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ABSTRACT
In turbomachinery applications bladed disks are subjected

to high dynamic loads due to fluctuating gas forces. Dynamic
excitation can result in high vibration amplitudes which can lead
to high cycle fatigue (HCF) failures. Herein, the blades are al-
most identical but differ due to wear or small manufacturing tol-
erances. Especially, after regeneration and repair procedures the
properties of the blades can differ with a high variance. These
deviations of the blade properties can lead to a localization of
the vibrational energy in single blades and even higher risk of
HCF. A recently developed substructure model with a combina-
tion of the Hurty transformation or Component Mode Synthesis
(CMS) and the so called Wave Based Substructuring (WBS) is
used to obtain a Reduced Order Model (ROM) with a reasonable
low number of degrees of freedom. The CMS of the disk can be
calculated with one cyclic disk segment of the underlying finite
element model. The WBS is used to describe the numerous cou-
pling degrees of freedom between the disk and the blades with a
truncated set of waves. The orthogonal waves are derived by a
Singular Value Decomposition or a QR decomposition from the
coupling nodes normal modes calculated by a cyclic modal ana-
lysis of the full structure. The blade eigenvalues of the clamped
blade can be mistuned individually under consideration of the
variance as well as the correlation between the different eigen-
values of the blades. Monte-Carlo-Simulations are performed to
calculate the effect of these parameters on the forced response

∗Address all correspondence to this author.

of a mistuned bladed disk for blade dominated modes. Fur-
thermore, Monte-Carlo-Simulations and a constraint optimiza-
tion approach is used to calculate the worst and best case blade
patterns for specific blade patterns and blade patterns with dis-
tributed blade properties.

INTRODUCTION
Bladings in turbomachinery applications are subjected to

high dynamic loads due to fluctuating gas or steam forces. The
high stresses during operation cause a need for a regular regen-
eration e.g. of an aero engine. The maintenance and overhaul
cost are amongst others caused by the reparation of the blades,
especially if new parts are needed. Furthermore, the reduction
of maintenance costs is a major chance to reduce costs of op-
erations of a jet engine [1]. Therefore, methods are needed to
reduce the contingent of new parts and determine the tolerances
for regenerated blades.

The blisk or bladed disk is often assumed to be cyclic sym-
metric but differs due to wear or small manufacturing tolerances
or the overhaul procedure of the blades in real applications.
These small deviations of the blade properties can lead to a lo-
calization of the vibrational energy to single blades, see e.g. [2]
and [3]. Therefore, this effect called mistuning can increase the
risk of HCF failures.

For practical blisks spatial finite element models are essen-
tial to calculate the stresses of blades during the operation of the
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turbine. Finite element models of real bladed disks have up to
107 DOF per segment. Therefore, reduction techniques are em-
ployed to reduce the number of degrees of freedom of the blisk.
The common techniques can basically be divided into Compo-
nent Mode-based methods and System-Mode-based methods. A
general overview of these methods used for the reduction of
bladed disks is given in [4]. The benefit of the CMS method
is that mistuning can be modeled directly with distributed indi-
vidual (fixed interface) blade eigenfrequencies. These are usu-
ally measured in bench tests and therefore suitable for the CMS
method. Furthermore, with a suitable number of ansatz func-
tions, e.g. component modes, the agreement with the finite ele-
ment model concerning the analysis of dynamic effects is gen-
erally very good [5]. A disadvantage is the numerous interface
degrees of freedom (DOF) between the substructures and still
rather large reduced order models. To overcome the numerous
interface degrees of freedom a second modal reduction can be
applied to the CMS model, see e.g. [6]. Furthermore, a cyclic
approach to calculate the CMS of the disk has been presented
in [6].

In this paper, a Component Mode-based method to model
the blisk is presented with a cyclic calculation of the substruc-
ture of the disk, see [7] and [8]. With the recently developed
Wave Based Substructuring [9] the models based on the CMS
can be further reduced with a description of the interface nodes
between two substructures with so called waves derived from the
mode shapes of the whole structure at the coupling degrees of
freedom calculated with a singular-value decomposition. The
waves are orthogonal and have a contribution of all considered
mode shapes. Mode shapes of the whole system as a reduced
basis have first been used in [10] to reduce the coupling degrees
of freedom, where loaded interface modes were applied. These
ansatz functions are generally not orthogonal. Since the parts of
the mode shapes at the coupling degrees of freedom for a family
of modes are very similar, this can lead to a redundant choice of
ansatz functions. Because of the substructuring, the mistuning
can be directly applied to the blades’ density, Young’s modulus
or eigenfrequencies. In the latter case, the variance between the
different blades and the correlation between the eigenvalues or
modal masses of different mode shapes are considered in this
paper. The method is restricted to small mistuning, since compo-
nent mode shapes perturbations cannot be accounted for. Never-
theless, unique blades with large geometric mistuning could be
inserted into the model with little effort. The applicability of this
approach is shown by a calculation of worst or best case blade
patterns and frequency response functions.

MODELING
Equation of Motion (EOM)

The EOM for the forced vibrations of a mistuned bladed disk
with N segments is derived in this section. The inclusion of the

mistuning effects in the forced response analysis requires a dy-
namic model for the full bladed disk, i. e. the well-known cyclic
symmetry constraints [11] cannot be used to reduce the dynamic
model to just a single segment of the bladed disk or blisk. In
Fig. 1, a finite element model of a full bladed disk is shown. In
the following, it is assumed that the bladed disk can be treated
as a linear elastic structure. Applying the Finite Element Method
(FEM), the forced response of the full bladed disk can be com-
puted by

[
−ω

2
e M+ iωeC+(1+ id0)K

]
û = f̂ (1)

using the complex notation in the frequency domain and assum-
ing harmonic excitation and response. The EOM given in Eq. (1)
is formulated in a coordinate system fixed to the rotor. The
real and symmetric matrices M, C and K denote the mass, the
viscous material damping and the stiffness matrix and the vec-
tor û the complex nodal displacement amplitudes. A structural
damping can be modeled in terms of the structural loss factor
d0. On the right-hand-side of Eq. (1), the vector f̂ represents
the complex excitation force amplitudes acting on the airfoils of
the blades, ωe denotes the associated excitation frequency. The
EOM is formulated in a rotating, i. e. non-inertial, frame of ref-
erence fixed to the rotor spinning with the constant angular ve-
locity ωr, see Fig. 1. Therefore, the stiffness matrix K generally
includes terms accounting for the rotational effects in addition
to the elastic stiffness matrix Ke. These additional terms con-
sist of a geometric stiffness matrix Kg(ωr) describing the stiff-
ening effect of the centrifugal forces and a spin-softening matrix
Ks,m = −ω2

r Ms,m describing the stiffness softening due to the
changing direction of the centrifugal forces [12]. Note that the
mass matrix M is not identical to the spin-softening mass matrix
Mm. It is also possible to include a skew-symmetric gyroscopic
matrix G in the EOM in order to consider the Coriolis forces.

�
r

FIGURE 1. FINITE ELEMENT MODEL OF A FULL BLADED
DISK
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disk
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FIGURE 2. FINITE ELEMENT MODELS OF THE SUBSTRUC-
TURES OF THE DISK AND THE BLADES AND THE COUPLING
DEGREES OF FREEDOM.

Additionally, aerodynamic coupling can have a major contribu-
tion to the forced response of blisks, in particular if the structural
coupling between the adjacent blades is small. This is because
the blade amplitudes are very sensitive to changes in the overall
stiffness or damping. This contribution is not considered yet, but
could be implemented if the aerodynamic stiffness and damping
matrix would be determined, e.g. with an approach similar to the
one proposed in [13]. In the forced response analysis of the mis-
tuned bladed disk it is assumed that the excitation corresponds
to a so-called engine order type excitation with EO nodal diam-
eters resulting in a harmonic excitation force vector. Thus, the
excitation forces acting on the N airfoils can be expressed by

f(t) = ℜ

{
f̂eiωet

}
= ℜ




(1)f̂
(2)f̂

...
(N)f̂

 eiωet

 (2)

with the following relation between the excitation force ampli-
tudes acting on the first and on the h-th airfoil

(h)f̂ = e−i(h−1)∆ϕ (1)f̂ for h = 1(1)N (3)

using the angular excitation frequency defined as ωe = EOωr
and the interblade phase angle ∆ϕ = EO 2π

N .
According to [14], finite element models of real bladed disks

have up to 107 DOF. Therefore, the forced response calculation
requires a reduced order model (ROM). The reduction technique
used in the analysis of mistuned bladed disks is based on the
CMS technique and is presented in the following section.

Component Mode Synthesis of the Blades
The whole bladed disk is divided into the substructures of

the disk and the N blades, Fig. 2. In particular, the common
substructure method of Craig and Bampton [15] is used. The
structural matrices αb of the blades are partitioned into master or
coupling (m) and slave (s) degrees of freedom:

αb =

[
αmm αms
αsm αss

]
b

for α = K, C, M (4)

The displacement vector ûb of a single blade can be expressed
with the CMS transformation matrix Tb as

ûb =

[
ûb,m
ûb,s

]
=

[
I 0

Ψb Φb

][
ûb,m
η̂b

]
= Tb

[
ûb,m
η̂b

]
. (5)

Herein, Ψb are the so called constraint modes, which describe
the displacement of the slave degrees of freedom due to a unit
displacement of a single master degree of freedom. These are
derived by

Ψb =−K−1
b,ssKb,sm . (6)

The second type of ansatz functions is a truncated set Φb of can-
tilevered blade mode shapes. These are derived by a modal anal-
ysis of the slave degrees of freedom only (fixed master degrees
of freedom):

Kb,ssΦb = Mb,ssΦbΛb (7)

cyclic symmetric model

of the disk

model of the single

unconstrained blade

coupling DOF

coupling DOF

cyclic symmetry

constraints

FIGURE 3. DISK SEGMENT WITH CYCLIC SYMMETRY CON-
STRAINTS AND BLADE SUBSTRUCTURE.
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The reduction of the blade’s structural matrices is then achieved
by

α red,b = TT
b αbTb for α = K, C, M. (8)

Note that the reduced stiffness matrix Kred,b contains as a sub-
matrix the squares of the regular eigenfrequencies Λb of the mass
normalized cantilevered blade mode shapes.

Component Mode Synthesis of the Disk
The CMS of the disk is calculated from the system matri-

ces αseg (α = K, C, M) of one disk segment. In cyclic sym-
metric structures the complex mode shapes of the system can be
described by forward and backward traveling waves, [11]. The
constant phase shift ∆ϕk = 2πk/N between the left and the right
side of one cyclic segment depends on the nodal diameter ND or
harmonic index k = 0(1)N− 1 of the mode shape, Fig. 3. Uti-
lizing the transformation matrix T̂k the complex amplitudes ûseg
of one cyclic disk segment (corresponding to the whole disk) can
be calculated by

ûseg =

ûd,L
ûd,I
ûd,R

=

0 e−i 2πk
N A

I 0
0 I


︸ ︷︷ ︸

T̂k

[
ûd,I
ûd,R

]
. (9)

Thereby, the complex amplitudes ûd,L at the left side can be sub-
stituted by the complex amplitudes ûd,R at the right side of the
disk segment with a phase shift ∆ϕk and a rotation of the carte-
sian coordinates with the pitch angle ∆ϕ = 2π/N. A denotes
the corresponding rotation matrix. The amplitudes ûd,I inside the
disk segment remain unchanged. The cyclic system matrices are
then derived by

α̂d,k = T̂H
k αsegT̂k with α = K, C, M (10)

for every harmonic index k. Thereby, the superscript H de-
notes the Hermitian or complex conjugate transpose. Rearrang-
ing the degrees of freedom in master (index m) and slave (index
s) degrees of freedom the complex Component Mode Synthesis
α̂d,cms,k of the system matrices can be calculated analogous to
Eqs. (6)-(8) for every harmonic index k, respectively. The sys-
tem matrix of the whole disk can be derived using the theory of
block diagonal matrices. For that purpose, the cyclic matrices
are arranged diagonally and the physical degrees of freedom can
be expanded using the fourier matrix

F̂ =
[

f̂mn
]

with f̂mn =
1√
N

e−i(m−1)(n−1) 2π
N . (11)

A detailed description of the procedure can be found in [8] or a
similar one in [6].

CMS of the Whole System
The CMS is assembled by the N substructures of the blade

and the substructure of the disk, where the constraint of equal
displacements

ûd,m,h = ûb,m,h , h = 1(1)N (12)

at the coupling DOFs between disk and blades has to be sat-
isfied. The structural matrices Kcms and Mcms can be assem-
bled by the submatrices derived by the Component Mode Syn-
thesis. The DOFs of the reduced system matrices are composed
of the component modes ηd and ηb,h of the disk and of all blades
h = 1(1)N, respectively, and the master DOFs,

ûcms =
[
η̂

T ûT
m
]T

=
[
η̂

T
d η̂

T
b,1 . . . η̂

T
b,N ûT

m
]T
, (13)

ûm = ûd,m =
[
ûT

b,m,1 ûT
b,m,2 . . . ûT

b,m,N
]T

. (14)

The complex physical amplitudes û∗ of the whole structure can
be determined by

û∗ =
[

ûs
ûm

]∗
=

[
Φ Ψ

0 I

]
︸ ︷︷ ︸

T̂cms

[
η̂

ûm

]
, (15)

where T̂cms is assembled by the blockdiagonally arranged trans-
formation matrices of the blades Tb,h with h = 1(1)N and the
single disk T̂d.

T̂cms =

[
Φ Ψ

0 I

]
=

Φd 0 Ψd
0 bdiag

h=1(1)N
(Φb,h) bdiag

h=1(1)N
(Ψb,h)

0 0 I

 (16)

Wave Based Substructuring
Utilizing the recently developed Wave Based Substructur-

ing, see e.g. [9, 16], the numerous master (coupling) degrees of
freedom of the substructures can be reduced. A cyclic modal
analysis of the bladed disk

KΦ = MΦΛ (17)

with the stiffness matrix K and mass matrix M of the finite ele-
ment model can be used to determine the transformation

û = Φη̂ (18)
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from modal coordinates η̂ into physical coordinates û. Thereby,
Φnxn is the modal matrix which is composed of the orthogonal
eigenvectors of the whole bladed disk with n degrees of free-
dom, which can be gained from a cyclic modal analysis. A sub-
set nm < n of eigenvectors is selected. Furthermore, only rows
corresponding to the nc coupling degrees of freedom m are taken
from the modal matrix Φ and the submatrix Φnmxnc is gained.
Due to the partition of the modal matrix the column vectors of
Φnmxnc are not orthogonal. Hence, the WBS is used to derive
an orthogonal basis of the matrix Φnmxnc . The orthogonal basis
U of the columns of Φm can be calculated by a Singular Value
Decomposition

Φnmxnc = UΣVH. (19)

U and V are matrices of orthogonal ansatz functions for the rows
and the columns of the modal matrix. Figure 4 depicts the prin-
ciple of the singular value decomposition. Herein, Σ is a rect-
angular matrix and the upper diagonal submatrix contains the
sorted singular values σh. According to [9] the contribution of
the modal displacement of the coupling DOFs are dependent on
the magnitude of the singular value. Hence, a limit σh

σ1
> S is

defined, where a typical value is S = 10−6. The first t singular
values σt , which satisfy this constraint, are taken from U and
therefore t waves

W = Unmxt (20)

are used. The coupling DOFs ûm can be described by the com-
plex amplitudes p̂ of the waves, that is

ûm = Wp̂. (21)
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FIGURE 5. RELATIVE ERROR OF THE CMS AND WBS
METHOD COMPARED TO THE FULL FINITE ELEMENT MODEL.
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FINITE ELEMENT MODEL.

The displacement vector

û∗∗ =
[

ûs
ûm

]∗∗
=

[
Φ Ψ

0 I

]
︸ ︷︷ ︸

T̂cms

[
I 0
0 W

]
︸ ︷︷ ︸

T̂wbs

[
η̂

p̂

]
(22)

of the further reduced model can be determined by the transfor-
mation matrices T̂cms and T̂wbs of the CMS and the WBS. The
CMS and the WBS have to be carried out only one time, because
the mistuned mode shapes of the system can be approximated
by a weighted sum of tuned component modes and waves. As
mentioned above, no perturbations of blade mode shapes can be
accounted for with the derived method.
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FIGURE 7. FINITE ELEMENT MODEL OF A MODEL BLISK
WITH 30 BLADES AND 82080 DEGREES OF FREEDOM.

Model Verification
In [7] a comparison of the FEM with the CMS and WBS

substructure technique is given for the bladed disk shown in
Fig. 1 and a very good agreement of the eigenvalues of the
bladed disk is determined with an adequate number of com-
ponent modes and waves. It is common knowledge that the
CMS model converges against the full model if all component
modes are considered, see e.g. [5]. The WBS method does
not change the component modes of the substructure nor do the
waves change the basis of the constraint modes. A theoretical set
of alternative waves is the unity matrix, W∗ = I, which is com-
posed of orthogonal ansatz functions. If the number of orthogo-
nal waves is equal to the number of physical coordinates or con-
straint modes the basis is equal, that is the (square) matrices W
and W∗ = I span the same space with the dimension of the num-
ber of constraint modes. Since the waves of the singular value
decomposition are sorted by its contribution to the displacement
of the mode shapes, it is possible to take a truncated set of waves
with the proposed criterion. Since a full set of waves span the
same space as the unity matrix, no artificial modes are expected
to appear with the WBS and the method converges against the
CMS.

In this numerical example, a blisk with N = 30 blades and
82080 degrees of freedom of the full finite element model is used,
see Fig. 7. Figure 5 shows the relative error of the eigenfrequen-
cies of the CMS and WBS against the full model. Thereby, 14
component modes of the blades and 150 component modes of
the disk were considered. The number of constraint modes or
master degrees of freedom is 2430 which were reduced to 700
waves. The number of degrees of freedom of the CMS and WBS
is 3000 and 1270, respectively. The figure shows an exact match
of the eigenfrequencies of the CMS and WBS, which supports
the theoretical considerations above, and a very good agreement
with the finite element model. The relative error of the eigenfre-
quencies of the WBS against the full model is depicted in Fig. 6
against the number of waves for the first 400 modes. With a min-
imum number of about 100 waves the first two families of modes

FIGURE 8. DISK SEGMENT WITH CYCLIC SYMMETRY CON-
STRAINTS AND BLADE SUBSTRUCTURE.

are described properly. With an increasing number of waves the
eigenfrequencies of all 400 modes are matching very well.

A nodal diameter map of the blisk is shown in Fig. 8. Fre-
quency response functions are calculated for the worst case blade
pattern (ND = 2), see Fig. 12. The frequency response is com-
pared with the full model for different families of modes and en-
gine orders, that is 1F and EO= 2, 1T and EO= 12 and the tenth
family of modes with EO = 7, see Figs. 9-11. The frequency
response is equal to the full model concerning the resonance fre-
quencies and amplitudes for all three cases. This shows that the
method works even for higher modes. If a frequency response
function is calculated, a second modal reduction has been ap-
plied like proposed in [6] with an appropriate number of modes
in the considered frequency range. Note that the second modal
reduction has to be performed for every mistuned bladed disk.
Thus, the number of degrees of freedom can then be reduced to
about 30, which is the number of the modes shapes in one family
of modes.

Derivation of the Mistuning of the Regenerated Blades
The eigenfrequencies of a single regenerated blade differ

from the eigenfrequencies of the ideal blade due to deviations
of geometry and scattering of material properties. In order to
estimate the stochastic distribution of the eigenfrequencies or
eigenvalues of a single blade, these parameters have to be taken
into account within a probabilistic analysis. From measurements
of a set of blades, the distributions of the stochastic input pa-
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FIGURE 11. COMPARISON BETWEEN THE FINITE ELEMENT
METHOD FOR A WORST CASE BLADE PATTERN FOR EO=7.

rameters can be estimated. Then, a Monte-Carlo-Simulation is
performed in order to estimate the multivariate, joint distribu-
tion of the eigenfrequencies of interest, which is required for the
probabilistic analysis of the whole disk. If a multi-normal dis-
tribution is assumed for the eigenfrequencies, mean vector and
covariance matrix have to be determined, which can be obtained
from the results of a Monte-Carlo-Simulation. However, more
efficient methods than Monte-Carlo-Simulations can be used if
only mean vector and covariance matrix need to be determined.
One of the simplest and fastest methods is the first-order second-
moment (FOSM) method, see [17]. The mean value µk of the
k-th eigenvalue ω2

0,k is estimated by

µk ≈ ω
2
0,k(µ) (23)

where µ is the mean vector of input parameters. Assuming inde-
pendence of the stochastic input parameters xi, the variance σ2

k
of the k-th eigenvalue ω2

0,k is given by

σ
2
k = Σ

∗
kk ≈

n

∑
i=1

[(∂ω2
0,k

∂xi

)2var(Xi)
]
. (24)

The variances are on the diagonal of the covariance matrix Σ
∗.

The covariance of two eigenvalues is determined from

Σ
∗
k j ≈

n

∑
i=1

[∂ω2
0,k

∂xi
(µ)

∂ω2
0, j

∂xi
(µ)var(Xi)

]
. (25)

Since the functions of eigenvalues ω0,k(x) are not given explic-
itly, the derivatives have to be determined numerically.

A mistuning factor δk is used to mistune the k-th eigenvalue
of the blades. The covariance matrix and mean value have to be
normated to get the mean value E (δk) and the covariance matrix

Σ of the mistuning factor δk =
ω2

mistuned,0,k
ω2

tuned,0,k
:

E (δk) =
µk

ω2
tuned,0,k

(26)

Σk j =
Σ∗k j

ω2
tuned,0,k ω2

tuned,0, j
(27)

Implementation of the Mistuning to the Blades
In the following section a method is described to mistune the

eigenvalues of the cantilevered blade modes, which are directly
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accessible after the Component Mode Synthesis of the blade.
Thereby, the variance of the distribution of every single eigen-
value (or modal mass) as well as the correlation between the dis-
tributions of different eigenvalues of the blades are considered.
For example, the first mode shape’s eigenvalue, e.g. first bend-
ing, decreases if a discrete mass is added to the top of the blade.
If the torsional mode shape of the blade has a nodal line at the
center of the mass, the eigenvalue will not change at all. The data
of the variance of the eigenvalues and the correlation can be de-
termined by measurements or a parametrized model of the blade
as described in the prior section.

σ2
k and σ2

j are the variances of the mistuning factors of the
eigenvalues k and j of a set of blades. The entry ρk j of the corre-
lation matrix ρ contains the correlation between the distribution
of the eigenvalues k and j of a set of blades. Accordingly, the di-
agonal entries of the matrix are equal to one. In the special cases
of mistuning of the density or stiffness of the blade, all entries of
the matrix ρ are equal to one. Now, the covariance matrix can be
derived by

Σk j = ρk j

√
σ2

k σ2
j k, j = 1(1)nm, (28)

where nm is the number of component modes of the blades. Al-
ternatively, the covariance matrix can be taken from measure-
ments or a probabilistic analysis, see Eq. (25). A Cholesky de-
composition

Σ = RTR (29)

is used to calculate the mistuning factors

δ h = µh +RTzT
h h = 1(1)N (30)

of the eigenvalues or modal masses of the h-th blade with the vec-
tor of the average values µh, whose entries are typically equal
to (the multiplier) one. zh is the h-th row vector of a matrix
Z, whose column vectors consist of uncorrelated normally dis-
tributed entries with the mean value zero and a variance of one.
A detailed description of the general procedure to calculate the
correlated random numbers is described e.g. in the textbook [18].

The eigenvalues of the nm component modes are arranged
diagonally in the submatrix

Kh = diag
j=1(1)nm

(ω2
h j) (31)

of a specific blade. The mistuned submatrix of the reduced stiff-
ness matrix of the blade is then calculated with

∆sto,h = diag
j=1(1)nm

(δsto,h j) (32)

and the matrix of the intentional mistuning

∆int,h = diag
j=1(1)nm

(δint,h j) (33)

to

Kmis,h = ∆int,h∆sto,hKh h = 1(1)N. (34)

As an approximation, the stiffness matrix of the master or cou-
pling degrees of freedom are mistuned with the mean value of the
mistuning factors of the modal values of the specific blade h. In
future works, the validity of this assumption has to be estimated.

CASE STUDY
Optimization Procedure

The methods described above can be used to calculate
the forced response of a bladed disk with small blade mistun-
ing. Since Monte-Carlo-Simulations are not suitable to calculate
worst or best case blade patterns, an optimization procedure has
been developed which has been proposed in [8].

The maximum resonance amplitude Amax, which is the max-
imum of the blade amplitudes of all blades in a specific ex-
citation frequency range Ωe,min . . .Ωe,max can be calculated for
a specific set of parameters, namely the engine order EO, the
structural damping factor d0 and the variance of the blade pat-
tern VAR(δ ) = s2. The best case or worst case blade pattern can
be calculated depending on the algebraic sign of the constraint
optimization problem

min
(
∓û
(
VAR(δ ), [Ωe,min . . .Ωe,max],EO,d0

))
=min

(
∓Ŝ−1 f̂

)
.

(35)
The constraints are

VAR(δsto) = s2 (36)

and

E[δsto] = 1, (37)

that is the variance and the mean value of the blade pattern are
constant during the procedure.

Generally, the optimization procedure works for more than
one stationary point in the Campbell diagram. Thereby, two or
more frequency ranges and engine orders of excitation have to be
used to calculate the amplitudes, which have to be normalized to
the tuned resonance amplitude. Note that even the forces on the

8 Copyright c© 2011 by ASME
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FIGURE 12. WORST AND BEST BLADE PATTERN FOR EO = 2
AND A VARIANCE OF s2 = 0.0001.

airfoil and the system matrices might change for the mentioned
different cases, e.g. due to the influence of centrifugal forces.
The worst case blade pattern for more than one configuration
can be determined by the maximum amplitude Amax, j for single
configurations j = 1(1)ncf:

Amax = max Amax, j
j=1(1)ncf

(38)

In case of the best case blade pattern the optimization procedure
has to be used and the minimum has to be determined under con-
sideration of two or more configurations. Nevertheless, the am-
plitude might not be an appropriate criterion in this case because
of the mode shape dependent stresses. If the stresses cannot be
determined without using a time consuming calculation with the
full finite element model weighting factors for the normalized
amplitudes might be a compromise.

Best Case and Worst Case Blade Patterns
The best and worst case blade patterns have been determined

for EO = 2 and a variance of the stiffness of the N = 30 blades
of s2 = 0.0001. Note that the output of this analysis does not
correspond to a specific set of blades. The structural damping
factor is d0 = 0.001. In Figs. 12-14 the first blade is always as-
sociated with the largest blade amplitude. Figure 13 shows the
amplitudes of all blades at the resonance frequency of the blade
with the highest amplitude, whereas Fig. 14 shows the maximum
of all blades in the whole frequency range for both the best and
worst blade pattern. In Fig. 12 the blade patterns are depicted.
The amplitude amplification of the first blade is about 3 for the
worst case and below 1.1 for the best case blade pattern compared
to the tuned amplitude. An obvious difference is a blade with low
stiffness in the worst case and a blade with high stiffness in the
best case blade pattern. A case study in [8] suggests, that this is
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FIGURE 13. AMPLITUDES OF THE WORST AND BEST BLADE
PATTERN FOR EO = 2 AND A VARIANCE OF s2 = 0.0001 AT THE
DISCRETE MAXIMUM RESPONSE EXCITATION FREQUENCY.
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FIGURE 14. MAXIMUM AMPLITUDES OF THE WORST AND
BEST BLADE PATTERN FOR EO = 2 AND A VARIANCE OF s2 =

0.0001 DETERMINED INDEPENDENTLY FOR EVERY BLADE.

not typical regarding all engine orders of excitation. As expected,
the displacement at a discrete frequency, see Fig. 13, leads to a
stronger amplitude localization compared to Fig. 14. Figure 15
shows the frequency response function of the blade with the
maximum blade resonance amplitude against the variance of the
blade pattern from s2 = 0 to s2 = 0.0001. Note that the optimiza-
tion procedure has been performed at s2 = 0.0001. The tuned
frequency response is assigned to the red line at s2 = 0. The
black lines mark the undamped resonance frequencies and the
corresponding amplitude and an increasing frequency split of the
double eigenfrequencies can be observed with a rising blade pat-
tern variance. As mentioned above, the tuned amplitude is about
one-third of the worst case blade amplitude at s2 = 0.0001. The
split of the eigenfrequencies corresponding to the tuned ND = 2
mode shapes is small compared to the best case, see Fig. 16 and
the explanations below. Therefore, the resonances of both eigen-
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frequencies are strongly coupled and the superposition of both
resonance peaks is effective. Furthermore, both mistuned mode
shapes are now localized in the worst blade, see Fig. 17. Herein,
both localized mode shapes are depicted, which were calculated
with the finite element model of the mistuned blisk.

In Fig. 16 the frequency response function of the best case
blade pattern and the highest blade resonance amplitude is de-
picted against the variance of the blade pattern from s2 = 0 to
s2 = 0.0001. The comparison of Figs. 13 and 16 shows that the
eigenfrequencies split (black lines) and, therefore, the displace-
ment of the blades is similar to a non-traveling mode shape. Be
aware that a traveling mode shape is the superposition of two
(real valued) mode shapes. Furthermore, as expected for a best
case blade pattern, the mode shapes are not localized. Figure 18
shows the sensitivity of the best case blade pattern (s2 = 0.0001)
against additional stochastical mistuning ∆s2 = 10−6 and ∆s2 =
10−7. Probability density functions of the maximum amplitude
and the underlying best case blade pattern have been calculated
with 1000 Monte Carlo Simulations. As expected, the maximum
amplitude rises with the variance of the additional mistuning ∆s2.
The optimization procedure is used to determine the worst case
of these configurations and maximum amplitude amplifications
of about 1.2 and 1.5 have been determined for ∆s2 = 10−6 and
∆s2 = 10−7 compared to about 1.1 for the unmodified best case.
Therefore, a careful determination of the mistuning of the sin-
gle blades is necessary to avoid an inaccurate prediction of the
maximum resonance amplitude.

Figure 19 shows the maximum blade resonance amplitude
Amax subject to the logarithm of the variance s2 of the blade pat-
tern. The worst case resonance amplitude is rising with a declin-
ing slope (consider the logarithmic scale). In contrast, the best
case resonance amplitude stays nearly constant even for high val-
ues of s2.

Permutations of the Worst Case Blade Pattern
In the following section the alignment of the worst case

blade pattern around the disk is changed. For a specific blade
pattern, since the disk is tuned,

nperm = (N−1)! (39)

different alignments of the blades around the disk are possible.
The goal is to determine an alignment of a unique set of blades
such that the resonance amplitude or localization at specified op-
erating points is minimized. In Fig. 20 the maximum blade am-
plitude Amax is depicted for 2000 permutations of the worst case
blade pattern (EO = 2, s2 = 0.0001). The maximum amplitude
for the same blade set differs between about Amax/Atuned = 1.25
and Amax/Atuned = 3. In conclusion the influence of the align-
ment of the blade set is large concerning the resonance ampli-
tudes. Furthermore, if it is possible to chose from more than N
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FIGURE 15. FREQUENCY RESPONSE FUNCTIONS OF THE
WORST CASE BLADE PATTERN AGAINST THE VARIANCE s2.
TUNED CASE IS DISPLAYED WITH RED LINE. UNDAMPED
EIGENFREQUENCIES ARE INDICATED WITH BLACK LINES.
THE FIRST FIVE EIGENFREQUENCIES ARE ASSOCIATED WITH
THE TUNED ND = 1, ND = 2 AND ND = 0 MODE SHAPES.

126 128 130 132 0

1

x 10
−4

0

0.005

0.01

0.015

0.02

0.025

s
2

Excitation Frequency [Hz]

A
m

p
li

tu
d

e
 [

m
]

FIGURE 16. FREQUENCY RESPONSE FUNCTIONS OF THE
BEST CASE BLADE PATTERN AGAINST THE VARIANCE s2.
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FIGURE 17. MODE SHAPES OF THE WORST CASE BLADE
PATTERN ASSOCIATED WITH THE TWO TUNED ND = 2 MODE
SHAPES.
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blades, it might be possible to reduce the amplitudes to a level
nearer to the tuned amplitude.

CONCLUSIONS
A method has been introduced to find an optimal alignment

of a set of blades with known mistuning around the disk. Fur-
thermore, the maximum or minimum expected amplitude can be
derived with the procedure.

Therefore, a parameterized model of the blade is used to
calculate the statistics of the blade eigenvalues for changes in
the temperature, density, stiffness etc.. The resulting data, that is
the correlation between the eigenvalues of different blade mode
shapes and the variances of the eigenvalues, has been used to
mistune a Component Mode-based bladed disk model.

A parameter study has been performed, where the Young’s
modulus of the blade has been mistuned and worst case and best
case blade patterns have been determined with an optimization
procedure. It has been shown that the maximum resonance am-
plitude of the worst case blade pattern rises subject to the vari-
ance of the stiffness mistuning, whereas the amplitudes of the
best case blade pattern stay nearly constant. Further, the permu-
tations of a worst case blade pattern can lead to far lower peak
amplitudes.

This shows that the alignment of the blades around the disk
can have a major impact in the expected resonance amplitude
even for the same set of blades.
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