were obtained on a test rig consisting of a light rotor 
supported by two identical bearings. The rotor incorporates an 
electric motor at its midlength and excitation is provided by 
adjusting unbalance loads. Many types of air pressurized 
bearings (lobed, tilting pad) were tested targeting 
turbomachinery applications. The careful system for aligning 
the bearings shows that the test rig is mainly focused on testing 
bearings and not modeling a rotating machine. 
The work performed at Politecnico di Torino has many facets 
that are well revised in reference [12]. The test rigs consist of 
rigid rotors supported by air pressurized journal and thrust 
bearings and driven by impulse turbines. The journal and the 
thrust bearings are rigidly mounted as on most rotating 
machines. The test rigs then models spindles used in the 
machining industry. 

The present work is part of a collaborative research and 
development project carried on with Snecma Space Engine 
Division and Centre National d’Etudes Spatiales. Its purpose is 
to introduce a test rig based on a rigid rotor supported by two 
identical bearings. The intent of the test rig is to enable 
measurements of dynamic coefficients of the bearings that will 
either validate theoretical models or characterize new designs. 

 
NOMENCLATURE 
A acceleration FFT component [m/s2] 
A(0), A(1), B(0), coefficients defined by eq. (21) 
C damping [Ns/m] 
f force [N] 
[G]  gyroscopic matrix 
Jt, Jp transverse and polar moment of inertia [kg·m2] 
K stiffness [N/m] 
l length [m] 
M rotor mass [kg] 
Mb mass of the instrumented bearing [kg] 
m moment [Nm] 
[P]  matrix defined by eq. (16) 
{q} variables vector 
t time [s] 
u unbalance [kg·m] 
x, y coordinate and distances [m] 
Z bearing impedance 
Ω rotation speed [rad/s] 
ω excitation speed [rad/s] 
θ, Φ  rotation angle [rad] 
Subscripts 
1, 2 first, second bearing 
a absolute reference frame 
b unbalance 
h bearing housing 
imp impact 
 

ℑℜ,  real, imaginary part 
 
DESCRIPTION OF THE TEST RIG 
The test rig shown in Fig. 1 consists of a horizontal hollow 
rotor supported by two identical aerostatic hybrid bearings and 

driven by a double impulse (Pelton) turbine. The turbine is 
machined directly onto the rotor surface and is located at its 
midlength. The Pelton turbine is supposed to drive the shaft 
with no axial loads. However, pressurized air injectors are 
axially mounted at the both extremities of the rotor. The two 
impinging air jets will eliminate any axial displacement with 
minimum friction and without interfering with the radial 
displacement of the rotor. Additional unbalance masses can be 
mounted at the extremities of the rotor. 
This rotor is supported by two identical aerostatic bearings of 
45 mm diameter and 50 µm radial clearance located at its 
extremities. The design of the bearings was made having in 
mind that pneumatic hammer instability is the major risk. This 
self induced vibration is favored by two parameters [4]: the 
depth of the recesses and the pressure ratio Pr/Ps. Usual practice 
for air bearings is to avoid any recess and to ensure a large 
Pr/Ps ratio. For example ratios close to 0.7 ensure a maximum 
direct stiffness but with the risk of pneumatic hammer 
instability. Larger values will avoid this risk [4]. The bearing 
was then designed with rectangular shallow recesses of 200 µm 
depth, 15 mm radial length, 20 mm axial length and with orifice 
restrictors of 2 mm diameter. This large diameter of the orifice 
leads to pressure ratios close to 0.9. 
The bearings are mounted on pedestals that can be 
independently aligned. Pedestals are considered as being rigid 
because their first proper mode is above 1.2 kHz, i.e. 40% 
higher that the maximum envisaged rotation speed. They are 
also made of stainless steel in order to avoid any oxidation that 
might create difficulties in aligning the two pedestals. The 
pedestals are provided with positioning systems enabling two 
translations and two rotations. A distinct system enables the 
rigid fixation of the two pedestals once the bearings are aligned. 
This way positioning and maintaining the bearings are two 
uncoupled functions. A special rotor is used for aligning the 
bearings. Four inductive displacement probes are placed on 
each bearing housing and are mounted two by two in the front 
and rear axial planes of bearing. 
 

 
 

Figure 1: Cut view of the test rig. 
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Figure 2 : Aerostatic bearing and instrumentation. 

 
The special rotor and the eight displacement probes enable the 
measurement of the clearance and of the misalignment in each 
bearing and between the bearings. The alignment of the 
bearings is made by mounting the special rotor and by 
matching the metrological radial clearance as close as possible. 
During the mounting of the special rotor the bearings are 
pressurized in order to minimize the possibility of hazardous 
contact. The air pressurization is then cut-off and the radial 
clearance in the bearings is measured by manually pulling the 
shaft and by measuring the maximum and minimum 
displacements. The alignment process is terminated when the 
measured clearances in the two bearings are as close as possible 
to the metrological ones. The pedestals are then rigidly fixed on 
the table. The remaining differences between the radial 
clearance of the pedestal mounted bearings and the 
metrological measured one is the limit of the alignment 
procedure. 
Each bearing is mounted on the pedestal via four piezoelectric 
force transducers (Fig.2). They enable the measurement of the 
force transmitted from the bearings to the rigidly fixed 
pedestals. Due to this relatively flexible mounting, two 
accelerometers are placed on each bearing in two orthogonal 
directions. The instrumentation of the bearings is completed by 
two pressure gauges and by two regulation valves that enable 
the adjustment of the supply pressure independently for each 
bearing.  
External excitations are imposed by using an electric impact 
hammer rigidly mounted on the table. The impact force is 
measured by a piezoelectric transducer mounted between a 
stinger and the hammer head. The force is controlled by 
adjusting a potentiometer. The original impact head was 
replaced by a small ball bearing for limiting interferences with 
the rotating impact (shaft) surfaces, a solution borrowed from 

reference [13]. The original stinger of the impact hammer was 
also replaced by a longer one. These modifications required a 
slight recalibration of the force. 
The impulse (Pelton) turbine is fed by a specific distributor. 
The position of the distributor relative to the rotor is also 
adjusted after aligning the pedestals but this tuning is less 
sensitive and can be made by using some static contact 
displacement measuring devices. A pneumatic servo valve 
controls the pressure of the air feeding the distributor and the 
resulting velocity of the rotor. 
All the instrumentation used on the test rig indicated in Table 1 
and is schematically depicted in Fig. 3. The displacements 
probes used for aligning the bearings are also used for 
measuring dynamic displacements. All measured signals are 
saved on a computer before post-treatment. 
 
 

 
 

Figure 3: Test rig instrumentation 

 
Table 1. Test rig instrumentation (see Fig. 3) 

Name Probe type Measure 
I, II, III, IV Inductive probe  Shaft displacement  
1, 2, 3, 4 Inductive probe Displacements used for 

alignment  
1, 2, 3, 4 Piezoelectric 

force transducer   
Force between bearing 1 
and pedestals 

5, 6, 7, 8 Piezoelectric 
force transducer   

Force between bearing 2 
and pedestals 

KEY Optic transducer Rotation frequency 
DHF Piezoelectric 

impact transducer  
Hammer Impact Forces  

AX1, AY1 Accelerometer Acceleration bearing 1  
AX2 , AY2 Accelerometer Acceleration bearing 2 
 
 

Accelerometers 
Displacement 
transducer 
(inductive probe) 

Piezoelectric 
force  
transducer  
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DYNAMIC MEASUREMENTS 
Two types of dynamics measurements were made. The first 
tests were performed by using the external excitation provided 
by the impact hammer and their goal was the measurement of 
the rotordynamic coefficients of the bearings. The second tests 
were made by adding measured unbalance masses and were 
intended to verify the accuracy of the measured dynamic 
coefficients.  
 
Mathematical model 
The test rig and its instrumentation enable the measurement of 
dynamic coefficients by using two different identification methods. 

Identification method 1. Rotor eq. of motion 
The first method is based on the developments performed by 
DeSantiago [13] for a rigid rotor supported on two bearings. The 
equations of motion of the rigid rotor are (Fig. 4). 
 

[ ]{ } { } { } [ ]{ }aba qGffqM &&& Ω−+=    (1) 

{ } { }T
aaaaa yxq Φ= θ    (2) 

 
where ax , ay , aθ  and aΦ  are the displacements and the 
rotations of the centre of mass in an absolute reference frame. 
The vectors { }f  and { }bf  represent the external forces and the 
forces in the bearings. The last term stands for the gyroscopic 
effects. For a symmetric rotor, 01 >= ll  and 02 <−= ll  
resulting : 
 

( ) 221 aaa xxx += , ( ) 221 aaa yyy +=   (3) 
( ) lxx aaa 221 −=θ , ( ) lyy aaa 221 −−=Φ   (4) 

 

The equations of motions are then recast: 
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where fimp represents the impact force, l imp is its axial location, 
ub is the unbalance and lb is its axial location. 
The forces in the bearings are expressed using the stiffness and 
damping coefficients. 
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where { } { }Tyxyxq 2211

~ =  are the relative displacements 
in the bearings measured by the proximity probes mounted on 
the bearing housing. The relation between { }aq~  and { }q~  is: 
 

{ } { } { }qqq ha
~~~ +=      (13) 

 
where { }hq~  contains the displacements of the bearing housing. 
Equations (10) and (13) are injected in the equation of motion 
(5). 
 

[ ]{ } [ ]{ } [ ]{ } { } [ ]{ } [ ]{ }hh qMqqGfqKqCqM &&&&&&& ~~~~~~~~~~~ −+Ω−=++  (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Coordinate system 
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where { }hq&&~  represent the acceleration of the bearing housing 

measured by the accelerometers and { }hq&~  are the corresponding 
velocities. After applying the Fourier transform, the equations 
of motion in the frequency domain yield :1 

(15) 

[ ] { } { } [ ] [ ]( ){ } [ ] [ ] { }
444444444 8444444444 76 RHS

i
i

iiiiii AG
j

MQGjMFQZ 






 Ω−−Ω−+=
~~~~~ 2

ω
ωω   

{ } { }T

ii YXYXQ 2211=   (16) 

{ } { }T

iYXYXi AAAAA 2211=   (17) 

{ } { }T

iyxyxi FlFlFFF 33 −=   (18) 
 
where [ ]iZ

~  is the bearing impedance matrix: 
 

2,12,12,1 αβαβαβ ωCjKZ += , yx,, =βα , 1−=j  (19) 

 
The left hand side of the frequency domain equation is further 
simplified by taking into account that the bearings are identical 
(same geometry and same feeding pressure) αβαβαβ ZZZ ==

21
 

and by considering that both bearings are very close to centered 
working conditions so yyxx ZZ =  and yxxy ZZ −= . This is a 
plausible assumption for aerostatic bearings working with 
relative eccentricities lower than 40%. The left hand side of eq 
(15) then yields: 
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The bearing impedances are calculated in least square sense: 
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The resolution raises no problems because [ ] 2=iPrank  and  
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The impedances are averaged over n measurements. 
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1 Capital letter indicate the Fourier transform, ( )11 xFFTX = , etc. 

 
and the dynamic coefficients are finally obtained from: 
 

( )
ii

ZK αβαβ ℜ= , ( ) iii
ZC ωαβαβ ℑ=    (24) 

 
It is to be underlined that the coordinates used for calculations 
correspond to the bearing mid planes. Corrections from the 
proximity probes to the bearings mid-planes were 
systematically performed. 
 
Identification method 2. Bearing eq. of motion 
The second method used for identifying the dynamic 
coefficients is based on the equations of motion of each 
bearing. This method is enabled by the fact that the bearings are 
mounted on the pedestals with piezoelectric force transducers 
and are also equipped with accelerometers. The excitation is 
still provided by the hammer impact but the piezoelectric 
transducers measure the force transmitted by the bearing to the 
pedestal. Displacements of the rotor relative to the bearing are 
measured by the formerly presented inductive transducers. This 
model is very similar to models already in use [14]. 
The equations of motion of each bearing written after applying 
the FFT are: 
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With the same simplifying assumptions, yyxx ZZ =  and 

yxxy ZZ −=  this yields: 
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This equation must be separately applied for each bearing 
because the impact force is not in the middle of the rotor (the 
midlength of the rotor is occupied by the Pelton turbine) and so 
displacements in the two bearings are not identical. Dynamic 
coefficients are then identified by using either eq. (20) or (26). 
 
Measurement methodology 
Tests were made for three supply pressures, 3, 4 and 5 bars and 
for rotation speeds ranging from 0 to 50 krpm. It is known that 
dynamic coefficients of hybrid aerostatic bearings depend not 
only on the supply pressure and on the rotation speed but also 
on the excitation frequency. The impact force of the hammer 
excites a large spectrum of frequencies because its FFT a sinc 
function whose first zero frequency is around 2.5 kHz. 
However, due to low signal to noise ratio, the identification 
method is possible only in a limited bandwidth. Figure 5 
depicts the spectrum of the impact force and of the 
displacement measured in a bearing. It can be seen that 
displacements are significant only in a bandwidth around 500 
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Hz. Increasing the impact force would excite higher frequencies 
but would also produce an overshoot of the bearing 
displacement that must remain lower than 10…20% of the 
radial clearance. 
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Figure 5: Spectrum of the impact force and of the 
displacement measured in the bearing. (Ps=5 bar, Ω=50 
krpm). 

 
 
The data acquisition time is relatively long (1s) with a sampling 
frequency of 215 for easily catching the impact. The signal is 
then windowed and only 0.125 s from the impact are used for 
identifying the dynamic coefficients. A proper impact must not 
be located too close to the beginning or to the end of the data 
acquisition period. The impact force must be triggered for each 
working conditions because the stiffness of the bearing varies 
and for avoiding too low or too high dynamic displacements. 
Dynamic displacements after impact of 10µm for 3 bars, 8µm 
for 5 bars and 6µm for 4bars were generated in this 
chronological order. These values were imposed by the 
progressive wear of the hammer head (ball bearing) that 
progressively increased the risk of double impacts. In fact each 
test was repeated 12 times before averaging the dynamic 
coefficients but the number of impacts was much larger due to 
the above mentioned reasons (triggering the dynamic force, 
proper position of the impact inside the 1s acquisition period, 
etc.). 
The signal of the accelerometers proved to be very noisy and 
difficult to use. An alternate way for deducing the same 
information was suggested by Murphy and Wagner [15]. The 

accelerations of the bearing housing are estimated from the 
forces measured by the piezoelectric transducers: 
 

( )
2

,
2

, dt

Kfd
a byx

yx =  or biyxiiyx KFA ,
2

, ω−=   (27) 

 
where Kb is the stiffness of the bearing housing mounted on 
piezoelectric force transducers. Each direction uses two force 
transducers of Kf=1.05·103 kN/µm each (manufacturer’s data) 
so Kb≈2Kf. 
 

 

 

 

 

 

Figure 6: Dynamic coefficients identified from eq. 21 
(Method 1) and from eq. 26 (Method 2) versus excitation 
frequency (Ps=5 bar, Ω=50 krpm) 

 
RESULTS 
Typical results stemming from identification method 1 (eq. 21) 
and method 2 (eq. 26) are depicted in Fig. 6. A rapid conclusion 
stemming from both dynamic models would be that Kxx 
increases with the excitation frequency while Cxx decreases. In 
fact, the results show that only a relatively narrow bandwidth of 
excitation frequencies located around 450 Hz can be used for 
identification, the rest of the results (especially those at high 
excitation frequencies) are very much affected by noise. 
Nevertheless, results stemming from the first identification 
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method have lower noise than the ones obtained from the 
second method. For the rest of working conditions the 
bandwidth where identification is possible is slightly changing 
but the results are qualitatively of the same order. 
The variation of the dynamic coefficients for Ps=5 bar with the 
rotation speed is depicted in Fig. 6. The results are obtained by 
averaging the dynamic coefficients depicted in Fig. 5 over the 
small bandwidth of excitation frequency where the noise to 
signal ratio for the direct stiffness Kxx=Kyy is less than 10%. 
This approximation leads to quasi-constant values of the 
dynamic coefficients with the excitation frequency. For the 
identification method 2, “b1” indicates the bearing close to the 
impact hammer were dynamic displacements are larger. The 
direct stiffness is almost constant with the rotation speed while 
the direct damping shows a light increase. The cross coupling 
stiffness increases almost linearly. All these tendencies are 
theoretically correct but the fact that the extrapolated Kxy shows 
a non-zero value for Ω=0 and the cross coupling damping is 
non-zero indicate that the experimental results are affected by 
errors. 
Figure 6 shows also that the results stemming from method 1 
lie between those obtained from method 2 and therefore seem 
to be more confident. One of the explanations would be the 
lack of accuracy in measuring accelerations and the ad-hoc 
solution provided by piezoelectric force transducers and eq. 
(27). The acceleration measurements required by method 1 
intervene more as a correction to the RHS of eq. (21) for taking 
into account the movement of the bearing housing while they 
are an essential piece of information for method 2 and eq. 26. 
Results obtained for feeding pressures of 3 bar and 4 bar show 
the same behavior. 
The dynamic coefficients stemming from method 1 and 
obtained with different feeding pressures are depicted in Fig. 8 
versus the rotation speed. Previous conclusions stemming from 
Fig. 7 hold also for the results obtained for 3 bar and 4 bar: the 
direct stiffness is almost constant, the direct damping increases 
slightly and the cross-coupling stiffness increases almost 
linearly with rotation speed. Again, the non-zero values of the 
cross coupling damping may be considered as a warning of the 
measurement errors. The increase of the absolute value of the 
cross-coupling damping shows that measurements are less 
accurate with augmenting the rotation speed. 
 
Unbalance response 
Unbalance measurements were performed in order to test the 
accuracy of identified dynamic coefficients depicted in Fig. 8. 
An unbalance mass was added at one end of the rotor for 
exciting both the cylindrical and the conical rigid modes. 
Theoretical results were obtained by solving the equations of 
motion of the rotor given by eq. (14). The complementary 
information on acceleration housing was estimated using eq. 
(27).  
The test matrix consisted of the same working conditions, i.e. 
Ps=3, 4 and 5 bar and Ω=0…50 krpm. The experimental and 
the theoretical results are presented in Fig. 9 for Ps=5 bar. 
Similar results were obtained for Ps=3 and 4 bar. The results  
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Figure7: Dynamic coefficients identified from eq. 21 
(Method 1) and from eq. 24 (Method 2) versus rotation 
speed (Ps=5 bars) 
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Figure8: Dynamic coefficients identified from  
Method 1 (eq. 21) 

 

 

 
 

Figure 9 : Comparison of unbalance response, Ps=5 bar. 

 
depict the x displacement amplitude for both bearings. The 
residual unbalance and the runout response of the rotor were 
extracted from the experimental data. The comparisons show 
that the cylindrical and conical modes of the rigid rotor are 
correctly predicted in terms of frequency thus indicating good 
experimental prediction of Kxx. The amplitudes of the measured 
unbalance response are slightly higher than the theoretical ones 
and show that the identified effective damping, Ceff=Cxx-Kxy/Ω 
is somewhat overestimated. Nevertheless the experimental and 
the theoretical responses show overall good agreement both in 
terms of amplitude and phase. These comparisons indicate that 
the identified dynamic coefficients depicted in Fig. 8 can be 
used for validating codes used for predicting the characteristics 
of hybrid aerostatic bearings. 

SUMMARY, CONCLUSIONS AND PERSPECTIVES 
The presented test rig and the identification methods are able to 
predict rotordynamic coefficients of hybrid aerostatic bearings 
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in a limited bandwidth of excitation frequencies. This limitation 
is imposed by the excitation method using an impact hammer. 
Although the impact hammer is well controlled, it has 
difficulties for properly exciting very high frequencies as 
needed in high speed rotating machines. A non contacting 
(magnetic) excitation system would be perhaps more 
appropriate. 
The identified dynamic coefficients show the expected trends 
with increasing rotation speed but the non zero value of the 
cross coupling damping is a indication of the measurement 
error. The accuracy of the direct and cross coupling stiffness 
and of the direct damping coefficients is validated by 
comparisons with unbalance test responses.  
Further work will be devoted to the consolidation of 
measurements and to comparisons with theoretical predictions. 
At long term the test rig will be also adapted for an elastic rotor 
and for different bearings. 
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