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ABSTRACT 
Large steam turbine end stage rotating blades are commonly 

manufactured by forging and machining to the final geometry. 
As in every manufacturing process certain geometric tolerances 
have to be granted. In particular, the allowed tolerances on the 
airfoil geometry do have a significant influence on the natural 
frequencies of the final blades. 

The resulting frequency scatter is appreciated in terms of 
mistuning the whole ring of blades, as an adequate mistuning 
has shown advantages under unstalled flutter conditions. An 
excessively large band is not acceptable, due to the fact that the 
blade frequencies are tuned to not-coincide with harmonic 
multiples of the rotor speed under stationary operation.  

This paper describes a theoretical method for prediction of a 
manufactured blade design frequency scatter, based only on 
nominal geometric information about the blade. Therefore, it is 
suited to be used during the development of a blade without 
having a prototype produced. The method is divided into three 
different steps. First, a numerical experiment is performed 
creating a number of geometrically modulated FE models. 
These models are used in a calculation of natural frequencies. 
Second, these frequencies serve as input for an identification of 
a simple algebraic representation of the frequencies. This allows 
a fast calculation by interpolation without the need to process 
the FE models. Third, the identified simplified equation is used 
in conjunction with different optimization algorithms for 
analysis of the specific design characteristics. 

The validity of the chosen matrix equation is shown by 
comparison to the FE calculations, before different blade types 
are investigated. Characteristics and options of the implemented 
optimization routines are discussed. Finally, the comparison of 

differently tuned blade types are used to demonstrate the 
capabilities of the described algorithm. 

NOMENCLATURE 

if∆   Frequency difference to nominal geometry 
at same operation speed for i-th mode 

iF∆  Frequency difference of the i-th mode for one 
geometry at different operation speeds 

x
r

∆  Vector of geometric modification data 
 l
r

 Vector term of the simplified equation 
G
r

 Gradient of a scalar function 
H  Hessian matrix of a scalar function 
Q  Matrix term of the simplified equation 

dh  Normalized thickening variation between 
 two adjacent radial cross sections 

0h  Maximum thickening 

fk  Relative frequency deviation factor 

il  Relative frequency lift at different rotor speeds 

n  Total number of free parameters in l
r

 and Q  

N  Number of geometry modifications 
od  Over determination factor 
r  Residual for least squares fit 

 
ABBREV IATIONS 
FE Finite Element 
LSB Last Stage Blade 
LSF Least Squares Fit 
SEQ Simplified System of Equations 
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INTRODUCTION 
Figure 1 shows a large freestanding last stage blade (LSB). 

An overview of design intends for current developments is 
given in [1]. Common radial heights L for 50 Hz applications of 
the developed designs is about and above 1000mm. 

 

 
FIGURE 1 IMAGE OF A LAST STAGE BLADE 

 
Manufacturing of such blades usually starts with forging of 

raw material to a geometry having a certain amount of oversize. 
From this, the two options grinding or milling are used for 
machining to the final airfoil geometry, while the geometry of 
the blade attachments is usually milled. In particular the 
tolerances which have to be granted for machining of the airfoil 
geometry can significantly influence the natural frequencies of 
the final blade. This more or less random distribution of mass 
over the airfoil surface leads to a natural frequency scatter even 
if a batch of blades are manufactured on the same machines. 
The observed frequency scatter therefore is a sensitive indicator 
for deviations in the manufacturing process. Thus the frequency 
measurements of the final blades at standstill are an important 
part of the quality assurance of the manufacturing process. 

The fact that blade tuning has a major effect to blade fatigue 
behavior is widely accepted. An adequate strategy to assure safe 
designs is to avoid resonance at rated speed, i.e. coincidence of 
blade natural frequencies and speed harmonics of the rotor. In 
[2] a tuning up to the 8th rotor harmonic frequency is demanded. 
The frequency spread of manufacturing induced uncertainties 
was estimated based on empiric data and is also included to the 
Campbell diagrams of [2], see Fig. 2. This natural frequency 
scatter is appreciated in terms of mistuning the whole ring of 
blades, since adequate levels o mistuning have shown 
advantages under unstalled flutter conditions, [3]. On the other 
hand, mistuning may lead to unwanted amplitude magnification 
in the forced response [4]. In addition, an excessively large 
frequency scatter is not acceptable as it can even inhibit 
resonance-free operation at rated speed. 

 
FIGURE 2 CAMPBELL DIAGRAM OF A LAST STAGE 

BLADE  [2] 
 

The authors of [5] investigated the possible reduction of 
lifetime of hot combustion turbine components using a 
parametric CAD model and a probabilistic modeling. Another 
probabilistic approach, this time for the prediction of static and 
dynamic frequencies was described in [6]. The authors 
implemented a procedure combining a neural network and a 
Monte Carlo simulation. The training process for the neural 
network variables was done here using a parametric FE model 
of a rather generic shaped model of a turbine blade. 

The method proposed with this paper uses an analytical 
equation for modeling of the underlying effects. The structure 
of the paper follows the steps to be taken for conduction of the 
analyses. Firstly, the required numerical experiment is 
described. Secondly, the mathematical model and the 
identification of free model parameters is shown. Thirdly, 
embedding of the mathematical model into different levels of 
optimization routines leads to a calculation procedure to be 
used for prediction of frequency scatter or identification of 
allowable tolerances. Following this, certain aspects for 
application of the method are investigated and validated against 
FE calculations. The paper concludes with an application of the 
proposed methodology to different blade geometries and 
comparison of results. It will be shown that the frequency 
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scatter is a unique property of each blade design. Using the 
described procedure, frequency scatter as a design characteristic 
can be predicted during development, leading to increased 
quality and reduced development time. 

THEORY AND MODELING 
The starting point for the work was a parametric FE model 

that has proven to provide reliable and accurate frequency 
predictions in low pressure (LP) blade development for many 
years, Fig. 3. 

  

 
FIGURE 3 FE MODEL OF AN AIRFOIL AND FIRST MODE 

 
This model is based on a building block approach dividing a 
blade into the functional components  

• fir-tree root and steeple section of the shaft 
• airfoil 

Each of the components is defined by basic geometry data files, 
e.g. hub radius or outer diameter, which are compiled to the 
final FE model. The airfoil geometry is defined by a number of 
cross sections on constant radial height. These sections are 
designed during development to meet the aerodynamic 
requirements of the airfoil. Following this, the FE model is 
created by radial connection of adjacent cross sections and 
definition of the actual FE mesh entities. A basic prerequisite 
for the described procedure are the interfaces for manipulation 
of the nominal cross sections. 

A straightforward approach to the described target would be 
a direct combination of the FE model with an optimization 
algorithm searching for a maximum (resp. minimum) frequency 
deviation. Obviously, such an optimization using the full FE 
model would lead to unpredictable computational efforts, which 
is unacceptable during development of new blades. The main 
idea to the solution of this problem was a combination of a 
fixed number of FE calculations with the identification of 
simplified algebraic representation of the effects. 

Usually, experimental system identification is used for 
building mathematical models for dynamic systems [7]. 
Following this idea the procedure is divided into the steps 

• Conduction of a numerical experiment using a FE 
model leading to a predictable computational effort. In 
following steps the calculated frequencies are treated 
as experimental data. 

• Identification of the system parameters for a simplified 
system of equations (SEQ) using a least square fit 
method. 

• Analysis of the design characteristics by application of 
optimization routines to the SEQ, e.g. prediction of 
frequency scatter. 

Numerical Experiment  
A basic requirement for the numerical experiment is the 

capability of the calculation method to model the influence of 
slight geometric modifications to the natural frequencies. Long 
term experience in blade development with the underlying FE 
model has proven that the frequency predictions provide the 
required accuracy to fulfill this demand. On the other hand, an 
optimal reduction of computational effort is reached when the 
required modification parameters in the FE model are limited to 
a minimum. The minimum number of model parameters is 
defined by a number of radial cross sections and one parameter 
to be modified on each of the sections. The simplest possible 
parameter is the modification defined by a constant thickening 
on the surface of the cross section shown in Fig. 4. 

 

 
FIGURE 4 MODIFICATION OF THE PROFILE CROSS 

SECTION 
 

Two parameters would offer the possibility to apply different 
thickening on pressure and suction side or defining a linear 
distribution. In order to realize the minimum computational 
effort, it was here decided to stay with the first level approach 
using one variable per cross section. 
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FIGURE 5 VISUALIZATION OF THE GEOMETRIC 

MODIFICATIONS 

∆d∆d∆dx∆
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The implementation of the numerical experiment is divided 
into several steps. A set of geometry modification data files is 
created using random functions. These values are scaled to span 
a range of geometric spread, which is defined by the tolerance 
limits. A visualization of a possible random modification vector 

x
r

∆  is shown in Fig. 5. An automatic computational procedure 
is used to conduct the steps 

• Creation of the input data using the basic modification 
files. 

• FE model creation and conduction of the calculation. 
• Extraction and storage of the desired data. 

 
The advantage of the chosen procedure is the fully predictable 
computational effort for the FE calculations. 

Simplified Equation 
A common approach for approximation of an arbitrary 

function in the vicinity of a point of interest is the application of 
a Taylor-series representation  

 

∑
=

−⋅≈−
0

00 )()(
i

i
i xxaxxF   (1) 

 
with the parameters ia  identified from the partial derivative of 
the function )(xF  evaluated at 0x . According to the behavior 
of the function to be described the series is often restricted to 
linear, quadratic or cubic order. 

Applying a grey-box approach of system identification 
theory [7], the shape of the modeling equation has to be 
postulated in advance and the parameters have to be identified 
from experimental data and algebraic calculations. For the 
given problem the geometry modification is described by the 
vector x

r
∆  and the function to be approximated is the scalar 

frequency deviation from the nominal natural frequency 
 

nominalfff −=∆     (2).  
 
Thus, the simplified equation has to be of vector type. 

Postulating a sufficient accuracy by reduction to 2nd order, the 
equation can be written 

 
xQxxlf T rrrr

∆∆+∆⋅=∆    (3) 
 

or alternatively in index notation 
 

lkklii xxqxlf ∆∆⋅+∆⋅=∆    (4) 
 

Where l
r

 is a vector of the size of x
r

∆  and Q  is a square 

matrix of the size of x
r

∆  in each direction. It is shown later that 
the postulated shape sufficiently models the effect of the 

thickening on the natural frequencies. A more general 
description of the polynomial modeling is given in [7]. 

Obviously, a unique set of equations is required for each 
approximated natural frequency. Nevertheless, the desired 
parameters in l

r
 and Q  can be identified from the results of the 

same geometrically modified FE calculations. 
In order to get a further reduction of the system parameters 

in l
r

 and Q  it was assumed that the Q -matrix is of symmetric 

shape. With this applied to Eq. (3) it can be found that Q  can 
be treated as triangular shaped, including the main diagonal. 
With N defining the size of x

r
∆  the number of free parameters 

n  in l
r

 and Q  can be calculated to 
 

2
)1(2 −⋅+= NN

Nn .   (5) 

 
Using Eq. (5) it can be seen that an increased number of 
geometry modifications significantly increases the number of 
required calculations for parameter identification. A nonuniform 
thickening using two different values on suction and pressure 
side would double the value of N . With 35 radial sections n  
would increase with a factor of 3.84 from 665 to 2555. 

Parameter Identification 
The next step is the combination of the simplified equation 

Eq. (3) and the calculation results of the numerical experiment. 
The calculated frequency differences f∆ , the related vectors of 
geometric deviation x

r
∆  and the structure of Eq. (3) are input 

for the parameter identification procedure. Combining the 
unknown constant parameters in l

r
 and Q  with the results from 

the m-th FE calculation the m-th residual is defined by  
 

lmkmklimimm xxqxlfr ∆∆⋅−∆⋅−∆=          (6) 
 

The task for identification of unknown parameters is a 
common problem for experimental system identification. 
Usually a Least Squares Fit (LSF) of the form 

 

∑
=

=
m

i
mprpFMinimize

1

2)()(
rr     (7) 

 
is applied for solving this kind of problems. A commercial 
optimization routine was used for this implementation. It was 
designed for finding an unconstrained minimum of a sum of 
squares of mnonlinear functions in n  variables ( nm≥ ). As 
the function is known, a gradient  
 

i
i p

r
G

∂
∂=      (8) 
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and Hessian matrix  
 

ji
ij pp

r
H

∂∂
∂= ²     (9) 

 
of the problem - regarding the parameters p in l

r
 and Q  - for 

each equation mcan be supplied to the routine explicitly. 
After successful parameter identification, the SEQ can be 

used for efficient prediction of geometry induced frequency 
deviations. Different options for using this SEQ for further 
design analysis are shown below. The accuracy of the 
predictions and related requirements for overdetermination for 
the least square fit was investigated thoroughly. Results are 
shown below. 

Calculation of Frequency Scatter 
The calculation of frequency scatter is a straightforward 

application using the SEQ. For this task a routine for 
constrained minimization is used. A schematic outline of the 
procedure is shown in Fig. 6.  

 

 
 
For an increased computational efficiency the gradient 
 

i
i x

f
G

∆∂
∆∂=        (10) 

 
and the Hessian-matrix  

 

ji
ij xx

f
H

∆∂∆∂
∆∂= ²    (11) 

 
- regarding the variation of x

r
∆  - are again calculated and 

supplied to the algorithm. As the physical limits of the 
described problem is of constrained type, the frequency 
optimization routine has to be of constraint type, too. 
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FIGURE 7 DEFINITION OF CONSTRAINTS 

 
Figure 7 shows an example of the applied constraints. The 

thick full lines specify an upper and lower limit as design space 
for the optimization algorithm.  

An additional constraint  
 

0

1

h

xx
dh ii −= +     (12) 

 
for the thickening difference at adjacent sections in x

r
∆  was 

introduced, Fig. 7. It is motivated empirically, as an 
unconstraint optimization for dh would result in jumps from the 
upper to the lower boundary limit and vice versa to achieve a 
maximum absolute frequency deviation (“bang-bang shape”). 
Such final geometry is possible but not very likely to occur in a 
machining process and it is leading to an unrealistically large 
predicted frequency scatter. Thus, the limitation was added in 
order to derive a procedure which is capable to predict 
maximum as well as likely frequency scatter.  

A meaningful calibration for dh is required for productive 
application of the method. As a side effect, this calibration can 
be used to cover the uncertainty introduced by the constant 
thickening of the underlying FE models. With these findings, 
the constant thickening was identified to deliver sufficient 
accuracy for the tolerance prediction by requiring a minimized 
computational effort. 

Tolerance Optimization  
The geometric boundary constraints are useful in several 

ways. It is possible to restrict scatter of a single frequency by 
specifying a geometry. For example, the minimum possible 
deviation for a first natural frequency can be effectively 
influenced if the tolerance in the tip area is tightened, since this 
shape is similar to a simple bending beam shape.  

FIGURE 6 PROCEDURE FOR SEARCHING FOR 
FREQUENCY SCATTER 
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FIGURE 8 TOLERANCE OPTIMIZATION 

 
For large blades more than one frequency is to be tuned, 

Fig. 1. Therefore, a further development level was created. With 
another optimization routine wrapped around the frequency 
scatter calculation, the tolerance to fit predefined frequency 
limits can directly be designed (Fig. 8). Here the outer 
optimization routine modifies the geometric boundaries of the 
previously described inner routine.  

RESULTS 

Accuracy of the Simplified Equation 
Basic mathematics says that there are at least n equations 

required for identification of n parameters in Eq. (3). In case of 
nm > the system is overdetermined by the factor  

 

n

m
od =     (13) 

 
and a least squares fit can be performed. The required input 
data is derived from the number of calculations in the numerical 
experiment.  

The accuracy of the predictions made with Eq. (3) is 
expected to increase with increasing number of 
overdetermination. This expectation is only valid if the 
postulated shape of Eq. (3) provides an appropriate description 
of the physical effects. To check this behavior a blade geometry 
was freely chosen, which is not contained in the pool of the LSF 
data. 

Figure 9 shows the reduction of the prediction error by 
increasing the overdetermination of the first six natural 
frequencies. An increased overdetermination leads to a reduced 
error for all natural frequencies. The errors for the first six 
natural frequencies converge to below 0.1Hz at an over 
determination of approximately 1.7. Using the mentioned 35 
radial cross sections, this corresponds to approximately 1100 
FE calculations to be conducted prior the parameter 
identification. The factor was verified using different blade 
designs and geometry modification calculations. 
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FIGURE 9 ACCURACY OF PREDICTION VERSUS 

OVERDETERMINATION 
 

The described accuracy can safely be assumed to be 
sufficient for the desired application. Therefore, the number of 
required calculations in the numerical experiment for later 
application of the procedure was fixed to this value. 

Influence of the Optimization Boundaries 
The limitation of the maximum geometric thickening, Fig. 7, 

obviously restricts the maximum as well as the minimum 
predicted frequency deviation. A lower boundary of the design 
space for the optimization routine further reduces the range of 
achievable upper and lower frequency deviations. The 
limitation of dh leads to the same result of an even more 
reduced frequency band. 
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FIGURE 10 OPTIMIZATION RESULT FOR MAX. F 1 

DEVIATION WITH AND WITHOUT RESTRICTION 
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Figure 10 shows the geometry identified for a maximum 
deviation of a first mode with and without restriction of the 
gradient dh. It is clearly visible that the optimization routine 
follows the underlying mathematical rules and creates the 
already described bang-bang shape, while the restricted 
optimization creates a far smoother geometry.  
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FIGURE 11 INFLUENCE OF RESTRICTION ON 

OPTIMIZATION RESULT 
 
The effect of these geometries on the derived frequencies is 

shown in Fig. 11, using the definition 
 

nominal,

nominal,

i

ii
f f

ff
k

−
=    (14) 

 
of the relative frequency deviation factor.  

Due to the comparable shapes of the first and second mode, 
the effect on the second mode is similar to the first one, but not 
as strong. In contrast to this, the third mode is raised for the 
optimization using a dh-constrained geometry. This behavior is 
not an indication of an error, as only the first frequency was 
target function of the geometry optimization. Similar results 
could be obtained with other modes being subject for the 
optimization. 

Influence of the Blade Root 
The parametric building block FE model provides the option 

to omit the blade root from the calculation. The physical effect 
of a calculation without root can be visualized by the simple 
example of a bending beam. As the root represents additional 
elastic material, a calculation with a fixed lower end of the 
beam results in raised frequencies. The question then arises if 
this effect is also visible in the SEQ-predicted relative 
frequency differences? 

f1 f2 f3 f4
Mode no  / --

k f
  /

 --

root max root min
no root max no root min 

1

 
FIGURE 12 COMPARISON OF RESULTS INCLUDING 

THE BLADE ROOT 
 
Two different pools of FE calculations were set up. One 

with and the other without the blade root. Figure 12 shows an 
example result for this investigation, using the same parameters 
for optimization. Obviously, the lower end of the expected 
frequency band is less affected than the maximum values of the 
band. Nevertheless, the overall bandwidth of the reduced FE 
model includes the predicted bandwidth of the full model. At 
least for the f1, this behavior can be explained easily with the 
simplified model of a bending beam by variation of the 
clamping stiffness and assumed thickness distribution for a high 
or low frequency deviation, respectively.  

It can be concluded that a calculation without root reduces 
computational effort and tends to provide conservative results. 

Frequency Lift by Centrifugal Load 
Large steam turbine blades generate raising natural 

frequencies during speed up, usually shown in a Campbell 
diagram of Fig. 1. This well known phenomenon is mainly 
driven by stress stiffening due to the centrifugal load. This 
section discusses the influence of geometric variations to the 
frequency lift behavior. 

Data From the Numerical Experiment The frequency 
lift  

 

standstill rated i,i,i ffF −=∆    (15) 
 
of a specific geometry can be investigated directly using the FE 
calculation results. This is only valid if the same geometry input 
to the FE model for standstill and rated speed calculation was 
used. Fulfilling this prerequisite, the relative lift deviation from 
the nominal frequency lift can be calculated using 
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nominal,i

i

i
i F

FF
l

∆
∆−∆

=     (15) 

 
for each frequency of all of the i-th FE geometry model. 
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FIGURE 13 RELATIVE FREQUENCY LIFT DEVIATION 

FOR BLADE DESIGN A 
 

Figure 13 shows the minimum, mean and maximum relative 
frequency lift deviation from the nominal geometry frequency 
lift for the first four natural frequencies. All values being lower 
than zero means that the lift for the nominal geometry is the 
highest one for all of the evaluated models. This result is 
interesting, as some of the frequencies are higher in standstill 
than for the nominal geometry. And it may lead to the 
speculation that also the lift may be higher for these geometries.  
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FIGURE 14 RELATIVE FREQUENCY LIFT DEVIATION 

FOR BLADE DESIGN B 
 

The same graph for a different blade design revealing a 
different behavior is shown in Fig. 14. While the first, second 
and fourth frequency behave in a similar way for both designs, 
the third mode generates a frequency lift which is larger than 
the nominal one. From this, it can be stated that each blade 
design has a characteristic footprint in the developed frequency 
scatter. 

Optimized Results from the SEQ As the pool of 
geometry modification used for the numerical experiment and 
for the results shown in Fig. 13 and Fig. 14 is created randomly, 
it does probably not contain the geometries leading to the 
maximum/minimum frequency deviation for all modes. These 
geometries are delivered from the optimization routine for 
calculation of frequency scatter shown in Fig. 6. Thus, the effect 
of the geometry to the frequency lift can also be investigated 
using the results of a maximum/minimum frequency 
optimization. 

The main driver for this investigation is the question how 
standstill frequency scatter of actual geometries is transformed 
to rated speed operation. In particular, this knowledge is useful 
for definition of standstill allowable ranges. Following the 
procedure 

1. Search for geometries providing a standstill band 
2. Search for geometries providing a rated speed band 
3. Feed the geometries of 1. to the rated speed SEQ 
4. Feed the geometries of 2. back to the standstill 

SEQ 
a cross comparison of the frequency lift for the identified 
geometries can be conducted  
 

k f
  /

 --

standstill standstill

rated speed rated speed

1

standstill geometry rated speed geometry

1 3 4 2

 
FIGURE 15 CROSS-GEOMETRY EVALUATION FOR ONE 

MODE 
 
Figure 15 shows the result of this procedure for one real airfoil 
geometry. On the left side of the diagram the scatter bands of 
geometries identified to lead to a maximum standstill deviation 
are shown at standstill and rated speed condition.  

8 Copyright © 2011 by Siemens Energy, Inc.



  9    Copyright © 2011 by ASME 

Meanwhile, the right side shows the bands for the maximum 
band rated-speed-geometries at the different rotor speeds. The 
comparison should be done on the pairs 1 / 2 and 3 / 4. It can be 
seen that the frequency width of the band for the actual 
optimized rotor speed includes the frequency band of the re-fed 
geometry (i.e. 1 includes 2 and 4 includes 3). This has to be 
expected, as the identified geometry leads to a maximum 
frequency deviation at the optimization operating condition and 
the design space for the optimization routine is the same for 
both runs. 

The shown behavior leads to interesting conclusions 
• A blade which shows a high frequency profile in 

standstill must not necessarily be the blade with 
highest frequencies of the whole ring at nominal 
conditions. 

• The frequency scatter width of a population tightens 
during speed up from standstill to rated speed. 

• The frequency difference of standstill frequencies of 
two blades is probably not the same at rated speed. 

Comparison of Blade Designs 
Finally, the predicted frequency bands for two different 

blade design types are discussed. One of the designs is shown in 
Fig. 1. The other one is of similar size and shape. 
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FIGURE 16 FREQUENCY BANDS IN STANDSTILL AND 

RATED SPEED FOR BLADE DESIGN A 
 
Figure 16 shows the calculated relative frequency bands for 

the first four natural frequencies of blade design A. The 
normalized frequency deviation factor was calculated using 
Eq. (14). According to this, the nominal geometry is assigned to 
a value of “1” by definition. The scaling of both abscissas in 
Fig. 16 and Fig. 17 is kept constant for direct comparisons. At 
standstill, design A tends to higher frequencies than the nominal 
design, leading to an asymmetrically distributed scatter range. 
This asymmetry is increased under rated speed conditions. 
Furthermore, it can be seen that the overall width for all 
frequencies is significantly reduced at rated speed. The same 

data for design B is shown in Fig. 17. At a first glance both 
designs behave similar. In contrast to type A the second design 
reveals a reduced overall frequency spread. Especially at 
standstill conditions, but also at rated speed. 
 

standstill

f1 f2 f3 f4
Mode no  / --

k f
  /

 --
Maximum Minimum

1

rated speed

f1 f2 f3 f4
Mode no  / --

 
FIGURE 17 FREQUENCY BANDS IN STANDSTILL AND 

RATED SPEED FOR BLADE DESIGN B  
 

CONCLUSIONS 
This work describes a procedure for prediction of frequency 

scatter ranges for realistic geometries of freestanding last stage 
steam turbine blades. All required input data is a FE model of 
the nominal geometry and geometric tolerance data. As this 
information is available during the development process of a 
new blade design, this procedure can be used for predicting 
expected frequency bands at this time. 

The underlying simplified model is based on a deterministic 
matrix equation. The chosen mathematical description provides 
benefits for the subsequent application of the equations in 
optimization algorithms.  

It is shown by comparing FE calculated and predicted 
frequency deviations that the formulation of the simplified 
equation is a reasonable and accurate model for the prediction 
of frequency scatter and tolerance definition. 

The combination of the simplified equation with a constraint 
minimization algorithm can be used for identification of 
potential frequency scatter ranges. All required constraints can 
be derived from physical entities. 

The procedure is expanded by wrapping the inner routine 
with another minimization algorithm, which allows the 
identification of a geometric tolerance satisfying predefined 
frequency limits under standstill or rated speed operation. The 
allowable frequency deviation can be defined by the tuning of 
the nominal geometry and safety margins against the rotor 
harmonics. 

In a next step, the implemented algorithms are used for 
analyzing the frequency lift behavior of one blade design. It is 
shown that the small geometric deviations influence natural 
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frequencies at standstill and at rated speed conditions as well as 
the frequency lift behavior. 

Finally, the potential of the described method is shown by 
comparing two different blade designs. As a result, it can be 
stated that the potential frequency scatter ranges represent a 
unique footprint for a specific blade design.  
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