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Abstract 
Mistuning has traditionally been modeled through the 

changes in Young’s moduli of blades, or equivalently through 
perturbations in the stiffness matrices associated with blades’ 
degrees of freedom. Such a mistuning is termed as Frequency 
Mistuning because it alters the blade alone frequencies 
without altering the mode shapes component associated with 
the blades. Many reduced order models have been developed 
for frequency mistuning [1-7]. Although frequency mistuning 
has been developed for Young’s Modulus mistuning, it is 
applied to geometric mistuning in the literature.  In this paper 
frequency mistuning is applied to a geometrically mistuned 
system and the results from Subset of Nominal Modes (SNM) 
[5] technique, a reduced order model based on frequency 
mistuning, are compared with those from Modified Modal 
Domain Analysis (MMDA). It is shown that frequency 
mistuning analysis is unable to capture the effects of 
geometric mistuning in general, whereas MMDA provides 
accurate estimates of natural frequencies, mode shapes and 
forced response.  

Nomenclature  
n Number of sectors 
np Number of POD features 

0b  Average thickness of the blades 

lb  Actual thickness of blade #l 

lξ  Mistuning parameter for blade #l 
E0 Young’s modulus of tuned/actual blades 

Em Equivalent young’s modulus of blades for frequency 
mistuning. 

0Φ  Mode shapes of the nominal tuned bladed disk 

1Φ  
Mode shapes of  tuned bladed disk with geometry 
perturbed along 1st POD feature 

 

INTRODUCTION 
Mistuning is a term adopted to designate the small 

blade-to-blade variations in geometric and material properties, 
which are unavoidable in all practical bladed disks due to 
manufacturing and assembly tolerances and non-uniform wear 
during service. The fundamental blade mistuning problem 
stems from the fact that unavoidable (but generally small) 
blade-to-blade variations cause simultaneous and dependent 
perturbations in mass and stiffness matrices of each blade, 
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which has a dramatic effect on the vibration behavior of a 
bladed disk system. Computationally efficient algorithms that 
analyze perfectly periodic structures using the theory of cyclic 
symmetry have been developed to study the vibration 
characteristics of bladed rotors. But in presence of mistuning, 
the cyclic symmetry property is lost. Due to mistuning leading 
to breakdown in cyclic symmetry, modeling just one sector is 
not sufficient; a full bladed disk model is needed. Modern 
industrial finite element models of a full bladed disk can be on 
the order of millions of degrees of freedom. Even in today’s 
date of advanced computing, the use of full 360 degree models 
to perform Monte Carlo simulations is infeasible. Therefore, 
reduction techniques are used to generate reduced-order 
models (ROM) from the tuned finite element models and 
geometric mistuning definitions for a frequency range of 
interest. 

Mistuning has traditionally been modeled through the 
changes in Young’s moduli of blades, or equivalently through 
perturbations in the stiffness matrices associated with blades’ 
degrees of freedom. Such a mistuning is an approximation of 
actual mistuning because it does not capture the simultaneous 
perturbations in mass and stiffness matrices due to 
perturbations in geometry. Such a mistuning is commonly 
referred to as “Frequency Mistuning”. A consequence of 
Frequency Mistuning is that it does not alter the blades’ mode 
shapes, but only the blade alone frequencies. For Frequency 
Mistuning, reduced order models [1 - 7]  have been developed 
which represent the solution as a weighted sum of the modes 
of the nominal tuned system. Such an assumption works 
because Frequency Mistuning does not alter the mode shapes 
associated with the blades. But actual (geometric) mistuning 
leads to simultaneous perturbations in mass and stiffness 
matrices, which alter the mode shapes associated with the 
blades, hence the subset of nominal modes assumption [5]  is 
no longer valid and the accuracy of these models is reduced. 
In case of lightly damped structures like integrated blade 
rotors or blisks, this inaccuracy can lead to large errors in the 
predicted forced response of the mistuned system.  

Modified Modal Domain Analysis (MMDA) [8]  is a 
breakthrough approach for modeling mistuned bladed disks in 
the presence of simultaneous perturbations in mass and 
stiffness matrices, i.e. geometric mistuning. It has been shown 
[8] that MMDA is able to capture the effects of geometric 
mistuning even in case of large mistuning. The algorithm 
works by identifying the independent geometric features 
which result in mistuning using proper orthogonal 
decomposition (POD) of perturbations in blade geometries. 

The approximate solution is then obtained by projecting the 
true solution on the vector space containing modes from the 
tuned average geometry (nominal modes) and the modes from 
tuned geometry perturbed along the POD features (non-
nominal modes). 

Subset of Nominal Modes (SNM) [5] is a reduced 
order model based on frequency mistuning. SNM and MMDA 
are similar in the sense that both use nominal modes to form 
the bases. The difference arises in the use of non-nominal 
modes in MMDA. Due to the use of additional set of modes, 
the cost of conducting MMDA analysis is higher as compared 
to SNM. Due to relatively higher cost of MMDA as compared 
to SNM it is preferable to identify scenarios where nominal 
mode solutions may work and where they do not. Hence a 
comparison study has been undertaken in this paper, where 
SNM and MMDA both have been applied to a geometrically 
mistuned system and the results have been presented to 
recognize the advantages of using the non-nominal modes 
over just the nominal mode approximation. 

SNM and MMDA: Comparison 
 SNM and MMDA algorithms have been summarized 
in the Appendix. In this section, both the techniques are 
applied to a bladed disk with geometric mistuning. The disk 
considered by Sinha[8] (Figure 1) is considered again. The 
number of sectors or blades (n) is 24.  

 

Figure 1: Finite element model of a bladed disk 
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Mistuning has been introduced by varying the thicknesses of 
the blades. The thickness of the blade #l is given by: 

nlbb ll ,,2,1);1(0 =+= ξ   (1) 

where lξ  is the fractional change in blade thickness. Values of 

lξ are generated by the Matlab routine ‘randn’ [9] and shown 
in Figure 2. Mean and standard deviation of this random 
mistuning pattern are -0.0024 ( =~ 0) and 0.017, respectively. 

 

Figure 2:  Mistuning pattern for blade thicknesses 

A sector analysis of the nominal tuned sector is run 
and the natural frequencies (Figure 3) and mode shapes are 
calculated. The first step for frequency mistuning analysis is to 
calculate the Young’s moduli of the equivalent blades so that 
the natural frequency of the equivalent blade matches the 
natural frequency of the actual mistuned blade. The Young’s 
moduli for the blades can be calculated using equation A.1. 
Since for same geometric mistuning (in this case, change of 
thickness), the ratio of the mistuned and tuned natural 
frequencies depends upon the modes of excitation (the ratio 
for bending modes would be different from that of torsional 
modes), it is essential to identify the range of frequency for 
modal analysis and then identify the blade mode shapes 
dominant in that range of interest. Once the dominant blade 
mode shapes are identified then the equivalent Young’s 
moduli of the blades can be calculated using equation A.1.  

Most of the papers dealing with mistuning have 
employed Young’s modulus mistuning in the reference full 
order finite models and the results from the reduced-order 
models have matched exactly with the full order models. 
Feiner and Griffin [7] applied their reduced order model 
(FMM technique) to a geometrically mistuned system and 
showed excellent accuracy of the reduced order model, but 
they dealt with a very small value of geometric mistuning 

(0.2% standard deviation in the changes in lengths of blades) 
and an isolated family of modes. Here SNM technique (on 
which FMM technique is based) is applied to a geometrically 
mistuned disk with comparatively larger value of geometric 
mistuning (1.7% standard deviation in thickness changes of 
the blades) in order to study its accuracy under larger 
geometric mistuning values. 

Figure 3: Natural Frequencies vs. Harmonic Index for the first 
10 families of the nominal tuned bladed disk 

 Figure 3 shows the natural frequencies of the nominal 
bladed disk assembly for different families of modes. As 
observed from the figure, two types of regions exist; (i) 
regions with isolated family of modes in a narrow frequency 
band where the primary energy is stored in the blades; for 
example, family 1. (ii) regions with overlapping families 
spanning a larger frequency bands where the primary energy is 
stored in the disk; for example, families 4, 5 and 6. From 
frequency mistuning point of view these two regions are 
different in the sense that for isolated families only a single 
blade mode shape is present in the region and natural 
frequency of the mistuned blades for that mode can be used to 
calculate the equivalent Young’s moduli of the blades for 
frequency mistuning. But in the other region where multiple 
families overlap, multiple definitions of equivalent frequency 
mistuning exist depending upon the family of modes used to 
calculate the equivalent Young’s moduli of the blades. Both 
the cases for the frequency mistuning have been considered in 
this study. 

As shown in Figure 3, the first family of modes is an 
isolated family of modes. Figure 4a shows the 0 harmonic 
index sector mode shape of the first family. As observed from 
the figure, the energy in the sector is primarily stored in first 
bending (FB) mode of the blade, hence the frequency 
mistuning based on the first bending mode of the blade 
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clamped at the base is generated to apply SNM analysis in the 
frequency band associated with the first family of the sector 
modes. Figure 5a shows that the 1st mode of the blade clamped 
at the base is the first bending mode. Figure 3 also shows that 
in frequency band near 22 kHz. families 4, 5 and 6 overlap. 
The 0 harmonic index sector mode shapes for families 4, 5 and 
6 are shown in figure 4 (b), (c) and (d) respectively. The mode 
shapes for the 4th, 5th and 6th families show that the dominant 
blade mode shapes for the three families are lateral bending 
(LB), torsion (T) and elongation (E) respectively.  

  

(a) 1st Family  (b) 4th Family               

  

(c) 5th Family      (d) 6th Family 

Figure 4: 0 Harmonic Index sector mode shapes of the 1st, 4th, 
5th and 6th    Families 

The modal analysis of tuned blade clamped at base shows that 
the 2nd, 3rd and 5th modes are the lateral bending, torsion and 
elongation modes respectively (Figure 5). Since the 3 families 
of blade mode shapes are present in the frequency band 
around 22 kHz., frequency mistuning is created for each of  
the 3 cases, i.e. equivalent Young’s moduli for lateral bending, 
torsion and elongation and the results are presented.  

 

        

(a) 1st mode   (b) 2nd mode            

  

(c) 3rd Mode    (d) 5th Mode 

Figure 5: 1st, 2nd, 3rd and 5th modes for blade clamped at base 

 

Figure 6: Equivalent Young’s moduli (psi) of the blades for 
first bending (FB), lateral bending (LB), torsion (T) and 

elongation (E) blade mode shapes 

Figure 6 shows the equivalent Young’s moduli of the blades 
calculated for first bending, lateral bending, torsion and 
elongation modes of the blades. As observed from Figure 6, 
the equivalent Young’s moduli of the blades as calculated for 
the first bending and torsional modes follow the pattern of 
actual geometric mistuning parameter as plotted in Figure 2. 
This suggests that the first bending and torsional modes are 
sensitive to the changes in thicknesses of blades and 
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significant changes in bladed disk assembly mode shapes are 
expected for the modes dominated by first bending and 
torsional blade mode shape components. On the other hand, 
the equivalent Young’s moduli of the blades estimated for the 
lateral bending and elongation modes of the clamped blades 

have a constant mean value of psi7103× , which suggests 
that lateral bending and elongation modes are insensitive to 
changes in thickness of blades and the assembled bladed disk 
modes dominated by lateral bending or elongation blade mode 
component are not expected to change. It should also be noted 
that since no perturbation in the Young’s moduli of blades is 
observed for frequency mistuning based on lateral bending or 
elongation modes, such frequency mistuning will not capture 
any mistuning effects and the natural frequencies and mode 
shapes estimated from the SNM analysis will match with the 
natural frequencies and mode shapes of the nominal system. 

Finite element models for these cases of frequency 
mistuning are generated and SNM analyses are performed on 
the basis of first 240 tuned modes. MMDA analysis is also 
performed for the mistuned bladed disk assembly for which 
number of POD features, 1=np  and 240 modes are used for 

both 0Φ and  1Φ  in equation (A.9). Natural frequencies and 
mode shapes of the mistuned bladed disk assembly are also 
generated from finite element analysis of full rotor in ANSYS 
to compare the accuracy of the two reduced order models. 

Figure 7 shows deviations in the first 24 natural 
frequencies estimated via MMDA, SNM and ANSYS 
analysis. As observed from the Figure, SNM is unable to 
capture the deviations in natural frequencies due to geometric 
mistuning with standard deviation equal to 1.7%. 

 Figure 7: Deviations in frequencies estimated via reduced 
order models (MMDA and SNM) for the first bending family 

Next the mode shapes from the reduced order models (MMDA 
and SNM) are compared with the mode shapes from the full 

rotor ANSYS analysis using Modal Assurance Criterion 
(MAC) [10]. MAC values for the mode shapes estimated via 
reduced order models are plotted in Figure 8. The values 
closer to 1 on the diagonal suggest that the mode shapes 
estimated from the reduced order model are identical to the 
reference mode shapes (mode shapes from full rotor ANSYS 
analysis), whereas the values closer to 0 on the diagonal 
suggest that the estimated mode shapes from the reduced order 
model are orthogonal to the reference mode shapes. 

 

(a) MMDA 

 

(b) SNM (First Bending) 

Figure 8: MAC values for the first 24 modes calculated via 
reduced order models (MMDA and SNM) for the first bending 

family 

The observation of MAC values for mode shapes estimated 
via MMDA suggests that MMDA is able to capture the mode 
shapes exactly. On the other hand MAC values for the modes 
estimated via SNM suggest that the technique is able to 
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capture mode shapes for modes 1-12, but shows large errors in 
estimated mode shapes for modes 13- 24.  

 

(a) Mode #5                      (b) Mode #19 

Figure 9: Mode shapes of mistuned bladed disk assembly 

A closer look at the mode shapes of the bladed disk assembly 
shows that the first 12 modes do not show significant mode 
localization (for example mode #5 in figure 9a) and are hence 
similar to the modes of the nominal tuned bladed disk 
assembly. For this reason, nominal mode approximation is 
sufficient to estimate the first 12 mode shapes of the bladed 
disk assembly. On the other hand, modes 13-24 show 
significant mode localization (for example mode #19 in figure 
9b) and are different from the mode shapes of the nominal 
tuned bladed disk assembly. In this case, the nominal mode 
approximation of the mistuned modes is not sufficient and an 
additional set of non-nominal modes is required to form a 
suitable basis for the mistuned mode shapes. 

Similar analysis for comparison between SNM and 
MMDA is also performed for frequency band near 22 kHz. 
Figure 10 shows the deviations in frequencies estimated via 
MMDA, SNM and full rotor ANSYS analysis. As observed 
from the figure, MMDA is able to capture the effects of 
geometric mistuning exactly whereas errors are observed in 
the frequency deviation estimates from SNM analyses. The 
observation of deviations in frequencies in Figure 10 shows 
large values of frequency deviation for modes 73-89, whereas 
small deviations for modes 90-110 and then large and small 
frequency deviations inter-mixed for modes 111 to 120. 

 

Figure 10: Deviations in frequencies estimated via reduced 
order models (MMDA and SNM) 

A closer look at the mode shapes of the mistuned bladed disk 
assembly shows that modes 73-89 are blade dominated 
torsional mode shapes with significant mode localization. 
Since the torsional mode shapes are sensitive to the changes in 
thicknesses of the blades, the mode shapes 73-89 of the 
mistuned bladed disk assembly are significantly different from 
the mode shapes of the nominal tuned bladed disk assembly, 
which results in large frequency deviations. On the other hand, 
for modes 90-110, lateral bending, torsion and elongation 
modes are all present. A closer look at these mode shapes 
shows that the torsional mode shapes present in the range are 
disk dominated with small or no mode localization, hence they 
are not significantly altered by the mistuning. The elongation 
and lateral bending mode shapes present in the range are not 
disk dominated, but since the lateral bending and elongation 
mode shapes are not sensitive to the changes in the thicknesses 
of the blades, these mode shapes are also not altered due to 
mistuning. This results in small or no deviations in frequencies 
for modes 90-110. For modes 111 to 120, blade dominated 2nd 
bending modes (7th family) are also present along with disk 
dominated torsional and elongation modes, all of which do not 
show significant mode localization, hence are similar to the 
nominal tuned bladed disk assembly. Therefore for torsional 
and elongation modes in the range, significant deviation in 
frequency is not observed. For modes corresponding to 2nd 
bending in the range (modes 111, 115 and 117) , although the 
mode shapes are not localized, they are blade dominated and 
since the natural frequency of the bending mode is sensitive to 
the thickness of the blade, significant shift in natural 
frequency is observed for modes corresponding to 2nd bending 
modes. This phenomenon is similar to what is observed for the 
1st bending family in figures 7 and 8, where modes 1-12 are 
not localized but significant deviation in natural frequencies is 
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 (a) MMDA                   (b) SNM (Lateral Bending) 

                  
 (c) SNM (Torsion)                   (d) SNM (Elongation) 

Figure 11:  MAC values for modes 73-120 calculated via MMDA, SNM (Lateral Bending), SNM (Torsion)  and SNM (Elongation)

observed. This analysis is also confirmed by the MAC values 
plotted for modes 73-120 for MMDA and frequency 
mistuning based on lateral bending, torsion and elongation 
blade modes (Figure 11). As discussed earlier, frequency 
mistuning based on lateral bending or elongation modes does 
not capture geometric mistuning and the mode shapes 
estimated via SNM analysis match with those of the nominal 
tuned system. Hence MAC values closer to 1 in Figures 11b 
and 11d suggest that the mistuned mode shapes are similar to 
the mode shapes of the nominal system, whereas MAC values 
closer to 0 suggest that the mode shapes are significantly 
altered from the mode shapes of the nominal system. MAC 
values in Figure 11a show that MMDA is able to estimate the 
mistuned modes accurately.  

Next the harmonic response of the bladed disk 
assembly is estimated via each reduced order model and 
compared with full rotor ANSYS analysis. The differential 
equations of motion for the bladed disk assembly can be 
written as: 

 )(tKCM fxxx =++                                                (2) 

where M , K , C and )(tf  are mass matrix, stiffness matrix,  
damping matrix and forcing vector, respectively. Using 
reduced order modeling transformation (equation (A.3) for 
SNM, and equation (A.8) for MMDA), the reduced-order 
equations of motion can be written as: 
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 )(tKCM H
r

H
r fyyy Φ=+ΦΦ+                          (3) 

Equation (3) can be solved by first performing the modal 
analysis, and then using mode superposition technique to get 
the harmonic response. 

 The mistuned blade disk assembly (Figure 1) is 
excited by a harmonic force corresponding to engine order 
(EO) 6. Since the harmonic forcing function corresponds to 6th 
engine order, in order to study the accuracy of harmonic 
response for the first family of modes, excitation frequencies 
are chosen to be within ±3 percent of the mean excitation 
frequency of 4386.3 Hz (4386.3 Hz is the tuned natural 
frequency corresponding to 6th harmonic index for 1st family). 
The damping ratio in each mistuned mode is taken to be 0.001. 
Figure 12 shows the normalized maximum amplitude (nma) of 
the bladed disk assembly, which is defined as the ratio of the 
maximum amplitude in the bladed disk assembly at a given 
frequency to the maximum amplitude of the nominal tuned 
assembly at resonance, i.e. 

∞

∞=

t

nma
a

a

ω
max

          (4) 

where a and ta are amplitudes vectors for mistuned and 
nominal tuned bladed disk, respectively. An nma value greater 
than 1 indicates that a blade’s response is higher than that of 
the nominal system at resonance. nma is also calculated for 
ANSYS analysis of full (360 degree) model to compare the 
accuracy of the reduced order models. As observed from 
Figure 12, MMDA is able to capture the effects of mistuning 
accurately. This is expected because the mode shapes and 
natural frequencies estimated via MMDA are exact as shown 
in Figures 7 and 8. On the other hand, mean excitation 
frequency of 4386.3 Hz falls near the 15th mode of the 
mistuned bladed disk assembly. As shown in figure 8, the 
mode shapes 13-24 estimated via SNM are not accurate, hence 
harmonic response estimates based on SNM analysis is not 
expected to be accurate in the frequency band where these 
modes are excited. This behavior is also observed in Figure 
12.  

Figure 12:  Normalized maximum amplitudes estimated via 
reduced order models (MMDA and SNM) for the first bending 
family. Engine order = 6, Mean excitation frequency = 4386.3 

Hz 

To get the estimates of the worst case scenario, it is important 
to compute the normalized peak maximum amplitude (npma) 
defined as: 

nmanpma

t
ω

ω

ω max
max

max

==

∞

∞

a

a
           (5) 

The error in npma is defined as the difference in npma values 
as estimated via reduced order model and the actual npma 
values estimated via full rotor ANSYS analysis. The error in 
npma values estimated via MMDA is -1.08e-3%, whereas for 
npma values estimated via SNM is -22.42%, which suggests 
that SNM is not suitable for npma estimates for the first 
bending family. 

The frequency deviation analysis in Figure 10 and MAC 
values in Figure 11 show that the natural frequencies and 
mode shapes for modes 73-89 are significantly different from 
the mode shapes of the nominal system, whereas for modes 
90-120, deviations in mode shapes are small. In order to study 
the accuracy of the reduced order models for both the regions 
of high and low deviations, the system is excited by a 
harmonic forcing function corresponding to 6th engine order 
excitation, within ±3 percent of the mean forcing frequencies 
of 17001.5 Hz and 26788.4 Hz, natural frequencies 
corresponding to 6th harmonic index of the 4th (lateral bending) 
and 5th (torsion) family in Figure 4 respectively. The 
frequency band of 16491.4 Hz to 17511.5 Hz (mean excitation 
frequency 17001.5102 Hz) excites modes between 73 and 89, 
whereas frequency band between 25984.8 Hz and 27592.1 Hz 
excites modes in the range 95-124, which include elongation 
family modes. The damping ratio in each mistuned mode is 
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again taken to be 0.001. Figures 13 and 14 show the 
normalized maximum amplitudes (nma) estimated via ANSYS 
analysis of full (360 degree) model and from the different 
reduced order models. SNM results are only presented for 
torsional modes of blade vibration. Since the lateral bending 
and elongation modes are not sensitive to the changes in 
thicknesses of the blades, SNM results based on these modes 
are same as responses of the nominal tuned system.  Here 
again it is observed that MMDA estimates match exactly with 
the full order model ANSYS estimates, whereas nma estimates 
based on SNM analysis differ from the nma estimates from the 
ANSYS analysis. In Figure 13, peak value of nma predicted 
by SNM (torsion) is close to its actual value; however, 
frequency spectrum is quite different. In Figure 14, actual 
response is quite close to that of a nominal tuned system 
because modes (95 – 124) in the frequency band are similar to 
the mode shapes of the nominal tuned system. 

Figure 13: Normalized maximum amplitudes estimated via 
MMDA and SNM (Torsion) for 4th Family. Engine order = 6, 

Mean excitation frequency = 17001.5 Hz 

Figure 14: Normalized maximum amplitudes estimated via 
MMDA and SNM (Torsion) for 5th Family. Engine order = 6, 

Mean excitation frequency = 26788.4 Hz 

The results in the previous section suggest that frequency 
mistuning fails to capture the effects of geometric mistuning, 
especially in the frequency bands of interest where the mode 
shapes are significantly altered by geometric mistuning. 
Figures 12, 13 and 14 show that harmonic response estimates 
based on SNM analysis do not match with the actual harmonic 
response in the frequency spectrum, but a look at the 
normalized peak maximum amplitude (npma) from SNM 
analysis suggests that the errors in npma estimates are small. 
This observation could be misleading, as it may suggest that 
SNM analysis can be employed for calculating npma values. 
Here, the amplitude magnifications obtained for this mistuning 
pattern are small with a maximum amplitude amplification of 
1.4. In order to verify SNM’s ability to accurately estimate 
npma values even in cases of large amplitude magnification, a 
worst case mistuning pattern is obtained by using the 
constrained minimization of a nonlinear objective function in 
MATLAB (fmincon) [9]. The inverse of the peak maximum 
amplitude in the frequency band of interest is the nonlinear 
function of the mistuning parameters that is minimized. As it 
has been shown by Bhartiya and Sinha [11], MMDA analysis 
based on 2nd order approximations  of the perturbations in 
mass and stiffness matrices provide an accurate reduced order 
model, which can be used to quickly generate reduced order 
matrices without any expensive computations; it is used to 
perform modal analysis of the mistuned system generated for 
each new set of mistuning parameters. The natural frequencies 
and mode shapes thus obtained are then used to calculate the 
peak maximum amplitude at each iteration during the 
maximization  process. The worst case mistuning parameters 
values are calculated to maximize npma for 6th engine order 
excitation of the first bending family. Excitation frequencies 
are again chosen to be within ±3 percent of the mean 
excitation frequency of 4386.3 Hz (4386.3 Hz is the tuned 
natural frequency corresponding to 6th harmonic index for 1st 
family). The damping ratio in each mistuned mode is again 
taken to be 0.001. The mistuning parameters values for the 
worst case mistuning and the normalized maximum amplitude 
(nma) are plotted in Figures 15 and 16, respectively. SNM 
analysis is also performed for the system and nma values 
based on SNM analysis are also plotted in Figure 16. 
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Figure 15:  Mistuning pattern for npma maximization for first 
bending family and 6th EO excitation 

 

Figure 16: Normalized maximum amplitude estimated via 
reduced order models (MMDA and SNM) for the worst case 

mistuning pattern. Engine order = 6, Mean excitation 
frequency = 4386.3 Hz 

Figure 16 shows that npma value of 2.23 is obtained 
for the worst mistuning pattern. It also shows that MMDA 
provides exact estimates of the maximum amplitudes even this 
case of large amplitude magnification, whereas the npma 
value estimated via SNM analysis is 1.29 which differs 
significantly from the true npma value. Figure 16 clearly 
shows that it is possible to get large errors in npma values 
estimated via SNM analysis as well; hence SNM analysis 
cannot be used to reliably estimate npma values. 

Conclusion 
A study has been performed to compare the results 

from MMDA [8] and Frequency Mistuning analysis SNM [5] 
for a case of geometric mistuning, for both the (i) regions of 
isolated families of modes, and (ii) regions of multiple 

families overlap. It has been clearly shown that MMDA 
provides accurate results for all cases where as Frequency 
Mistuning is unable to provide accurate results for geometric 
mistuning in general. The ability of frequency mistuning to 
capture the effects of geometric mistuning depends on the 
region of interest. For frequency bands where the mode shapes 
are either disk dominated or blade dominated with no 
significant mode localization, the mistuned mode shapes are 
similar to mode shapes of the nominal tuned bladed disk 
assembly and as a result, errors in SNM results may not be 
large. In cases where amplitude amplification due to geometric 
mistuning is not high, the peak maximum amplitude predicted 
by SNM is comparable to its actual value. However, the SNM 
frequency spectrum of the response is inaccurate. For a 
geometric mistuning pattern for which the peak maximum 
amplitude is high (2.23), the peak maximum amplitude 
predicted by SNM is 1.29. This result clearly suggests that the 
SNM can miss the cases of “worst” geometric mistuning 
pattern. 
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APPENDIX 

Mistuning Modeling and SNM 
 For frequency mistuning the mistuning is simulated 
by the changes in the Young’s moduli of the blades. The 
representation of actual mistuning in terms of frequency 
mistuning (equivalent changes in Young’s moduli of blades) 
involves the following steps: 

1. Determination of natural frequency ( tf ) of the blades 

with average geometry and Young’s modulus 0E
clamped at base (Figure A.1a). 

2. Determination of natural frequency ( mf ) of mistuned 

blades with Young’s modulus 0E clamped at base 
(Figure A.1b). 

3. Calculation of equivalent Young’s modulus for a 
blade with average geometry such that the natural 

frequency ( eq
tf ) of the blade is same as the natural 

frequency of the mistuned blade ( mf ), i.e. m
eq

t ff =

(Figure A.1c). The equivalent Young’s modulus can 
be calculated as: 

2

0 







=

t

m
m f

fEE
  

 (A.1) 
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Figure A.1a: Tuned blade 
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Figure A.1b: Mistuned blade 
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Figure A.1c:  Blade for Frequency Mistuning  

                                            0b  

                               )1( 10 ξ+b  

                                            0b  

11 Copyright © 2011 by ASME



The finite element model of the bladed disk with the blades 
modeled as represented in Figure A.1c is used to generate the 
mass and stiffness matrices of the mistuned bladed disk 
assembly.  

Let t
freq MM =  and freqK  be the mass and stiffness 

matrices of the equivalent frequency mistuned bladed disk 
assembly (Note that the mass matrix of the bladed disk 
assembly is same as the mass matrix of the assembly with 
mean geometry and Young’s modulus 0E  because the 
geometry and density of the blades represented in Figures 
A.1a and  A.1c are same).  

Then the equations of motion for the system can be written as: 

0=+ xx freq
t KM     (A.2) 

The idea behind the SNM technique is that the solution x can 
be represented as a weighted sum of the modes of the nominal 
assembly, i.e.  

)()( 0 tt yx Φ=     (A.3) 

where 0Φ is the set of modes for the nominal tuned assembly. 

Substituting equation (A.3) in equation (A.2) and pre-

multiplying with H
0Φ (complex conjugate transpose of 0Φ ), 

the equation of motion can be written as: 

 0=+ yy SNM
r

SNM
r KM     (A.4) 

where  

 00 ΦΦ= t
HSNM

r MM    (A.5) 

and 00 ΦΦ= freqHSNM
r KK    (A.6) 

The eigenvalue problem associated with equation (A.4) can be 
solved to get the mode shapes and natural frequencies of the 
mistuned bladed disk assembly. 

MMDA 
In MMDA [8], the exact mass and stiffness matrices 

of the mistuned system are used to describe the vibration of 
the assembly. Also in addition to the set of nominal modes, a 
set of mode shapes obtained from tuned bladed disk with 
geometries perturbed along the POD features (non-nominal 

modes) are also used to form the bases of solution. Let M and 
K be the mass and stiffness matrices of the mistuned bladed 
disk assembly. The equations of motion can be written as: 

0=+ xx KM      (A.7) 

The solution x can be written as: 

)()( tt yx Φ=     (A.8) 

where 

]...[ 10 npΦΦΦ=Φ
  

(A.9) 

0Φ : set of tuned modes of the system with blades having the 
mean geometry. 

lΦ : set of tuned modes of the system with blades having 

perturbed geometry along thl POD feature, l = 1,….,np. 

Then the reduced order model is given by: 

0=+ yy MMDA
r

MMDA
r KM    (A.10) 

where  

 ΦΦ= MM HMMDA
r    (A.11) 

and ΦΦ= KK HMMDA
r    (A.12) 

The eigenvalue problem associated with equation (A.10) can 
be solved to get the mode shapes and natural frequencies of 
the mistuned bladed disk assembly. 
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