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ABSTRACT
Labyrinth seals are extensively used in turbomachinery to

control flow leakage in secondary air systems. While a large
number a studies have been performed to investigate the leak-
age and rotordynamics characteristics of these seals, the stud-
ies on their aeroelastic stability remain scarce. Little is known
about this phenomenon and the design methods are limited to a
stability criterion which does not take into account many of the
parameters which are known to influence labyrinth seal aeroe-
lastic stability. As a consequence the criterion can be unreliable
or overly pessimistic. The alternative to this criterion is the use
of CFD methods which, although reliable, are computationally
expensive. This paper presents a three-control-volume (3CV)
bulk-flow model specifically developed for flutter calculations in
labyrinth seals. The model is applied to a turbine labyrinth seal
of a large diameter aero-engine and the results are compared to
those of a CFD analysis. Conclusions are drawn on the potential
of this 3CV model for design purposes.

NOMENCLATURE
b fin tip thickness
c clearance
E total energy
F inviscid fluxes
f/ fac mechanical-to-acoustic frequency ratio
H total enthalpy
h height of interfin cavityh = h2+ h3

h2 height of CV2 (sum of steady-state part and perturbation)

h3 height of CV3 (sum of steady-state part and perturbation)
L cavity length
p′ pressure fluctuation
pre f reference pressure
Q vector of conservative variables
Rc radius of curvature
waero aerodynamic work
x/p nondimensional axial location of pivot point

Greek symbols

γ′ angle of pitching motion
Π inlet/outlet pressure ratio
ρ density

Subscripts

A CV1 inlet
B CV1 outlet/CV2 inlet
C CV2 outlet
R rotor surface
SL dividing streamline

1 Introduction
In rotating machinery, unavoidable clearances exist between

rotating and stationary components. These clearances must be
sealed to control flow leakage, which represents a loss to the
working cycle, to prevent hot gas ingestion in turbine cavities
as mentioned by Ludwig [1] (rim sealing), and avert contam-
ination of the engine with oil from the bearing compartments
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(Whitlock [2]). Aero engines still rely heavily on labyrinth seals
for this purpose.

Fluid-structure interactions in these seals can lead to in-
stabilities such as rotor whirl (Childs [3]), or seal flutter. The
mechanism of seal flutter is as follows: the vibration of one seal
member (rotor or stator) in its natural mode induces a change in
seal clearance which can excite the flow in the inter-fin or up-
stream/downstream cavities. If the phase is adequate, the flow
perturbations feed energy back into the motion and the vibrations
are amplified. Alford [4, 5] determined that the support side of
the seal had a critical influence on stability. Lewis et al. [6], who
studied experimentally and analytically the stability of a turbofan
engine labyrinth seal, showed that the seal clearance was another
critical parameter. Abbott [7] found that seal aerolastic stability
depended also on the ratio of the seal natural frequency to the
acoustic frequency of the inter-fin cavities.

Most of the analysis tools presented in the literature to in-
vestigate seal flutter were based on bulk-flow models The first
attempt to use a bulk-flow model for seal flutter predictions was
presented by Ehrich [8]. He used a single-cavity single-control-
volume bulk-flow model to derive a stability parameter. The out-
let tooth was assumed choked which limited the validity of the
model to high pressure ratios. When applying his model to ac-
tual seal designs, he observed a number of discrepancies which
he attributed to the omission of the circumferential flow in his
analysis. Prokop’ev and Nazarenko [9] studied the self-excited
vibration of a plane labyrinth seal model as Ehrich. They did not
suppose the outlet fin choked, thus extending the validity of the
analysis to lower pressure ratios. They investigated the influence
of the volume of the chambers, the pressure drop across the seal,
the clearance, the seal rigidity and the location of the support.
However, their model suffered from the same flaw as Ehrich’s
model since it did not consider the tangential flow, making the
validity of the results questionable for turbomachinery seals. The
single-control-volume model used by Lewis et al. [6] included
the circumferential flow in the analysis. He reported good cor-
relations between the predictions of his analytical model and the
behaviour observed in engine test. Abbott [7] used a bulk-flow
model similar to the model of Lewis. He successfully used this
model to derive the frequency ratio stability criterion still in use
today. Srinivasan et al. [10] extended the work of Lewis et al. [6]
and Abbott [7] to take into account the flexibility of both seal
members. They solved the complex eigenvalue problem of the
coupled fluid-structure system made by the seal stator, the seal
rotor and the leakage flow in-between to obtain the system modes
and the logarithmic decrement. Using this model, they showed
that when there was a match between rotor and stator frequency,
there was a sudden change in logarithmic decrement toward a
less stable system. Unfortunately, no comparison of the results
of their model with experimental data or with the results of other
models were presented.

All these models used a single control volume to represent

the flow in an inter-fin cavity coupled with a leakage equation for
the flow at the fin tips. In the field of rotor whirl, improved pre-
dictions of rotordynamic coefficients have been reported when
using two- or three-control-volume models (Scharrer [11], Nord-
mann [12]). But none of these models has been applied to seal
flutter predictions.

The purpose of this paper is to describe a three-control-
volume bulk-flow model which has been developed for seal flut-
ter predictions. The model uses a novel approach to define the
two control volumes in the interfin cavity. Moreover compar-
isons are presented between predictions of the bulk-flow model
and predictions from Computational Fluid Dynamics (CFD)
methods.The CFD code used is AU3D developed at Imperial
College. AU3D solves the unsteady Reynolds-averaged Navier-
Stokes equations on unstructured grids. The Boussinesq approx-
imation is used to compute the Reynolds stress tensor. In the
present study, the eddy viscosity was given by the one-equation
model of Spalart and Allmaras [13]. Temporal accuracy is en-
sured by using a dual time stepping technique. For flutter sim-
ulations, the mesh is moved at each time step to follow a pre-
scribed motion of the structure. The resulting unsteady pressure
is used to computed the aerodynamic work over a cycle of vibra-
tion. The simulations are stopped when a converged value of this
aerodynamic work is obtained. More details on the CFD meth-
ods employed in this work can be found in another paper by the
present authors [14].

In the following, we will present the bulk-flow model before
showing some comparisons on two test cases: a single-cavity
non rotating labyrinth seal and a four-fin rotating labyrinth seal
representative of an engine design. The geometry for the latter
case is shown in Fig. 1. The single-cavity case is obtained by
isolating a cavity from the four-fin case.

Rota ting
part

Stationary
part

Figure 1. Labyrinth seal geometry
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2 Bulk-flow model
2.1 Structural model

In the present study, we assume that the stator is fixed while
the rotor is vibrating. In the labyrinth area of seals, the mode
shape can be approximated by a rotation about a pivot pointP as
shown in Fig. 2. The angleγ′ denotes the angle of the pitching

(a) View in (x,r) plane

(b) View in (y,z) plane

Figure 2. Mode shape (here two-nodal-diameter mode).

motion. To model a travelling wave mode of angular frequency
ω and nodal diameter numbern, this angle is written (in complex
form):

γ′ = γ0ei(ωt−nθ) (1)

Since the model is linear the magnitudeγ0 is of no consequence
and can be chosen arbitrarily.γ′ will determine the radial motion
of the rotor at each axial locationr′(x):

r′(x) = γ′ (x− xp) (2)

wherexp is the axial location of the pivot pointP. r′(x) deter-
mines the change in clearance at the fin tipsc′ and the change in
height of the interfin cavitiesh′, which are used in the flow model

presented in the following sections. At locationx, h′(x) =−r′(x)
since the stator is fixed.xp, ω andn are parameters in the model
which can be varied to represent different mode shapes. The ax-
ial location of the pivot pointxp is varied to simulated different
support locations.ω is varied to simulate different mechanical-
to-acoustic frequency ratios. These two parameters are known
to have a critical influence on seal aeroelastic stability. In the
present study,n is kept constant and equal to 2.

2.2 Control volumes
The flow in a labyrinth seal is characterised by a jet flow

emerging from the fin tips which drives a large recirculation in
the interfin cavities (Fig. 4). Because of the seal rotation, which
entrains the flow in the circumferential direction, this recircu-
lation takes the form of an helicoidal vortex as described by
Moore [15]. In this model, the flow in a labyrinth seal is de-
scribed using three control volumes (Fig. 3):

(i) the fin tip area (CV1);
(ii) the through-flow area (CV2);
(iii) the cavity vortex area (CV3).

The last two control volumes are separated by the dividing
streamline originating from the leading edge of the entrance fin
(see Fig. 4). The advantage of this approach is that there is

Figure 3. Control volumes.

no mass flow between CV2 and CV3, which simplifies the gov-
erning equations. Moreover this division represents more closely
the physical mechanism which is linked to an exchange of energy
between the cavity area and the through-flow area. The difficulty
lies in the modelling of the dividing streamline motion.

2.3 Governing equations
The equations will be written for a two-dimensional flow in

the(x,z) plane. There is no fundamental difference when writing
them for an axisymmetric flow.u, v andw are the components of
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Dividing streamline

Rotor

Stator

Vort ex

Figure 4. Steady-state flow pattern showing the dividing streamline.

velocity in thex, y andz direction respectively. A coordinate sys-
tem is shown in Fig. 5. For the first and second control volumes,

X Y

Z

u v

w

Coordinate
axes

Velocity
components

Figure 5. Coordinate system and corresponding velocity components.

we write the conservation of mass, axial momentum, tangential
momentum and total energy. In the third control volume, there is
no mean axial flow, and only the conservation of mass, tangential
momentum and total energy are written. The viscous contribu-
tions are neglected in the present model. Some notations used in
the following are shown in Fig. 3.

2.3.1 Control volume 1 The conservation of mass,
momentum and energy in CV1 can be written in vector form:

∂(Qc)
∂t

+
∂(Qvc)

∂y
+ c

∂Fy
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1
b
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2.3.2 Control volume 2 The equations for CV2 are
similar to those of CV1, the clearancec being replace by the
heighth2 of CV2, and the tip thicknessb by the cavity lengthL:
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2.3.3 Control volume 3 In CV3, there is no (mean)
axial flow and only the conservation of mass, tangential momen-
tum and energy are written:
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2.3.4 Interfaces between control volumes The
fluxes at interfacesA, B andC between CV1 and CV2 are ob-
tained using Roe approximate Riemann solver (Hirsch [16]). Be-
tween CV2 and CV3, there is only a flux of energyFSL via the ra-
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dial motion of the dividing streamline. The pressurepSL appear-
ing is this flux is taken equal to the arithmetic average between
the pressure in CV2 and the pressure in CV3. The velocitywSL is
provided by the model for the motion of the dividing streamline
presented in Sect. 2.5.

2.4 Perturbation analysis

Assuming small motion of the rotor, the flow in the labyrinth
can be written as the sum of the steady-state flow and a perturba-
tion:

Q = Q̄+ Q′ (6)

with:
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, (7)

At first order, we obtain the following equations for the perturbed
flow:
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CV3:

Q̄
Dh′3
Dt

+ h̄3
DQ′

Dt
+ Q̄h̄3

∂v′

∂y
+ h̄3

∂F ′
y
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where:

D
Dt

=
∂
∂t

+ v̄
∂
∂y

(11)

F ′
ESC represents an unsteady flux (of mass, momentum and en-

ergy) out of CV3 during vibrations when the dividing streamline
loses contact with the outlet fin as illustrated in Fig. 6. In the

Figure 6. Unsteady flux out of CV3. During vibration the dividing stream-

line loses contact with the outlet fin causing a flux of mass, momentum

and energy out of CV3 through the gap c′ESC .

model, this flux is written as a fraction of the steady-state flux
at the outlet finFc and is proportional to the size of the unsteady
gap between the dividing streamline and the outlet fin tip. Thus,
we have:

F ′
ESC

F̄C
= α

c′ESC

c̄
(12)

wherec′ESC is the size of the unsteady gap.α is a constant of the
model. The unsteady gap between the dividing streamline and
the exit fin tip is modelled as follows:

c′ESC = r′SL − r′FC (13)

wherer′SL is the motion of the dividing streamline above the exit
fin andr′FC is the motion of the exit fin. The motion of the di-
viding streamline above the exit fin is influenced not only by the
motion of the dividing streamline in the interfin cavity but also
by the motion of the exit fin. To represent this in the model,r′SL
is written as a linear combination of the average motion of the
dividing streamline in the cavityr′m and the motion of the exit fin
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r′FC.

r′SL = λ1r′m + λ2r′FC (14)

λ1 andλ2 are weights representing the relative influence of the
motion of the dividing streamline in the cavity and the motion
of the exit fin on the motion of the dividing streamline above the
exit fin.

The perturbed fluxesF ′
A, F ′

B andF ′
C are obtained by perform-

ing a linearisation of the flux formula given by the Roe approxi-
mate Riemann solver.

The variation of the clearance at the fin tipsc′ is known from
the mode shape.h′2 andh′3 are part of the unknowns. They are
linked by the following relation:

h′2 + h′3 = h′ (15)

whereh′ is the variation of the cavity height which is known from
the mode shape. An additional relation is required to complete
the solution. It is provided by the equation governing the motion
of the dividing streamline.

2.5 Equation governing the motion of the dividing
streamline

An approximate equation for the motion of the dividing
streamline can be obtained by writing the momentum balance
along the dividing streamline in streamline coordinates and car-
rying a perturbation analysis. The momentum balance in the di-
rection normal to the streamline for an inviscid fluid reads:

∂p
∂n

= ρ
v2

m

Rc
(16)

where ∂p
∂n is the normal pressure gradient,ρ is the density,vm

the magnitude of the velocity andRc the radius of curvature.
This indicates that the streamline curvature, and thus its loca-
tion, is influenced by the value of the normal pressure gradient,
the magnitude of the velocity and the value of the density along
the dividing streamline. Starting from this equation and carrying
a perturbation analysis yields a linear relationship of the form:

r′m
c

= αr
r′0
c

+ αρ
ρ′

ρ̄2
+ αv

(v2)′

ū2
2 + αp

∂p′

∂n

ρ̄2ū2
2/Rc

(17)

where r′m is the average radial motion of the dividing streamline,
r′0 is the motion of the entrance fin leading edge,ρ′ and(v2)′ are
the fluctuations in density and velocity (squared) on the divid-

ing streamline,∂p′

∂n is the fluctuation in normal pressure gradient
on the streamline.̄ρ2, ū2 are the average velocity and density in
CV2. The equation is written in non-dimensional form to obtain
coefficients of order unity. We need to evaluate the fluctuations
along the streamline from the values of the fluctuations in the
through-flow and cavity vortex control volumes. It seems rea-
sonable to write the fluctuations in density and velocity along the
dividing streamline as weighted averages of the fluctuations in
the through-flow control volume and in the cavity vortex control
volume:

ρ′ = β2ρρ′
2 + β3ρρ′

3 (18)

(v2)′ = β2v(v
2
2)

′ + β3v(v
2
3)

′ (19)

where the coefficientsα andβ are weights. The obvious choice
for the normal pressure gradient would be to write:

∂p′

∂n
=

p′2− p′3
δ

(20)

where δ is some characteristic length for the pressure gradient
(similar to a shear layer thickness). However poor results are
obtained with the latter choice. This might be becauseδ should
not be constant. Better agreement is obtained by writing:

∂p′

∂n
=

β2p p′2−β3pp′3
δ

(21)

Thevalues of the constantsα, β andδ are adjusted with the aid
of CFD results. This leads to the following complex equation
for the perturbation of CV2 heighth′2 = −r′m (using the fact that
r′0 = −c′A):

h′2 +
αr c̄
ρ̄2

(

β2ρρ′
2 + β3ρρ′

3

)

+2
αvc̄
ū2

β2vu′2

+
αpc̄

ρ̄2ū2
2δ/Rc

(

β2p p′2−β3pp′3
)

= αrc′A (22)

This equation completes the system given by Eq.(8) to (10)
which can now be solved.

2.6 Solution procedure

We look for a travelling wave solution of the formQ′ =
Q0ei(ωt−ky), wherek is the wave number. The partial derivatives
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in Eq.(8) to (10) can then be replaced by:

∂
∂t

= iω (23)

∂
∂y

= −ik (24)

This results in a system of complex algebraic linear equations
which can be inverted directly since the system is small. For
the boundary conditions, we assume that the flow at the inlet
and outlet remains unperturbed. These boundary conditions are
imposed using a linearised form of Riemann invariants.

3 Results
In this section, results obtained with the analytical model are

compared to CFD results. The test cases considered are a single-
cavity labyrinth seal and a four-fin labyrinth seal. For both cases,
the vibration mode is a 2ND forward travelling mode. The mode
shape is a rotation about a pivot point which is moved from up-
stream to downstream to model seals supported on their high-
and low-pressure side. The location of the pivot point is iden-
tified by its axial coordinate divided by the pitchx/p; x/p = 0
when the pivot point is in the middle of the seal. The mechanical-
to-acoustic frequency ratiof/ fac, which is a critical parameter
for seal flutter, is varied by modifying the frequency of the mode.
The comparisons are made in terms of the aerodynamic work
waero (nondimensionalised by a reference valuewre f ). To this
end, the amplitude of motion is set to 1% of the clearance in the
model as in CFD simulations. The steady-state value in the con-
trol volumes of the analytical model are obtained by averaging
CFD steady-state results over the relevant areas.

3.1 Single-cavity labyrinth
Results concerning the influence of the pivot point location

at three frequency ratios are presented in Fig. 7. There is a rea-
sonably good agreement between the 3 CV model and CFD re-
sults at the two lower frequency ratios. At a frequency ratio of
1.5, the 3 CV model tends to overestimate the aerodynamic work.

Fig. 8 shows results on the influence of the frequency ratio
when the pivot point in on the high-pressure side (HPS) and low-
pressure side (LPS). The tendency of the 3 CV model to over-
estimate the aerodynamic work at high frequency ratio is clearly
visible. The analytical model is able to predict the correct stabil-
ity but the magnitude of the aerodynamic work is overestimated.
Fig. 9 and 10 compare the magnitude and phase of the unsteady
pressure predicted by the 3 CV model and computed with CFD
as a function of the frequency ratio for a LPS mode. There are
some important discrepancies in the magnitude. These discrep-
ancies become more severe as the frequency ratio is increased.

Figure 7. Influence of pivot point location on aerodynamic work - Single-

cavity labyrinth seal.

Figure 8. Influence of frequency ratio on aerodynamic work - Single-

cavity labyrinth seal.

This explains the discrepancies on the aerodynamic work at high
frequency ratios. The first cavity has a singular behaviour be-
cause of the importance of the vena contracta at the entrance fin.
In the analytical model, all fin tips are treated in the same man-
ner. This could account for the discrepancies observed on this
single-cavity case.

Results on the influence of the pressure ratio are presented
in Fig. 11 For most cases, the predictions of the analytical model
agree qualitatively with CFD results. The model is able to predict
the change of stability at low pressure ratio for the HPS mode
at f/ fac = 1. At f/ fac = 1.5, the curve of aerodynamic work
given by the analytical model is similar in shape but shifted to-
wards positive values of the work; consequently the analytical
model predicts a change of stability at a lower pressure ratio.
For the LPS mode atf/ fac = 0.5, the analytical model does not
predict the change of sign of the work at the lowest pressure ra-
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Figure 9. Influence of frequency ratio on unsteady pressure magnitude

- Single-cavity labyrinth seal - LPS.

Figure 10. Influence of frequency ratio on unsteady pressure phase -

Single-cavity labyrinth seal - LPS.

tio; instead the aerodynamic work tends to zero. This discrep-
ancy can be caused either by an error on the magnitude or on
the phase of the unsteady pressure. The magnitude and phase
of the unsteady pressure computed by CFD and the analytical
model for this mode are presented in Fig. 12. The magnitude of
the unsteady pressure is in good agreement between the model
and CFD. The phase is well predicted by the analytical model
at the pressure ratios above 1.4. Below this pressure ratio, CFD
simulations predict a sharp increase of the phase which crosses
the phase -180 degree and thus the stability changes. This sharp
increase is not reproduced by the analytical model.

There are some important discrepancies at the lowest fre-
quency ratio for the HPS mode. The magnitude and phase of the
unsteady pressure computed by CFD and the analytical model
for this mode are presented in Fig. 13. The magnitude of the un-
steady pressure is overestimated by the model at low pressure ra-
tio and the model fails to reproduce the sharp decrease in phase;
this is similar to the behaviour observed for the LPS mode dis-
cussed above. At high pressure ratio, the magnitude is reasonably
well predicted by the analytical. However there are 4 degrees of
difference on the phase. This difference is enough to cause the
observed discrepancies on the aerodynamic work.

(a) HPS mode

(b) LPS mode

Figure 11. Influence of pressure ratio on aerodynamic work - Single-

cavity labyrinth seal.

3.2 Four-fin labyrinth

Plots of the aerodynamic work as a function of the pivot
point location and the frequency ratio are produced for the 4-fin
labyrinth seal in Fig. 14 and Fig. 15. Here the compliance with
CFD results is good.

Fig. 16 compares the phase distribution in the labyrinth
predicted by CFD and obtained with the three-control-volumes
models for three locations of the pivot point. The results of a
two-control-volume model previously developed by the present
authors are also included. This model did not include a control
volume for the fin tip. The frequency ratio is equal to one as
for Fig. 14. The three-control-volumes model is able to repro-
duce the significant change of phase between adjacent cavities
contrary to the two-control-volume model; this results in phase
predictions closer to CFD.
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(a) Magnitude

(b) Phase

Figure 12. Influence of pressure ratio on unsteady pressure magnitude

and phase - Single-cavity labyrinth seal - LPS mode - f/ fac = 0.5.

(a) Magnitude

(b) Phase

Figure 13. Influence of pressure ratio on unsteady pressure magnitude

and phase - Single-cavity labyrinth seal - HPS mode - f/ fac = 0.5.

Figure 14. Influence of pivot point location on aerodynamic work - Four-

fin labyrinth seal.

Figure 15. Influence of frequency ratio on aerodynamic work - Four-fin

labyrinth seal.

4 Conclusions
A three-control-volume analytical model for labyrinth seal

flutter has been presented. On a single-cavity labyrinth seal
case, the model gives reasonably good results at mechanical-
to-acoustic frequency ratios lower than one but tends to over-
estimate the aerodynamic work at higher frequency ratios. A
possible cause could be the lack of modelling of the vena con-
tracta at the first fin tip. The results on a 4-fin labyrinth seal
case are in good agreement with CFD results. In particular,
the three-control-volume model is able to reproduce the signif-
icant change of phase between adjacent cavities contrary to a
two-control-volume model previously developed by the present
authors. The model could be used to carry out quick paramet-
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Figure 16. Phase distribution in the labyrinth for three pivot locations at

a frequency ratio of 1 - Four-fin labyrinth seal.

ric studies. For quantitative predictions, improvements are still
needed if the model is to replace completely CFD simulations.
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