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ABSTRACT
A great deal of research has been conducted on the effects

of small random variations in structural properties, known as
mistuning, in single stage bladed disks. Due to the inherent ran-
domness of mistuning and the large dimensionality of the models
of industrial bladed disks, a reduced order modeling approach
is required to understand the effects of mistuning on a particu-
lar bladed disk design. Component mode mistuning (CMM) is
an efficient compact reduced order modeling method that was
developed to handle this challenge in single stage bladed disks.
In general, there are multiple stages in bladed disk assemblies,
and it has been demonstrated that for certain frequency ranges
accurate modeling of the entire bladed disk assembly is required
because multi-stage modes exist. In this work, a statistical char-
acterization of structural mistuning in multi-stage bladed disks
is carried out. The results were obtained using CMM combined
with a multi-stage modeling approach previously developed. In
addition to the statistical characterization, a new efficient classi-
fication method is detailed for characterizing the properties of a
mode. Also, the effects of structural mistuning on the character-
ization of the mode is explored.

NOMENCLATURE
CMM Component mode mistuning
CMS Component mode synthesis
DOF Degree of freedom
FEM Finite element model

∗Address all correspondence to this author.

MAC Modal assurance criterion
ROM Reduced order model
b Subscript that denotes inter-stage boundary
h Superscript that denotes the harmonic number
i Subscript that denotes the interior of the stage
j Subscript that denotes the stage number
p̃(t) Generalized reduced coordinates

q Cantilever blade modal participation factor
r Subscript that indicates radial line segment
uh

c,s Vector of Fourier coefficients where subscript c or s
indicates cosine or sine function

x(t) Nodal displacement on all nodes of all sectors of
one stage

xn Displacement of nodes on the nth sector
zh

jc,s Vector of Fourier coefficients where subscript c or s
indicates cosine or sine function

B Number of basis functions used for the Fourier
expansion along the inter-stage boundary

Ei j Energy of the ith mode contained in the jth stage
ERi j Strain energy ratio of the jth stage for the ith mode
Fn,m Fourier matrix of size n×m
In Identity matrix of size n×n
K Multi-stage reduced order stiffness matrix
M Multi-stage reduced order mass matrix
M1,2 Multi-stage mode
MS1 Stage 1 - multi-stage mode
MS2 Stage 2 - multi-stage mode
MS1,S2 Multi-stage - double single stage mode
MACi j MAC number of the ith mode of the jth stage
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N Number of sectors on a stage
Nb Number of DOFs along the inter-stage boundary
NS Number of DOFs in a sector
R Set of retained cantilever blade modes
S1 Stage 1 - single stage mode
S2 Stage 2 - single stage mode
Z j Number of radial line segments per sector of the jth

stage
κ j Reduced order stiffness matrix of the jth stage
δλ

CB Difference in the tuned and mistuned cantilever blade
eigenvalues

ΛΛΛ j Diagonal matrix of tuned eigenvalues of the jth stage
ΦΦΦ

h
i Truncated set of fixed-interface normal modes for the

hth harmonic
ΨΨΨ

h
i Constraint modes for the hth harmonic

INTRODUCTION
A significant amount of research has been conducted on the

vibration response of bladed disks. An extensive review of this
research was conducted by Castanier and Pierre [1]. Early work
in the area of vibration of bladed disks focused on simple lumped
parameter models of single stage bladed disks [2–6]. These mod-
els were developed in part to understand the effects of mistuning.
Mistuning is a random variation in the structural properties of a
system, which can be caused by manufacturing tolerances and/or
operational wear. Even small levels of mistuning can lead to a
localization in the vibration energy to a few blades in the disk,
and this localization can lead to a dramatic increase in the am-
plitude of the force response of these blades. While these simple
lumped parameter models were useful in providing a qualitative
understanding of certain features of the system such as mistun-
ing, more accurate finite element models (FEMs) of the system
were needed to obtain quantitative results. Due to the size of
these FEMs, reduced order models (ROMs) of the system were
constructed to conduct statistical analyses on these systems.

Early ROMs used component mode synthesis [7, 8] (CMS),
which breaks the systems into components for faster analysis,
and combines them at the interface using a fixed-interface, free-
interface or hybrid method. Early work using free-interface CMS
[9] was conducted by Irretier [10] and Zheng and Wang [11] who
found significant savings in computational time relative to the
parent FEMs. Eventually, powerful ROMs were developed that
have a size of the order of the number of blades in the system
yet retain high accuracy over a given frequency range. Yang and
Griffin [12] had the first such approach called the subset of nom-
inal modes method. This method used the fact, that when the
mistuning is small, the tuned system modes provide an excel-
lent basis for the vibration of the mistuned system. Later, Lim et
al. [13] introduced a method called component mode mistuning
(CMM), which uses both tuned system modes and blade com-

ponent modes to construct ROMs. This method handles various
types of mistuning in a systematic manner by modeling the mis-
tuning in the blade alone using cantilevered blade modes.

While a great deal of research has been done on the vibration
response of single stage bladed disks, far less has been done on
multi-stage bladed disk systems. Sinha [14] conducted Monte
Carlo simulations on a lumped parameter model of mistuned
multi-stage systems to simulate the overall dynamics of multi-
stage systems, but did not discuss its applicability to multi-stage
systems with realistic geometry for industrial models. An inves-
tigation of FEMs of multi-stage bladed disks with blade mistun-
ing was conducted by Bladh et al. [15]. It was shown that multi-
stage effects due to the inter-stage coupling can occur when the
frequency range of interest pass veering regions, where the mo-
tion of the disk is dominant. Additionally, it was pointed out that,
when each stage has a different number of blades, mistuning is
inherent in multi-stage systems due to the inter-stage coupling.
Song et al. [16] created a novel reduced order modeling tech-
nique for multi-stage systems, and then united it with CMM to
efficiently handle mistuning in multi-stage systems [17]. The ap-
proach was also used for parameter identification in multi-stage
systems [18] and its applicability to structural health monitoring
monitoring was explored [19]. Laxalde et al. [20, 21] proposed a
method similar in concept to Song [19], and applied the method
for modal analysis and forced response calculations for multi-
stage industrial bladed disks. Additionally, there has been recent
work on multi-stage effects induced by modeling the coupling
between flexible shafts and rotors [22–26].

In this work new characteristics of multi-stage systems are
explored. In particular, a statistical characterization of structural
mistuning in multi-stage bladed disks is carried out. The results
were obtained using CMM [13] combined with a new multi-stage
modeling approach developed by D’Souza et al. [27], which is
based on Song et al. [16]; however, it only requires the use of full
single sector models of each stage (i.e. the multi-stage model is
constructed in the reduced order space only). In addition to the
statistical characterization, a new efficient classification method
is detailed for characterizing modes of multi-stage bladed disk
systems. Additionally, the effects of structural mistuning on the
characterization of the modes is explored.

METHODOLOGY
In this section the modeling methodology is briefly re-

viewed, and a new classification method is described. The chal-
lenge associated with modeling multi-stage systems is caused by
the fact that even if each stage is cyclically symmetric the en-
tire multi-stage system is not (when the number of sectors in
each stage is different). Song [19] successfully overcame this
challenge by projecting the motion of the interface onto a set of
Fourier basis functions and then enforcing compatibility. The
major drawback associated with his formulation was that full
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multi-stage modes were needed when including small blade to
blade mistuning. That requires the explicit formulation and anal-
ysis of the full order FEM. Recently, D’Souza et al. [27] pro-
posed a new method to tackle multi-stage systems that can han-
dle a combination of cyclic stages (this includes stages with small
mistuning modeled with CMM) and non-cyclic stages (stages in-
cluding cracks, large mistuning, etc.) by performing only anal-
yses on individual stages (thus completely eliminating the need
to form and analyze the full order FEM). This work closely fol-
lows the methodology presented in D’Souza et al. [27], but here
all the stages are considered to have only mistuning. The follow-
ing contains a brief review of the method presented in D’Souza
et al. [27] and Song [19]. Next, a new classification scheme for
modes of a multi-stage system is presented.

Multi-Stage ROMs from Cyclic Stages
A significant benefit of dealing with cyclic stages is that the

analysis can be performed on sectors (and double sectors) instead
of the full stage model, thus greatly reducing the computational
cost. Let x(t) be the nodal displacement on all nodes of all sec-
tors of one stage. x(t) can be partitioned such that it is ordered
based on sectors, i.e. x = [xT

1 , . . . ,x
T
N]T, where N is the number of

sectors in the stage. The motion of the nth sector can be described
by the following Fourier series [28]

xn =
1√
N

u0+
√

2
N

Ñ−1

∑
h=1

(uh
c cos(n−1)φh+uh

s sin(n−1)φh)
(1)

+ 1√
N
(−1)n−1uÑ ,

where u denotes a vector of Fourier coefficients with sub-
scripts c and s denoting cosine and sine components, φh =
2πh/N, and Ñ = N/2 if N is even or Ñ = (N − 1)/2 if N is
odd. Note that the last term in Eqn. (1) does not exist if N
is odd. Grouping the Fourier coefficients in matrix form ũ =
[(u0)T,(uh

c)T,(uh
s)T, . . . ,(uÑ)T]T, the physical coordinates can

be related by the following linear map

x(t) = (FN,N ⊗ INs)ũ(t), (2)

where Ns is the number of degrees of freedom (DOFs) in a sector
and FN,N is an N ×N Fourier matrix.

A cyclic Craig-Bampton method developed by Bladh et
al. [29] can be applied to the displacement field to obtain

ũ(t) ≃ΦΦΦCB p̃(t), (3)

where ΦΦΦCB = bdiag
h=0,...,Ñ

(INb 0
ΨΨΨ

h
i ΦΦΦ

h
i
), with bdiag

h=0,...,Ñ
(⋅) designating a

block-diagonal matrix with the argument being the hth block

of the overall block-diagonal matrix. The matrix [IT
Nb
,(ΨΨΨ

h
i )T]T

contains the constraint modes for the hth harmonic, b indicates
the inter-stage boundary, i denotes the interior of the stage, and
Nb is the number of DOF along the inter-stage boundary of a
single sector. A constraint mode for a stage is computed as the
static deformation of the interior of the stage when a unit dis-
placement is applied to one DOF along the boundary (and the
rest of the boundary DOFs are fixed). The matrix ΦΦΦ

h
i is a trun-

cated set of fixed-interface normal modes of the entire stage with
all the boundary DOFs fixed. Finally, p̃(t) is the generalized re-
duced coordinates, where the size of p̃(t) is much less than that
of ũ(t). Combining Eqn. (2) and Eqn. (3) yields

x(t) ≃ (FN,N ⊗ INs)ΦΦΦCB p̃(t). (4)

It can be noted that the motion along the inter-stage boundary is

xb(t) = (FN,N ⊗ INb)ũb(t). (5)

After creating a ROM for each stage, the ROMs must be
coupled. Consider the case where two stages are being coupled
with the first having N1 sectors and the second having N2 sec-
tors. The inter-stage boundary DOF can then be partitioned as
xb j = [xT

b j1
, . . . ,xT

b jN j
]T , where j denotes the stage (i.e. j = 1 or 2).

It is assumed that groups of nodes are aligned so that they have
the same angle in a cylindrical coordinate system aligned with
the axis of the multi-stage system. These groups of nodes are
referred to as radial line segments, and Z j of them exist in each
sector of the jth stage. Therefore, stage 1 has N1Z1 radial line
segments, and stage 2 has N2Z2 radial line segments. The num-
ber of DOFs per radial line segment is given by Nr j. Figure 1
is a schematic of the radial line segments along the inter-stage
boundary. Note that xb j can be partitioned as

xb j =
⎡⎢⎢⎢⎢⎢⎣

xr j1

⋮
xr j(NjZ j)

⎤⎥⎥⎥⎥⎥⎦
, (6)

where subscript r stands for the radial line segment and xb ji con-
tains xr jk for 1+(i−1)Z j ⩽ k ⩽ iZ j.

Next, the motion of the kth radial line segment is approxi-
mated by the following truncated Fourier series

xr jk ≃
1√
B

z0
j +

√
2
B

P−1

∑
h=1

(zh
jc cos(k−1)θh j +zh

js sin(k−1)θh j)
(7)

+ 1√
B
(−1)k−1zP

j ,
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FIGURE 1. INTER-STAGE BOUNDARY (b-PARTITION) FOR A
CYCLIC STAGE (i DENOTES A SECTOR, k DENOTES A RADIAL
LINE SEGMENT).

inter-stage 
boundary

FIGURE 2. MULTI-STAGE TURBOMACHINERY ROTOR.

where θh j ≜ 2πh/(N jZ j), z represents the Fourier coefficients
with superscript denoting the harmonic number, and subscripts
c and s corresponding to a cosine or sine term, and B is the num-
ber of basis functions used for the Fourier expansion. Note that
if B is even P = B/2, while if B is odd P = (B−1)/2 and the last
term in Eqn. (7) does not exist. Combining Eqn. (6) and Eqn. (7)
in matrix form gives

xb j =
⎡⎢⎢⎢⎢⎢⎣

xr j1

⋮
xr jN jZ j

,

⎤⎥⎥⎥⎥⎥⎦
≃ (FN jZ j ,B⊗ INr j) z̃ j, (8)

where FN jZ j ,B is a N jZ j × B Fourier matrix, and z̃ j =

[(z0
j)T,(zh

jc)T,(zh
js)T, . . . ,(zP

j )T]T. Inverting Eqn. (5) and com-
bining it with Eqn. (8) yields

ũb j(t) ≃ (FN j ,N j ⊗ INb j
)

T
(FN jZ j ,B⊗ IN jr) z̃ j. (9)

The final step in the reduced order modeling process is to en-
force geometric compatibility along the inter-stage boundary,
i.e. z̃1 = z̃2. The enforcement of the compatibility conditions
is approximate, however, the compatibility conditions are well
posed [19] as long as enough Fourier coefficients B are used.

Mistuning can be incorporated into each stage with CMM
by using a method detailed by Lim et al. [13]. In particular, for
stiffness mistuning only, the reduced order stiffness matrix κ j for
the jth stage can be written as

κ j =ΛΛΛ j +
N j

∑
n=1

qT
j,n diag

r∈R
(δλ

CB
r,n, j)q j,n, (10)

where ΛΛΛ is a matrix of tuned eigenvalues, q j,n are modal partipa-
tion factors, δλ

CB
r,n, j is the difference in the rth tuned and mistuned

cantilevered blade eigenvalues for sector n of stage j, and R is a
set of retained cantilever blade modes.

Classification of Multi-Stage Modes
In this section a new classification scheme for multi-stage

modes is discussed to better understand the effects of mistun-
ing and the effects of inter-stage coupling in multi-stage systems.
Two factors are used to classify the modes of a multi-stage sys-
tem. The first factor is the strain energy distribution. The strain
energy E of the ith mode of an entire multi-stage system can be
calculated very easily and effectively in the ROM coordinates
as Ei = φ

T
i Kφi, where K is the multi-stage reduced order stiffness

matrix, and φi is the ith mass normalized eigenvector of the multi-
stage system. A detailed derivation of the reduced order mass
and stiffness matrix can be found in previous works [16,27]. The
corresponding energy in the jth stage is given by Ei j = φ

T
i jK jφi j,

where K j is the stiffness matrix for the jth stage, and φi j is the
portion of φi that corresponds to the jth stage. The strain energy
ratio for the ith mode of stage 1 in a two stage system is given by

ERi1 =
Ei1

Ei1+Ei2
, (11)

while for stage 2 it is

ERi2 =
Ei2

Ei1+Ei2
. (12)
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Mode Classification Energy Distribution Modal Alignment Symbol
Stage 1 - single stage mode (S1 ) ER 1  > 0.9 MAC 1  > 0.9
Stage 1 - multi-stage mode (M S1 ) ER 1  > 0.9 MAC 1  < 0.9
Stage 2 - single stage mode (S2 ) ER 2  > 0.9 MAC 2  > 0.9
Stage 2 - multi-stage mode (M S2 ) ER 2  > 0.9 MAC 2  < 0.9

Multi-stage - double single 
stage mode (M S1,S2 )

ER 1  < 0.9 AND 
ER 2  < 0.9

MAC 1  > 0.9 AND
MAC 2  > 0.9 

Mult-stage mode (M1,2)
ER 1  < 0.9 AND 

ER 2  < 0.9
MAC 1  < 0.9 OR 

MAC 2  < 0.9 

TABLE 1. CLASSIFICATION OF SIX TYPES OF MODES USING
THE ENERGY DISTRIBUTION AND MODAL ALIGNMENT.

The two ratios ERi1 and ERi2 reflect the fractions of strain energy
contained in each of the two stages.

The second factor used for classifying the modes of a multi-
stage system is a form of the modal assurance criterion (MAC)
number. The MAC number is a quantitative measure of the align-
ment of two modes. If the modes are parallel, the MAC number
is one, and if the modes are orthogonal, the MAC number is zero.
In this work, a variant of the MAC is used. Specifically, MACi j
corresponds to the MAC number of the ith mode of the jth stage,
and it is defined as

MACi j =max
k∈n j

¿
ÁÁÁÀ

(φ T
i jM jϕk j)2

∣ φ T
i jM jφi j ∣∣ ϕT

k jM jϕk j ∣
, (13)

where M j is the mass matrix of the jth stage, ϕk j is the kth single
stage mode from the jth stage, and n j is the set of single stage
modes within the ROM of the jth stage that are within a particular
frequency range. This frequency range is related to the ith multi-
stage frequency ωi and the kth single stage frequency ωk j of stage
j. The criteria is that the frequency of the single stage mode
must be within a given tolerance ε of the multi-stage mode for
the single stage and multi-stage modes to be compared, i.e.

ε ≥
∣ ωi−ωk j ∣

ωi
×100%. (14)

In this work the tolerance ε was set to 10%, which means that the
single stage mode must be within 10% of the multi-stage mode
in order for the modal alignment to be tested.

Using the information from Eqns. 11, 12 and 13, six types
of modes are possible. Essentially, the energy ratio is used to
classify the dominance of the mode as stage 1, stage 2, or multi-
stage. Then, the MAC number is used to identify if the multi-
stage mode is actually aligned with a corresponding single stage
mode. A summary of these mode types is given in Tab. 1.
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FIGURE 3. NODAL DIAMETER VERSUS FREQUENCY PLOTS
FOR (a) STAGE 1 AND (b) STAGE 2.

ANALYSIS
Many ROMs were created using the methodology presented

in the Multi-Stage ROMs from Cyclic Stages section herein. The
system analyzed is a two stage rotor shown in Fig. 2. The first
stage of the blisk contains 25 identical blades and the second
stage contains 23 blades. Single stage analyses were conducted
on each stage to obtain the frequency versus nodal diameter plots
shown in Fig. 3. In the frequency range 0−8 kHz, there are two
mode families for stage 1, and three mode families for stage 2.

The FEM of the multi-stage system contains 136,488 DOFs,
while each of the ROMs contains only 592 DOFs (0.5% of the
original FE size). Each ROM uses 23 Fourier basis functions to
model the dynamics at the interface between stages. Note that
the full multi-stage FEM never needs to be assembled to create
the ROMs in this work, it is only constructed for validation pur-
poses. The ROMs were created from 1,000 different mistuning
patterns applied to each stage with 20 different mistuning levels
with standard deviations ranging from 0% to 10%. While the
ROMs were developed to be valid (with respect to the full FEM)
over a frequency range of 0−20 kHz, the results below are fo-
cused on a narrower frequency range of 0−8 kHz. One mistuned
ROM with a 4% standard deviation mistuning level was validated
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FIGURE 4. (a) FREQUENCIES OF THE TUNED MULTISTAGE
SYSTEM, (b) ENERGY RATIO IN THE CORRESPONDING
MODES, AND (c) RELATIVE FREQUENCY DIFFERENCE BE-
TWEEN THE MULTI-STAGE SYSTEM AND THE SINGLE STAGE
SYSTEM MODES.

with respect to the FEM. The relative error of the ROM frequen-
cies with respect to the FEM for the first 200 modes was less than
0.05%. Additionally, forced response calculations were carried
out in the multi-stage frequency regime 2.8−3.4 kHz. The error
at the peak responses was approximately 1% on both stages.

The first set of multi-stage results obtained is a classification
of the tuned system modes of the multi-stage system using the
criteria given in Tab. 1. The results are summarized in Fig. 4 for
the first 120 modes. For Fig. 4(a), the x-axis is the eigenvalue
index, while the y-axis is the multi-stage natural frequency. For
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FIGURE 5. (a) FREQUENCIES OF THE MISTUNED MULTI-
STAGE SYSTEM AND (b) THE PROBABILITY OF THE CLASSI-
FICATION OF THE CORRESPONDING MODES.

Fig. 4(b), the x-axis is the eigenvalue index, while the y-axis is
the energy ratio in stage 2 ER2 (a value of 1 indicates that the en-
ergy is contained entirely in stage 2, while a value of 0 indicates
that the energy is contained entirely in stage 1). For Fig. 4(c),
the x-axis is again the eigenvalue index, while the y-axis is the
relative frequency difference between modes computed for the
multi-stage system and the corresponding modes computed for
a single stage system. Note that for all multi-stage modes (MS1,
MS2 and M1,2), no value is plotted because there is no single stage
mode to compare with these multi-stage modes.

It is evident that there are a couple of narrow frequency
ranges, e.g. 2 − 2.4 kHz and 6.5 − 7.0 kHz, where stage 2
only models may be used to model the tuned system dynamics.
Whereas other regions tend to include a mixture of S1, S2, MS1,
and M1,2 modes, which means that these regions require a multi-
stage analysis to be valid.

Next we examine the effects of mistuning. Consider the mis-
tuned results for 1,000 distinct mistuning patterns with a stan-
dard deviation of the mistuning of 5%. The results are presented
in Fig. 5(a) with the same layout as in Fig. 4(a), with the tuned
frequencies once again being plotted. All classification symbols
are plotted for each index if that classification occurs for at least
one mistuning pattern. In Fig. 5(b), the corresponding proba-
bility for each classification at each eigenvalue index is plotted.
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FIGURE 6. ALIGNMENT OF MISTUNED MULTI-STAGE
MODES WITH TUNED MULTI-STAGE MODES.

This figure shows the very complex interactions and possibilities
that exist when dealing with statistical distributions of mistuning
patterns in multi-stage systems. For example, consider the nar-
row frequency ranges 2−2.4 kHz and 6.5−7.0 kHz where single
stage analyses can be used for the tuned system. For mistuned
systems, in these ranges there is approximately a 20% chance
that some of the modes are multi-stage MS2 modes. Outside
of those narrow frequency ranges even more complex interac-
tions occur which lead to a probability of the creation MS1, MS2,
MS1,S2, and M1,2 modes.

To investigate the effects of mistuning on the multi-stage
system, the alignment of each mistuned multi-stage mode with
its corresponding tuned multi-stage mode was also calculated.
The results for the modes in the frequency range 2.5−3.5 kHz are
plotted in Fig. 6. The mistuning level was 5% and 1,000 differ-
ent mistuning patterns were simulated. Average alignments and
standard deviation bars are plotted in Fig. 6. The alignment is
calculated in the reduced space between mass normalized tuned
and mistuned eigenvectors using the MAC number. One can ob-
serve that the more isolated modes (23−27) have a much greater
mistuned-tuned alignment than the rest of the modes in this mode
family. That is consistent with the intuitive observation that the
mistuned modes in the flat region of a mode family can change
shape (compared to their tuned versions) more than other modes.

To better understand the results presented in Fig. 4 and
Fig. 5, forced response calculations were conducted. A structural
damping of the form jγK was used, where j =

√
−1, γ = 0.002,

and K is the stiffness matrix. Also, forces were applied at the
tip of the blades with specified engine order excitations, and the
maximum response of the excited nodes was collected as the
maximum forced response. These tip nodes were used for the
forced response because the dominant motion on both stages is
due to the first flexural modes (see Fig. 3 and Fig. 4) from both
stages for the range of frequencies investigated. First an engine
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FIGURE 7. FORCED RESPONSE OF STAGE 2 FOR A SET OF
STAGE 2 DOMINATED MODES, WHICH ARE S2 WHEN TUNED
AND MS2 WHEN MISTUNED (TUNED SINGLE STAGE ANALYSIS
[x], TUNED MULTI-STAGE ANALYSIS [-], MISTUNED SINGLE
STAGE ANALYSIS [◻], AND MISTUNED MULTI-STAGE ANAL-
YSIS [. . . ]).

order 1 excitation was applied at 512 evenly sampled frequen-
cies from 2 kHz to 2.4 kHz. The y-axis of the plot corresponds
to the maximum response of the excited nodes. Figure 7 shows
the forced response of stage 2 for four cases. The first case is
when a single stage analysis is conducted on the tuned stage 2.
The second case is when a multi-stage analysis is conducted on
the tuned multi-stage system. The third case is when a single
stage analysis is conducted on a mistuned stage 2. The final case
is a multi-stage analysis of the mistuned multi-stage system. The
tuned single and tuned multi-stage results have a very similar
magnitude with just a shift in frequency location, which agrees
with the results presented in Fig. 4 (which shows that the MAC
is greater than 0.9 over the entire frequency range). Note, due
to the difference in frequency between the single and the multi-
stage modes (shown in Fig. 4(c)), a slight shift in frequency for
the largest responses is to be expected. The mistuned single stage
and multi-stage analyses do not match as well as the tuned anal-
yses. They contain significant differences in amplitude and lo-
cation of peaks. This agrees with Fig. 5 since a mistuning pat-
tern was chosen which would have at least one MS2 mode in the
frequency range of interest. This means that at least one MAC
number is less than 0.9 in the frequency range of interest, and
therefore the single stage modes are no longer aligned with the
modes of the multi-stage system over this frequency range. Ad-
ditionally, the results for stage 1 are not plotted since for all four
cases the amplitude of vibration is very low, which is to be ex-
pected because ER1 < 0.1 for all modes in the frequency range for
all four cases. This highlights that a mode of a multi-stage sys-
tem can be energetically contained to a single stage and yet may
still be significantly different than a single stage mode. Hence,

7 Copyright © 2011 by ASME



2.8 2.9 3 3.1 3.2 3.3 3.4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Excitation frequency [kHz]

M
ax

. r
es

po
ns

e 
po

in
t n

or
m

 [m
m

]

(a)

2.8 2.9 3 3.1 3.2 3.3 3.4
0

0.002

0.004

0.006

0.008

0.01

Excitation frequency [kHz]

M
ax

. r
es

po
ns

e 
po

in
t n

or
m

 [m
m

]

(b)

FIGURE 8. FORCED RESPONSE FOR A SET OF S1, MS1, AND
M1,2 MODES FOR (a) STAGE 1 AND (b) STAGE 2 (TUNED SIN-
GLE STAGE ANALYSIS [x], TUNED MULTI-STAGE ANALYSIS [-
], MISTUNED SINGLE STAGE ANALYSIS [◻], AND MISTUNED
MULTI-STAGE ANALYSIS [. . . ]).

multi-stage calculations must be performed to accurately predict
the response of such systems.

Forced response simulations were also conducted at 1,024
evenly spaced points from 2.8− 3.4 kHz using an engine order
1 excitation. As can be seen from Fig. 4 and Fig. 5 the modes
in this frequency range are characterized as stage 1 dominated
modes (S1 and MS1) and multi-stage modes (M1,2). The results
for these simulations are presented in Fig. 8 (and the four cases
are the same as the ones presented in Fig. 7). Due to important
multi-stage effects there is a significant response in both stages.
The single stage analyses (tuned and mistuned) cannot capture
these multi-stage effects. In Fig. 8(b), the single stage analyses
(both tuned and mistuned) predict almost no motion over this
frequency range, but the multi-stage analyses (both tuned and
mistuned) show that there is considerable motion. In Fig. 8(a),
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FIGURE 9. MAC NUMBER VERSUS MISTUNING LEVEL FOR
(a) MODE 36 [S1, MS1] AND (b) MODE 6 [S2, MS2] (ERROR BARS
INDICATE THE STANDARD DEVIATION OF THESE VALUES
FOR 100 MISTUNING PATTERNS).

there is motion predicted by the single stage analyses (which is
to be expected since single stage dominated modes are present),
but the magnitude and frequency are not accurate. Hence, multi-
stage calculations are certainly required.

The results in Fig. 8 indicate when the multi-stage analyses
(versus single stage analyses) are of primary importance for both
tuned and mistuned systems. In contrast, Fig. 7 shows that sin-
gle stage analyses are valid for tuned systems (with just a slight
frequency shift). However, single stage analyses are not valid
for arbitrary mistuned systems. To predict the validity of single
stage versus multi-stage and tuned versus mistuned analyses one
must use Figs. 4 and 5.

A key parameter that affects both the classification of modes
and the forced response of the system is the level of mistuning.
Figure 9 explores the effect of the mistuning level on the multi-
stage mode classification. Figure 9(a) is a plot of MAC1 versus
mistuning level for mode 36 (a stage 1 dominated mode) for 100
mistuning patterns with average and standard deviation bars plot-
ted. Figure 9(b) is a plot of MAC2 versus mistuning level for
mode 6 (a stage 2 dominated mode) for 100 mistuning patterns
with average and standard deviation bars plotted. The deviations
for mode 36 are larger than for mode 6, which is to be expected
since (from Fig. 5(b)) mode 36 has a 60% chance of changing
from S1 to MS1 at a 5% mistuning level, whereas mode 6 has only
an 18% chance of changing from S2 to MS2. Also, as expected,
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FIGURE 10. FORCE AMPLIFICATION FACTOR VERSUS MIS-
TUNING LEVEL AND ENGINE ORDER EXCITATION FOR THE
MULTI-STAGE SYSTEM FOR (a) STAGE 1 AND (b) STAGE 2.

initially the deviations in the MAC number for both modes in-
creases while the actual average MAC number decreases as the
mistuning level increases. However, it is interesting to note that
the average MAC numbers and the deviations in the MAC num-
ber level off at around 4−5% standard deviation in the mistuning
level.

Figure 10 contains amplification factor plots for stage 1 and
2 of the 99th percentile response of 100 mistuning patterns for
engine order excitation 0 to 11 and mistuning levels from 0% to
10% over the frequency range 2.8−3.4 kHz. One hundred sepa-
rate forced response calculations were performed at each unique
mistuning level and engine order excitation combination. In this
case, the amplification factor for each stage is defined as the
number that when multipled by the tuned response at a given
engine order excitation would give the 99th percentile maximum
response for this set of mistuning patterns.

The results in Fig. 10 show that stage 2 has a much larger
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FIGURE 11. MAXIMUM FORCE RESPONSE VERSUS MISTUN-
ING LEVEL AND ENGINE ORDER EXCIATION FOR THE MULTI-
STAGE SYSTEM FOR (a) STAGE 1 AND (b) STAGE 2.

amplification factor than stage 1. This does not mean that the
response of stage 2 is larger, in fact it is an order of magnitude
lower. The actual 99th percentile response for these mistuning
patterns for stage 1 and 2 are shown in Fig. 11. Note that the
motion at lower engine order excitations is larger than at higher
engine order excitations. This is likely due to the the multi-stage
region moving from one family of stage 2 dominated modes to
stage 1 dominated modes (see Figs. 3 and 4). This region relates
to nodal diameters 0, 1 and 2 (of stage 1) and also corresponds
to a kind of veering region where blade and disk motion are cou-
pled, which leads to larger responses.

DISCUSSION AND CONCLUSIONS
A novel methodology was used to generate multi-stage re-

duced order models (ROMs) that requires only single sector full
order models. This efficient methodology reduces the individ-
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ual stages using a combination of component mode synthesis,
component mode mistuning and cyclic symmetry analysis. The
synthesis of the multi-stage ROM was completed in the reduced
coordinates by projecting the motion along the interface between
stages onto a set of harmonic basis functions and then enforcing
geometric compatibility. The methodology was applied to a two
stage system to create a variety of ROMs and conduct statistical
analyses. Additionally, a new classification scheme was devel-
oped for categorizing modes of multi-stage bladed disk systems.
The classification scheme is based on sorting modes based on
the energy distribution between the stages and the alignment of
modes of the multi-stage system with modes from single stage
systems.

Several conclusions can be drawn from this work. First, nar-
row frequency ranges can exist where single stage analyses are
valid for tuned multi-stage systems. However, when considering
mistuning, the modes in these frequency ranges often no longer
match their single stage counterparts, thus significantly chang-
ing the forced response predictions although the energy does re-
main contained to the corresponding single stage. Additionally,
outside of these narrow frequency ranges, multi-stage analyses
are always required because multi-stage modes exist and there-
fore, a single stage analysis will be very inaccurate. Mistuning
in multi-stage systems creates even more complex dynamics that
need to be analyzed in a probabilistic manner. Therefore, many
mistuning patterns need to be generated and efficient ROMs for
performing calculations for the multi-stage system are critical.
Also, it was observed that as the mistuning level is increased it
has an increasing impact (increasing the amplification factor and
decreasing the modal alignment). However, the influence levels
off at approximately 5% standard deviation in the mistuning level
for the two stage blisk investigated in this work.
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