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ABSTRACT 
 Many researchers have compared predicted stiffness and damping 
coefficients for tilting-pad journal bearings (TPJBs) to measurements.  
Most have found that direct damping is consistently overpredicted.  
Continuing to test TBJBs in the same fashion is not likely to produce 
an explanation for the discrepancies between measured and predicted 
damping.  Most analytical models for TPJBs are based on the 
assumption that explicit dependence on pad motion can be eliminated 
by assuming a solution for rotor motion such that the amplitude and 
phase of pad motions are predicted by rotor-pad transfer functions.  
Direct measurements of pad motion during test excitation are needed 
to produce measured transfer functions between rotor and pad motion, 
and a comparison between these measurements and predictions is 
needed to identify model discrepancies.    

A test setup was designed to fulfill these objectives.  Motion 
probes were added to the loaded pad to obtain accurate measurement 
of pad radial and tangential motion, as well as tilt, yaw and pitch.  For 
the remainder of this work, the loaded pad refers to the pad whose 
pivot sits on the static load line.  Testing was performed primarily at 
low speeds and high loads, since this is the operating region for which 
predictions are most erroneous.  Single frequency excitations were 
performed ranging from 10-350 Hz, producing rotor and pad motion, 
acceleration, and force vectors. This motion was used to determine 
frequency-dependent bearing impedances and rotor-pad transfer 
functions. 

A new pad perturbation model is proposed including the effects 
of pad angular, radial, and circumferential pad motion.  This model 
was implemented in a Reynolds-based TPJB code to predict the 
frequency-dependent bearing impedances and rotor-pad transfer 
functions.  These predictions are compared with measurements and 
discussed. 

Good agreement was found between the amplitude of the 
measured and predicted transfer functions concerning tilt and radial 
motions for low to moderate loads, but deviated in accuracy at the 
highest loaded case.  Circumferential (sliding) pad motion was 
predicted and observed; however, the effect of this degree of freedom 
on dynamic bearing coefficients has not been quantitatively assessed. 

For the bearing investigated, radial motion accounted for more 
than 67% of total motion of the fluid-film height at the leading and 
trailing edges of the pad when operating at 4400 rpm under heavily 
loaded conditions.  The measurements show that predicting TPJB 
stiffness and damping coefficients without accounting for pad pivot 
deformation will not produce satisfactory outcomes. 

 

INTRODUCTION 
 In the history of TPJBs, few additions to literature have been 
more significant than those by Lund [1] in 1964 and Lund and 
Pederson [2] in 1987.  The former outlined a method for the 
calculation of stiffness and damping coefficients for a TPJB.  
Procedurally, Lund solves for static equilibrium, perturbs the pad 
equation of motion, eliminates the system’s explicit dependence on 
pad motion by assuming harmonic rotor motion, and calculates direct 
and cross-coupled stiffness and damping coefficients for the bearing.  
Lund assumes that rotor motion is harmonic in the perturbation/ 
reduction frequency Ω, and that running speed ω is an appropriate 
choice for Ω.  This choice of reduction frequency, termed to be a 
‘synchronous reduction,’ does not limit Lund’s analysis to the 
determination of synchronous coefficients, and should not be 
portrayed as such.  This frequency choice has been a subject of much 
discussion over the past few decades.  In the latter work, Lund and 
Pederson reflect upon the original assumption of rotor motion and 
state, “In the special case of a damped eigenvalue calculation or a 
rotor stability calculation, the frequency term, jΩ, must be replaced by 
the complex eigenvalue: s=λ+jΩ, where λ is the damping exponent.”  
Lund and Pederson also include a perturbation of film height due to 
pivot flexibility and pad deformation, which reduces the stiffness and 
damping of the bearing, especially the latter.  These findings were 
supported by Barrett et al. [3] who illustrate the importance of using 
system eigenvalues for stability assessment.  Barrett et al. retains the 
full damped eigenvalue s=λ+jΩ to determine system stability.  They 
conclude that using synchronously reduced coefficients will tend to 
overestimate stability, especially for a bearing operating at high 
Sommerfeld numbers and low preloads.  Kirk and Reedy [4] supported 
Lund and Pederson’s conclusions concerning pivot stiffness, namely 
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that it should be included in the calculation of bearing coefficients.  
Dmochowski was the first to back up this conclusion with good 
agreement between experiments and predictions for a model 
containing support flexibility for the pad [5]. 
 Experimentally, Ha and Yang [6] reported a very slight increase 
in damping and little or no variation in stiffness with excitation 
frequency ratio; however, the limited range of excitation frequencies 
used in these tests is questionable.  These effects were more 
pronounced at lower speeds and higher static loads.  Other researchers 
[5-10] have shown the frequency dependence of measured stiffness 
data is well approximated by an added mass, initially proposed for 
hydrostatic bearings by Rouvas and Childs [11], which results in 
frequency independent stiffness, damping, and mass (KCM) matrices 
that define the bearing reaction force.  This does not imply that the 
parameter identification procedure used by researchers [5-10] cannot 
show frequency dependent stiffness and damping, just that the 
frequency dependent stiffness observed is proportional to Ω2, which is 
adequately included by the addition of an ‘added-mass’ term in the 
bearing reaction force model.  The added-mass terms presented are 
usually relatively small (5-10kg), and typically have a softening 
effect; however, some researchers have shown added mass terms that 
have a stiffening effect [8,12-13].  While Dmochowski [5] shows a 
small decrease in damping with excitation frequency, other researchers 
[7-13] found damping to be constant with excitation frequency.  
 With a few exceptions, experimental measurement of pad motion 
has typically been limited to the observation of pad flutter on unloaded 
pads.  Sabnavis [14] attempts to measure pad motion of a spherical 
seat TPJB, but fails to produce meaningful phase and amplitude 
measurements. 
 The current work will address the issue of frequency dependency 
in TPJBs by investigating the assumptions made in the prediction and 
measurement of TPJB dynamic coefficients. 
 

NOMENCLATURE 
FFT Fast-Fourier Transform  
KCM Stiffness, Damping, and Mass   
TPJB Tilting-Pad Journal Bearing  
C.G. Center of Gravity  
Ax,Ay Acceleration of the stator m/s2 

Aij Complex Equation of Motion m (in) 
Cb Radial Bearing Clearance m (in) 

Cpk Pivot Damping in direction k 
N.s/m 
(lb.s/in) 

dFk Differential Force along k N (lb) 
Hij Complex Bearing Impedance   
Fx,Fy Applied force to the Stator N (lb) 

Iij Fixed impedance  ij ij ijI K sC    

Io Pad Inertia about Pivot 
kg-m2 
(lb.s2.in) 

Kpk Pivot Stiffness in direction k N/m (lb/in) 
M11-15 Raw Pad Probe Displacements m (in) 
Mjj Journal Mass Matrix kg (lb.s2/in) 
Op,Oj Geometric Center of Pad, Journal  m (in) 
Q Direction Cosine Matrix  

R Radius m (in) 
Uj, Up Complex Journal/Pad Motions m (in) 
X, Y, Z Inertial Coordinate Frame  
Xg,Yg Pad Center of Gravity m (in) 
Xp,Yp Pad Pivot Motion from Equilibrium m (in) 

j Imaginary Unit 1j    - 

mp Mass of Pad kg (lb.s2/in) 
mr, ms Rotor/Stator Mass kg (lb.s2/in) 
px,py Distance from Pivot to pad C.G. m (in) 
s Assumed Complex Root s= λ+jΩ  
t Time s 
Γ Rotor-pad Transfer Function  
Ω Data reduction/perturbation frequency rad/sec 
α Angle from X-axis ξp rad 
ζ System damping ratio  

η,ξ 
Differential motion between the rotor and 
stator along the η,ξ pad axis 

m (in) 

λ Damping exponent,  λ=-ζΩn  
ϕ Pad tilt angle rad 
ϕXp,ϕYp Pad tilt angle about Xp, Yp rad 
ω Running speed rad/sec 

 Subscripts  

x,y Inertial Rotor Frame  
j Journal   
c Contact  
b Bearing  
p Pivot/Pad  
η,ξ Pad fixed frame  
 

MATHEMATICAL MODEL 
 The important parameters in the pad perturbation model are 
shown in Figure 1.  The pad shown is free to tilt an angle ϕ about the 
bearing’s Z axis, while the pivot can translate in the radial and 
circumferential directions along axes Y and X, respectively.  Previous 
researchers have neglected pad motion in the circumferential 
direction.  
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Figure 1: Schematic of the pad perturbation model 
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As proposed by Lund [1], the change in reaction force between 
the rotor and pad due to differential motion from equilibrium for a 
single pad is given by  

   
dF K C K C

dF K C K C

    

    

   

  

    

    

 
 

,

,    (1) 

where  

  . (2) 
, , ,

, , ,
p p

j p j p j p j p

p p co p p co p p p pX R X R Y Y

           

     

       

     

    
  

The angle of rotation (tilt) of the pad from its equilibrium position is ϕ, 
and 

pcoR is the distance from the pivot contact point to the center of the 

pad given by 
pco p c b p rpR R R R R t     , where Rp, Rc, and Rb are the 

pad, contact, and bearing radii, and trp is the thickness of the pad at the 
rocker.  Pad pivot motions Xp and Yp denote motion of the pad pivot 
from equilibrium in the inertial frame.  Note that Xp denotes pivot 
motion along the negative X axis. 

The pad’s center of gravity (C.G.) located in the inertial frame, 
with the equilibrium contact point taken as a datum, is given by 
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where px and py describe the distance from the contact location to the 
pad’s center of mass.  Using these relations, the pad’s equation of 
motion is 
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where , , ,
x x yp p p py

K C K C

,

, are the tangential and radial contact stiffness 

and damping, and 
z zppK C , are the rotational stiffness and damping at 

the pivot, respectively.  The second term in the moment equation is 
required because moments are summed about the contact point (Xp, 
Yp), which is free to translate.  The term bpg describes the vector from 
the pivot to the pad’s C.G.  The rotor’s equation of motion is similarly 
given by  

    ,
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Assuming that the perturbation is subject to vibration of the form, 
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assumed solution, the differential forces are now 
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where   ,
pj p j p coY X R         .  Assuming that the change in 

pad tilt angle ϕ induced by rotor motion is small, the acceleration of 
the pad’s C.G. ,g gX Y   can be linearized as  
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Using Eqs. (1-7), the equations of motion for the system can be given 
by 
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where 
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For the sake of brevity, Eq. (8) will be rewritten as 
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where the partition in Eq. (8) separates the journal from the pad.  
Using the bottom set of relations in Eq. (10), we solve for UP 
according to  
     1  P pp pj J pj JU A A U Γ U ,   (11) 

where Γpj is the pad-rotor transfer-function matrix.  To predict the 
correct reduced coefficients for a TPJB, this relation must be accurate.  
Validating this relation by the comparison of measured and predicted 
rotor-pad transfer functions is a primary goal of this research.   

To obtain reduced stiffness and damping coefficients, UP is 
substituted into the top set of relations in Eq. (10) to yield  
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The reduced stiffness and damping coefficients are given by the real 
and imaginary parts of  
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The additional subscripts η, ξ indicate that an impedance relates to 
motions in the pad-fixed frame.  The terms in Eq. (13) are rotated into 
the journal defined coordinate system Xj,Yj using 
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where p    , and Q is the direction cosine matrix from the 

journal-fixed inertial X-Y frame to the pad-fixed inertial η, ξ frame (η, 
ξ do not rotate with pad angle ϕ). 

This pad-perturbation model is applicable to the reduction of 
stiffness and damping terms for both damped and undamped 
(harmonic) motions of the rotor relative to the stator given the proper 
selection of s. 

There are many papers concerning the proper approach to use in 
the reduction of TPJB stiffness and damping coefficients; the 
following should serve to as a summary on the matter.  For the 
prediction of stability, Lund and Pederson state that s=λ+jΩ.  As 
stated by Barrett et al., λ =0 at the threshold speed of instability, which 
eliminates the need for stability calculations using a full damped 
eigenvalue; however, the authors later conclude that employing a 
damped eigenvalue in the calculation of a reduced stiffness and 
damping coefficients will tend to reduce the stability of the system, 
especially for lightly preloaded bearings running at high Sommerfeld 
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numbers [3].  A synchronous reduction is valid for the determination 
of stiffness and damping of harmonic oscillation such as imbalance 
response.  In the event that the predictions can be adequately modeled 
by an added-mass term, this is an excellent approach, as it will save 
both time and effort in eliminating the need to determine the best 
frequency to use in calculations. 

Another method is to employ the full unreduced bearing model in 
Eq. (8) to determine system stability as done by Qiao et al. [15].  The 
improvement in stability prediction of this approach over a reduced 
model has not been adequately addressed for a realistic rotordynamic 
system. 

  

BEARING AND TEST RIG DESCRIPTION 

General Description 
 A drawing of the test rig is shown in Figure 2. 

 
Figure 2: Drawing of the test rig [12] 

 
 A thorough description of this test rig is given in [7-9,12], and 
will not be discussed in detail here.  The test rig is a floating-bearing 
test rig modeled after Glienicke [16], in which a bearing floats on an 
oil film supported by a ‘rigid rotor.’  The bearing, or stator, is excited 
by means of hydraulic actuators at various frequencies while 
components of applied force, absolute stator acceleration and relative 
rotor-stator motion vectors are recorded.  In addition to dynamic 
excitations, a static load can be applied up to 22 kN.   

Figure 3 shows a picture of the stator with a bearing installed.  
This picture shows two locations for the proximity probes, one set 
adjacent to the stinger connections in yellow, and another set 180° 
away from the stinger connection in red.  Previously, the proximity 
probes were located 180° from the stinger connections, which do not 
move with the same amplitude and phase as the stinger during the 
application of dynamic loads due to stator flexibility.  The effect of 
relative motion between the top and bottom was confirmed by the 
reduction of data simultaneously recorded by probes in both locations.  
This change in probe orientation has a notable effect on measured 
impedances, quantified by a 10%-15% decrease in stiffness and a 
reduction in added-mass.  Because most of the dynamic load is carried 
by the statically loaded pad, more accurate impedance coefficients and 
loaded pad transfer functions will be obtained by mounting the 
proximity probes adjacent to the stingers.  The current tests were 

conducted with accelerometers and proximity probes mounted in this 
configuration, as were full bearing tests by Kulhanek [12] and 
Kulhanek and Childs [13]. 
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Figure 3: Stator and test bearing viewed from the non-drive 

end 
 

Test Bearing 
 A description of the test bearing configuration is given in Table 1.  
A rocker pivot similar to the one shown in Figure 1 is used.  Pads are 
retained by a loose fitting pin, which allows the pivot to tilt, slide and 
bounce.  Xp and ϕ are independent variables; therefore, no rolling-
without-slipping relation is assumed. 
 

Table 1: Properties of the bearing at room temp. (24 °C). 
Number of Pads 5 
Loading Configuration LOP 
Pad Arc Angle (θ01) 58.9 
Rotor Diameter 101.587 mm (3.9995 in) 
Pad Axial Length 55.88 mm (2.200 in) 
Cold Bearing Radial Clearance1 68 μm (2.67 mils) 
Cold Pad Radial Clearance1 120.65 μm (4.75 mils) 
Cold Bearing Preload1 0.44 
Pad Mass 0.44 kg (0.97 lb) 
Pad Inertia 2.49e-4 kg-m2 (0.851 lb-in2) 

Bearing Lubricant DTE 797, ISO VG-32 

 
Note 1: The cold bearing clearance describes the dimensions of the 
bearing at room temperature, not at operating conditions.  
Measurements of clearances and their dependence on temperature will 
be discussed in the results section.   
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Test Series  
 Testing was performed at the operating conditions prescribed in 
Table 2.  Data was taken at 10-350 Hz, in 10 Hz increments. 
 

Table 2: Operating conditions 
Static Load Speed [rpm], (Flow-rate [gpm]) 
kPa (psi) 4400, (8) 7300, (8) 10100, (10) 
0 x x x 
783 (113.6) x x x 
1567 (227.2) x x x 
2350 (340.9) x x x 
3134 (454.5) x   
 

Pad Instrumentation 
 The primary degrees of freedom measured on the loaded pad are 
shown in Figure 4.  Each degree of freedom is measured from the 
equilibrium position of the pad at a given operating condition.  Two 
additional degrees of freedom are measured during tests, but are not 
shown in the diagram.  Pad yaw (ϕYp) is defined as the rotation from 
equilibrium-axis Z0 to the perturbed axis Z1 about the positive Y0-axis, 
and pad pitch (ϕXp) is defined as the rotation from equilibrium-axis Z0 
to the perturbed axis Z1 about the positive X0-axis.   
 

 
Figure 4: Primary pad degrees of freedom 

 
The orientations of the proximity probes used to measure motion 

on the loaded pad are illustrated in Figure 5.  Each of the five probes 
(M11-M15) are oriented in the X0-Y0 plane shown in Figure 4.  Three 
radial probes (M11-M13) were added in a triangular pattern to observe 
the tilt, bounce, and pitching motion of the pads, while extensions 
were added to the sides of the pad to enable two tangential probes 
(M14, M15) to measure pad slip and yaw motions.   

Due to the limited range of motion seen by these probes, small 
angle assumptions are applied to the geometric relations relating probe 
measurements to pad degrees of freedom as follows.  The tangential 
motion of the pad is given by     

     
 14 15

2p

M M
X


  ,     (15) 

because the centerline of the proximity probes lies on the contact 
surface.   

 
Figure 5: Proximity probe orientation on loaded pad 

 
Their configuration was designed in this manner so that pad tilt is not 
seen by these probes.  The other motion observed by the tangential 
probes is pad yaw ϕYp, defined as a rotation about the positive Yp-axis 
according to 

     15 14

14,15
Yp

M M

d
 

 ,      (16) 

where the assumption of small motion is justified by the range of 
motion of the proximity probes.  Because the radial pad probes are 
oriented at an angle of 22.5° from the Yp-axis, special care must be 
taken in deriving equations for pad tilt (ϕ), radial motion (Yp), and 
pitch (ϕXp).  Radial motion (Yp) is defined as the average of vertical 
motion seen on each side of the pad and is 

       
11 12

132
cos 22.5

2p

M M
M

Y

   
  

.
    (17) 

Pad pitch is 

         12 11

11,12

cos 22.5
p pX Y

M M

d
 

 
   
 

 ,     (18) 

where ϕYp negates the effect of yaw on the motion seen by M11 and 
M12.  Lastly, pad tilt is 

      
 

  
11 12

13

11

2 sin 22.5
2

cos 22.5
2 sin 22.5

p

M M
M X

r


   
   ,   (19) 

where 2r11sin(22.5) is the distance from probes M11,M12 to M13 parallel 
to the X0-axis, and 2Xpsin(22.5) negates the effect of motion in Xp on 
the relative vertical motion at M11,12 and M13.  As previously stated, 
due to the limited 0.46 mm (18 mil) range of motion for these 
proximity probes, small angle assumptions are valid. 
  

Data Analysis 
 Writing an equation of motion for the bearing stator and taking an 
FFT results in 

   

x x b

s

x

y y b

A F F
m

A F F y

     
      

           ,   

 (20) 

where Ax and Ay are the absolute stator acceleration components, Fx 
and Fy are the excitation force components, and  Fbx and Fby are the 
bearing reaction force components.  Rewriting Eq. (20) with the 
bearing reaction force components represented as impedances yields 
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    x x xx xy Js x

y y yx yy Js x

UF m A H H

UF m A H H

    
     

          .  

 (21) 

To solve Eq. (21), we apply two independent excitations, typically 
chosen as the orthogonal X, Y pair, which provides us with an 
invertible motion matrix such that the impedances are given by 

  

1

xx xx xy xy xx xJ Jxx xys s

yx yx yy yy yx yys s J Jyx yy

U UF m A F m A H H

F m A F m A U U H H


     
     
          

y (22) 

If the real portion of ijH  is quadratic in Ω and the imaginary portion 

of ijH
 

is linear, then the bearing in question can accurately be 
described by a KCM model such that  
  2Re( ) , Im( )ij ijij ij ijH K M H C   

,  
 (23) 

where Cij and Mij are determined by the slope of a linear regression in 
Ω and Ω2, respectively, and Kij is the intercept of the latter. 
 To evaluate the measured rotor-pad transfer function from the 
recorded pad and rotor motions, we employ the same method used to 
solve Eq. (21), orthogonal excitations.  This yields a slightly expanded 
version of Eq. (11), including the additional pad pitch and yaw 
motions. 
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 (24) 

  

NUMERICAL PREDICTION 
 A finite-difference code was developed to solve for the steady-
state and dynamic characteristics of a TPJB using the Reynolds 
equation.  Pad and rotor position are determined using a Newton-
Raphson algorithm that employs the analytically perturbed fluid-film 
stiffness and damping matrices.  The code allows for each pad’s 
properties to be defined irrespective of the other pads characteristics.  
This feature includes, but is not limited to, bearing clearance, pad 
clearance, pad thickness, pad length, offset, thermal properties, etc.   

The code does not include a thermal model to determine bearing 
fluid temperatures and viscosities.  To reduce thermal uncertainties, 
pad surface temperature measurements for each test are used to 
estimate the circumferential fluid temperature profile on a given pad.  
This temperature profile is then used to calculate fluid viscosities at 
each node in the finite-difference grid.  Similar measurements showing 
radial variations in pad temperature are used to estimate thermal bow 
in the pad, effecting a change in preload and pad radius.  An option is 
also available to account for the temperature-dependent change in 
bearing clearance due to the mean temperature rise within a given pad.   

At 10,000 rpm, the circumferential flow Reynolds number is 384; 
hence, turbulence can be neglected in the numerical model [17]. 

The code allows for the input of a polynomial load vs. deflection 
curve whose derivative describes the static nonlinear stiffness of the 
pivot.  The load-dependent pivot stiffness is used initially to solve for 
the static equilibrium of the pad, then subsequently in the reduction of 
dynamic coefficients.  
 

RESULTS 
 Figure 6 shows the measured load vs. deflection curve of the 
loaded pad’s pivot using two different metrics.  The first is the pivot 
deflection as seen by the relative rotor-stator probes, and the second is 
the pivot deflection Yp recorded using the pad probes.  The lower 
stiffness recorded by the rotor-stator probes may be due to the 
measurement of Babbitt and pad stiffness in series with the pivot 
stiffness.  This assumption supports the use of the stiffer pad measured 
load deflection curve in the numerical perturbation analysis. 
 

 
Figure 6: Applied pivot load as a function of measured 

radial deflection 
 
 Figure 7 shows the influence operating temperature has on 
bearing clearance.   
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Cb = 68.17 m at 24.3C
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b
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Figure 7: Clearance measurement at a variety of 

temperatures (as determined by the mean pad temperature 
within the bearing). 

 
These measurements consist of clearances taken at room 

temperature, 4400 rpm at low and high loads, and 7200 rpm at low and 
medium loads, respectively.  Clearances are measured by slowly 
precessing the stator in a circular motion directly after shutting down 
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the test rig after operating at steady state conditions for a given speed 
and load.  These measurements present a very clear picture of the 
critical geometry within the bearing during a test.   

This bearing has five pads, corresponding to the number of sides 
in the clearance measurement.  The top side represents the loaded pad, 
and shaft rotation is clockwise.  At the center of each side, a colored 
dot represents the pivot location for that pad.  Fitting these points to a 
circle provides an estimate of the best average clearance, which is 
indicated by the dashed line.  At room temperature the clearance is fit 
well by a circle, indicating that the installed clearance for each pad is 
very consistent.  As the bearing gets hotter, however, the rotor, pads, 
and bearing begin to expand.  Assuming the bearing bore remains 
constant, a hotter pad will expand more, resulting in a decreased 
clearance; therefore, the length of that pad’s side of the clearance 
measurement will increase with respect to its peers.  If the bearing 
bore expands more on the hotter side, however, it would tend to 
increase that pad’s clearance and decrease the length of the clearance 
measurement on that side.   

In addition to these relative changes in clearances among the 
pads, there is significant reduction in the overall clearance in the 
bearing.  Although these are relatively low speeds for a TPJB, the 
measured clearance following a low-load 7200 rpm test case is 70% of 
the assembled cold-clearance measurement.   

Finally, note that the clearance measurement seems to shift down 
and to the left with increasing temperature.  This effect occurs because 
the proximity probes taking these measurements are also expanding 
with temperature.  This observation is important because presenting 
static eccentricity measurements without accounting for the change in 
probe temperature will result in errors in both eccentricity magnitude 
and attitude angle.  The author believes this is the primary reason for 
the number of eccentricity measurements presented in literature with 
slight, but significant, attitude angles.  Another option to account for 
the probe temperature change is to take clearance measurements at 
each operating condition, and to determine eccentricity ratios based on 
rotor position within the clearance measurement.    
 Figures 8-11 show the measured and predicted rotor-pad transfer 
functions of the loaded pad resulting from the application of Eq. (24) 
to dynamic measurements for low, medium, and large unit loads at 
4400 rpm.  In these figures, the pad tilt transfer function Γϕ is non-
dimensionalized by multiplying Γϕ by the distance from the pivot to 
the leading edge of the pad (0.025m).  This non-dimensionalization 
emphasizes the relative importance of ϕ on fluid-film height at the 
leading/trailing edges of the pad as compared to horizontal and 
vertical pad motions Xp and Yp. 

Figure 8-A shows the transfer functions resulting from shaft 
motion in the circumferential (horizontal) axis of the pad as a function 
of the static load applied to the bearing.  The effect of horizontal shaft 
motion on radial (Yp) and circumferential (Xp) pad motions are small 
relative to tilting motion (ϕ), which is effectively tracking the 
horizontal shaft motion.  Assuming that there is no substantial phase 
lag between the rotor and pad tilt angle, these motions should have 
little impact on the characteristics of the bearing.  Substantial phase 
lag in this transfer function would suggest that friction may be 
impeding the tilting motion and causing destabilizing cross-coupled 
stiffness coefficients. 
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Figure 8: Measured transfer function amplitudes of the 

loaded pad due to (A) X and (B) Y rotor motions at 4400 rpm 
with zero, medium and high static bearing loads. 

 
Figure 8-B shows the transfer functions resulting from shaft 

motion in the radial (vertical) axis of the pad as a function of static 
load on the bearing.  These transfer functions are responsible for direct 
stiffness and damping coefficients for the bearing, and a good 
understanding of these transfer functions and how they compare to 
predictions is vital to correcting modeling deficiencies relating to 
direct damping and stiffness. 

Continuing with Figure 8-B, when unloaded, the tilting motion of 
the pad accounts for roughly 60% of the change in fluid film height at 
the pad’s leading edge, and radial pad motion in this operating regime 
comprises approximately 40% of the total motion at the leading edge.  
As the bearing’s static load increases, the relative importance of radial 
pivot motion on the overall motion of the pad increases significantly; 

 7 Copyright © 2011 by ASME 



at a 3132 kPa static bearing load, radial pivot motion comprises more 
than 70% of the total motion at the leading and trailing edges of the 
pad.  Although the tilting angle affects the convergent shape of the 
fluid film, which has a dramatic influence on stiffness, radial pivot 
motion has a substantial impact on both direct stiffness and damping.  
This impact increases with the load applied to the pad and with 
frequency of excitation.  At large unit loads, the increase in radial 
pivot motion with frequency is reduced.  These observations suggest 
that including pivot flexibility in a numerical model is mandatory 
regardless of the loading on the pad, despite increased significance at 
large unit loads. 

Figures 9-11 compare the predicted and measured rotor-pad 
transfer functions for low, medium, and high bearing static loads.  
Looking first at the transfer functions resulting from shaft motion in 
the circumferential (horizontal) axis of the pad shown in Figures 9-11 
A, note the following observations.  Figure 9-A shows relatively little 
radial and circumferential motion measured or predicted in 
comparison to the amount of pad tilt accommodating circumferential 
rotor motion.  The ability of the model to predict the tracking behavior 
(tilting motion) of the pad is quite good; neither the predicted nor 
observed tilting motion amplitude changes significantly with load or 
excitation frequency.   

One valuable piece of information can be obtained from this 
measurement; however, and it relates to the pivot location.  Consider 
the differential force in the tangential direction (dFη) between the rotor 
and pad given in Eq (1).  If our bearing acts as an ideal tilting pad 
bearing, then dFη = 0, which requires that the perturbed motions 
ηj=ηp=Rcopϕ.  Using geometric relations and small angle assumptions, 
the transfer function between the normalized pad tilting angle and 
tangential rotor motion should be the distance from the pivot to the 
leading edge of the pad divided by the distance from the pivot to the 
center of the pad.  For the bearing in question, 

        0.025
0.363

pcoR
         (25) 

which is very close to both the measured and predicted Γϕη shown in 
Figure 9-A.  While Rcop would be obvious for the pivot type shown in 
Figure 1, this simple insight may prove to be more useful for a ball-in-
socket or cylindrical pivot, in which the actual pad-pivot location may 
be in question. 
 Figures 9-11 B show the transfer functions resulting from shaft 
motion in the radial (vertical) axis of the pad.  Figure 9-B shows that 
at zero static load, the model predicts radial pad motion amplitudes 
very accurately throughout the entire frequency range, but fails to 
reproduce the same accuracy at larger unit loads.  Note that the radial 
pad motion is under-predicted at low loads, and over predicted at high 
loads.  Pad tilt is predicted moderately well at low and high loads, but 
produces extremely accurate predictions for the medium load case 
shown in Figure 10-B.  There is a substantial degree of circumferential 
pad (sliding) motion measured at zero unit load in Figure 9-B, while 
predictions are noticeably smaller.  This difference may arise because 
pad accelerations in the perturbation model assume the rotor is 
perturbed about a stationary stator, while the stator is perturbed about 
the rotor in experiments.  This perturbation of the stator results in 
larger pad accelerations that may have some impact on the transfer 
functions recorded.  This said, varying the pad mass and inertia has no 
discernable impact on the reduced dynamic coefficients predicted, 
which suggests that both stator and rotor perturbations would produce 
the same results.   

At higher loads, pad sliding motion is smaller and predicted 
moderately better than at low loads.  The effect of sliding motion on 

the resulting bearing coefficients has not been fully explored, and will 
be the subject of further research. 
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Figure 9: Measured and predicted pad-rotor transfer 

function amplitudes of the loaded pad due to (A) X and (B) 
Y rotor motions at 4400 rpm with 0 kPa static bearing load. 
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Figure 10: Measured and predicted pad-rotor transfer 

function amplitudes of the loaded pad due to (A) X and (B) 
Y rotor motions at 4400 rpm with 1566 kPa static bearing 

load. 
 
 

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
m

pl
itu

de
 (
m

/ 
m

)

A) Magnitude of Pad Transfer Function | =P/J
X
 |

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

A
m

pl
itu

de
 (
m

/ 
m

)

B) Magnitude of Pad Transfer Function | =P/J
Y

 |

 

 



, Meas., 3132kPa


Yp

, Meas., 3132kPa


Xp

, Meas., 3132kPa



, Pred., 3132kPa


Yp

, Pred., 3132kPa


Xp

, Pred., 3132kPa

 
Figure 11 : Measured and predicted pad-rotor transfer 

function amplitudes of the loaded pad due to (A) X and (B) 
Y rotor motions at 4400 rpm with 3132 kPa static bearing 

load. 
 

Figure 12 compares the measured and predicted phase of the pad-
rotor transfer function.  With the exception of predicted pad vertical 
motion due to rotor horizontal motion (ΓYp,η) the phases of the transfer 
functions are predicted quite well.  This holds especially true for the 
prediction of tilting angle due to vertical rotor motion, which had very 
accurate amplitude predictions shown in Figure 10.  Note the 180° 
shift in pad sliding phase shown in Figure 12-A.  This phase change 
suggests that at low excitation frequencies, the pad slides in the same 
direction as the rotor.  At higher frequencies, however, the pad slides 
in the opposite direction of the rotor.  This outcome is not predicted by 
the model, and may be due to the difference in perturbation of the 
rotor versus the stator mentioned earlier. 
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Figure 12: Measured and predicted pad-rotor transfer 

function amplitudes of the loaded pad due to (A) X and (B) 
Y rotor motions at 4400 rpm with 1566 kPa static bearing 

load. 
 

Figures 13-15 show the principal real and imaginary impedances 
as a function of excitation frequency for low, medium, and large unit 
loads.  These impedances result from the application of Eqs. (20-23) to 
the test data.  The model does well in stiffness and damping prediction 
at low loads, but deviates moderately in the prediction of direct 
stiffness Hyy  at the highest load.  Stiffness for this case is over-
predicted by 27%.  These results are summarized in Table 3, which 
shows the relative error in predicted stiffness and damping coefficients 
through running speed at 73Hz.  Damping is moderately over-
predicted, deviating significantly at frequencies above 100 Hz.  If used 
to determine a damping coefficient through the running speed of 
73Hz, it appears that damping prediction would be adequate at low 
load, but would over-predict damping by 38% at the highest load.  

Although this seems poor, the author is aware of no papers in literature 
containing as accurate of damping predictions for heavily loaded 
bearings at such low speeds.  Though space does not permit the 
inclusion of higher speed test data in this paper, damping coefficients 
predicted for heavily loaded operation at 10,000 rpm are within 5% of 
measured values. 
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Figure 13: A) Real and B) imaginary components of 

measured and predicted bearing impedance coefficients at 
4400 rpm with 0 kPa static bearing load. 
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Figure 14: Principal Real and Imaginary Hij at 4400 rpm, 

1567 kPa (227 psi) unit load. 
 
 

Table 3: Percent relative error in principal stiffness and 
damping coefficients at 4400 rpm (fit through running 

speed).  Positive values indicate overpredicted coefficients. 
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Figure 15: Principal Real and Imaginary Hij at 4400 rpm, 

3134 kPa (454 psi) unit load. 
 
 

SUMMARY AND CONCLUSIONS 
 A new pad perturbation model is proposed including a tangential 
degree of freedom for the pad pivot.  Perturbations of pad radial and 
tilting degrees of freedom follows from the analysis initially provided 
by Lund [1] and Lund and Pederson [2]; however, unlike previous 
perturbations, this analysis allows for an arbitrary pad center of 
gravity.  This model was implemented in a Reynolds-based TPJB 
finite-difference code to produce impedance coefficients that were 
reduced using the general complex root s=λ+jΩ.  For the prediction of 
damping coefficients on a harmonically excited test rig, s=jΩ was 
implemented to solve for reduced stiffness and damping coefficients.   

During the reduction procedure, relations for pad motion as a 
function of rotor motion were determined at each reduced frequency.  
The amplitude and phase of these transfer functions were compared to 
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measured pad-rotor transfer functions for tests at low speed over a 
range of unit loads.  Good agreement was found between the 
amplitude of the measured and predicted transfer functions concerning 
tilt and radial motions for low to moderate loads, but deviated in 
accuracy at the highest loaded case.   

Circumferential (sliding) pad motion was predicted and observed; 
however, the author does not assert that the inclusion of a 
circumferential pad degree of freedom has a substantial impact on 
bearing coefficients.  The effects of these motions on bearing 
performance were not fully explored, and may provide some insight to 
pad dynamics in the future. 

Note that even on a bearing not classified as having a ‘soft pivot’, 
radial motion at high loads can more than double the effect of tilting 
motion on the fluid-film height at the leading and trailing edges of the 
pad.  The measurements show that predicting TPJB characteristics 
without accounting for pad pivot deformation is ill advised, regardless 
of the loading applied to the pivot.  For the bearing tested, predictions 
for direct stiffness and damping compared well to test data at low and 
moderate loads, but were less accurate when heavily loaded.  Direct 
damping was overpredicted by 38% at the highest load.  

Why are damping coefficients over-predicted for the majority of 
test data?  There may be a number of contributing factors.  First and 
foremost may be the notion that accurate prediction of stiffness and 
static eccentricity characteristics is an alibi for an accurate bearing 
model.  If stiffness and static eccentricity are predicted well, this is not 
sufficient evidence to dismiss the need for pivot flexibility in the 
prediction of stiffness and damping coefficients.  Several factors can 
alter the measured stiffness in a test rig if not accounted for.  
Operating clearance can be reduced to 70% of its cold clearance at 
7300 rpm, which has the tendency to increase measured stiffness.  In 
contrast, moving the proximity probes to the side of the stator closest 
to the stingers reduced measured stiffness by 10-15%, and influenced 
the frequency dependent behavior of bearing impedances.  In the 
author’s perspective, effects such as these have contributed to a lack of 
confidence in the ability to reliably predict measured stiffness and 
damping coefficients for the TPJB.  

The produced rotor-pad transfer functions can be useful in 
identifying deficiencies in the model or test setup.  The transfer of 
measured and predicted transfer-function deviations into useful 
feedback on modeling improvements should be the subject of 
subsequent work in the field.   
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