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ABSTRACT pr,pr Tangential shear.
Contact interfaces with dry friction are frequently used in  w, W Wear depth, nodal wear depth vector.

turbomachinery. Dry friction damping produced by the sliding _ Relative value.

surfaces of these interfaces reduces the amplitude of bladed-diskU  Time-domain nodal displacement vector.

vibration. The relative displacements at these interfaces lead to M, C, K Mass, viscous damping and stiffness matrices.

fretting-wear which reduces the average life expectancy of the Z, Reduced dynamic stiffness on relative displacements.

structure. Frequency response functions are calculated numer- . _Nodal force of contact.

ically by using the multi-Harmonic Balance Method (mHBM). A, A Lagrangian multiplier in time and frequency domains.

The Dynamic Lagrangian Frequency-Time method is used to cal-

culate contact forces in the frequency domain. A new strategy

for solving non-linear systems based on dual time stepping is INTRODUCTION

applied. This method is faster than using Newton solvers. It Sources of non-linearity in turbomachinery are multiple.

was used successfully for solving Nonlinear CFD equations in  Contact with friction is one of the most important causes of non-

the frequency domain. This new approach allows identifying the linearity in turbomachinery, especially in bladed-disks. Contact

steady state of worn systems by integrating wear rate equations with friction must be taken into account to ensure efficient that

a on dual time scale. The dual time equations are integrated by the vibration of this type of structure can be predicted well. Fric-

an implicit scheme. Of the different orders tested, the first order tion dampers can be added to decrease response to vibration, al-

scheme provided the best results. though this requires numerical tools to evaluate the added damp-
ing rate. In bladed disks, contact with friction occurs at the inter-
faces between the blades and the disk to which they are attached.

NOMENCLATURE Fluid is another source of non-linearity. It is possible to simulate
¢ Multiharmonic vectors. the periodic behaviour of coupled fluid-structures by using the
e Retained time step value frequency method.

-1,-N Targential and normal direction. HBM (Harmonic Balance Method) is the most widely used
Pn,Pn - Normal pressures. frequency method. It is based on the expansion of variables in
Fourier series and the Galerkin procedure to obtain non-linear
algebraic systems. For systems with contact and friction, an al-
*Address all correspondence to this author.
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ternating frequency time (AFT) procedure is performed to cal- vector of the external forces (periodic excitation at frequenjy
culate non-linear forces in the time domain and then transform andF¢ represents the non-linear contact forces due to friction.

them into the frequency domain. For the bladed-disk systerl{, contains centrifugal and geo-
Other approaches are possible, in this paper we study two metric stiffnesses that are linked to the speed of rotation.
other methods: the trigonometric collocation method (TCM) and By assuming a steady state periodic respobisean be writ-

the high dimension harmonic balance method (HDHB). In TCM ten as a Fourier series:
a non-linear algebraic system is solved in the time domain. In the

HDHB method the unknowns are values of displacements with . Nh | .
an equal time step and the non-linear algebraic system is solved U(t)=Up+ z Unccognt) + Upssin(nt) (2
once again in the time domain. Some authors have called this n=1

method the time spectral method (TSM) [1] and it was used in

CFD and proved highly efficient. whereNhis the number of temporal harmonics retained ard
In the first section we present the theory underlying these wit is the normalized time of the vibration period.
methods and explain the advantages of each one. Eqg. (@) is introduced in[{1). The following paragraph

Different strategies are possible for solving non-linear alge- presents three different approaches for expressing equivalent
braic systems the most common of which is Newton-Raphson non-linear systems to obtain steady state.
solver [2]. For very large systems a Jacobian matrix can be ill-
conditioned, with problems of convergence in the linear direc-
tion search step. For CFD applications, several authorsi[L, 3, 4]
propose transforming the non-linear algebraic system into a first
order differential system and integrating it to obtain the steady
state and thus the solution of the non-linear system. The second
section sets out the theory of this method and different schemes
are tested by using numerical examples.

In previous papers [5+7] we have shown that steady state in
fretting-wear can occur during vibration. To identify steady state
we proposed an integration scheme involving the calculation of . .
transient kinetics. A method that allows finding the steady state 2, U, +F.=F, 3)
directly would be very useful. In this paper we propose using
a pseudo-time method and integrating wear kinetics in pseudo-
time. It is shown that the worn profiles obtained by using this
method are the same as worn profiles obtained previously by nu-
merical schemes coupled with the DLFT methdd [7, 8].

1.1 Harmonic balance method with the AFT proce-
dure

In this method the unknowns are Fourier coefficietfs=
((70,--- ,ﬁNh’Cﬁths)T. Then the equation of motiohl(1) can be
written in the frequency domain by using Galerkin’s procedure.
Thus the system is solved in the frequency domain with HBM.
The non-linear frequency algebraic system is condensed for non-
linear dofs and then for relative displacemehtsliB}

Z, is condensed dynamic stiffness and derived from dynamic
stiffnessZ, which is a block diagonal matrix:

o 0 0 (4)
0 0 K—(Nyw)’M NhwC
00 —NywC K—(Nyw)’M

1 HB THEORY Z=
A general elastic structure witQ degrees of freedom is con-

sidered. The linear structural model can be derived by using the

finite element method or any other method, such as component

mode synthesis, but all the degrees of freedom where contactF;. is condensed multiharmonic vector of excitation forces. Con-

with friction takes place must be retained as physical coordinates. tact forces=¢ cannot be explicitly handled in the frequency do-

A contact element is defined as a set of two nodes between whichmain. Therefore, non-linear contact and friction forces are cal-

contact occurs. For such a structure, the equations of motion canculated by using a time-marching procedure in the time domain.

be written as: The AFT procedure is applied and the variables are transformed

from the frequency domain to the time domain and contact forces

are calculated. Then they are transformed in the frequency do-

main as illustrated in Fid.J1. In this work the DLFT (Dynamic

Lagrangian Frequency Time) methaod|[5, 8] is applied to calcu-

MU +CU +K (U,Q)U + F(U,U) = Fey(t) (1)

where the vector§/ , U andU are, respectively, the dis-  late the Fourier coefficients of contact forces. This method is
placement, velocity, and acceleration of the structlifds the based on a prediction-correction procedure with prediction in
vector of displacementd/l,C,K are the mass matrix, viscous the frequency domain and correction to ensure contact with fric-
damping matrix and stiffness matrix, respectiveR(t) is the tion conditions (separation, stick, slip) in the time domain. Other
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\ iDET N using operator formalism. Eq.(2) can be rewritten as follows:

0 : ut) etilt)
1 ! 1 ! — ~
! U=T10 (6)
1 ! ! 1
| 1 1
X ~ | DFT £t Ul it E whereT is a matrix of the discrete Fourier transform whose size
L P - ni (t, U(t), U(t) ) ) is equal to(2Nh+1)Q by (2Nh+1)Q. U s the vector of all the
Teooo-- < R T T i displacements at all the selected time steps. Expressionisof
frequency domain time domain
1 1 1
FIGURE 1: AFT procedure 2 2 2
COSTy COSI; ... COSIpuNhi1l
2 sintp  sinTy ... SiNTaNhyt ol
methods can be used as penalty methpds [9, 10], augmented la- 2Nh+1
grangian [[T1] or methods based on more complicated contact cosNhtg cosNhry ... cosNhTa.hy 1
laws (Dahl, Bouc-Wen. . .). sinNhtg sinNhty ... sinNhTo,Npe 1
The advantages of HBM with the AFT procedure is that ma- (7)

By using the dynamic stiffness matrix of the HBM problem,

trix Z, is a block diagonal matrix and so, during the condensa- ) .
Eq. (8) is equivalent to:

tion step, it is possible to invert the matrices of each harmonic
at the same time in parallel, so reducing the size of the inverse L
matrices. On the other hand, during the AFT procedure, trans- f(ﬁ') =T '2ZU+F.-F (8)
formation in the time domain and return into the frequency do-
main must be performed, which is time consuming. The number
of time marching steps has no influence on the size of the non-
linear system and no aliasing problem occurs if the spectrum of
contact forces in the time domain contains numerous harmonics
[12[13].

As the non-linear system is solved in the time domain, the
contact forces are "exact” values. In the classical HB method,
the Fourier transform smooths the contact forces.

1.3 High dimension harmonic balance method

The last approach dealt with is the high dimension harmonic
balance method proposed by Hall [14] for CFD applications.
Liu [15l[16] and LaBryerl[113,17] have also studied this method.
: . o . . Some authorg [1]4] call this method the time spectral method.
t!me domain. The main ideaisto takd B+_1 equally distributed In this paper we call this approach the high dimension harmonic
time steps, which give@Nh+1)Q equations for2Nh+1)Q balance method since it appears suitable for high dimensional

unknowns. It is possibl_e to tak_e more time steps; in thi_s case fche dynamical systems. The key aspect of the HDHB method is that
least squares mTth?d IS r?pplled. T]tle DLFT rrr:ethod IS a_ppllid instead of having Fourier coefficients as unknowns, as in the con-
once again to calculate the contact forces. When correcting t €\ entional HB approach, the unknowns are cast in the time do-

time domain, the number of time steps can be choosen as greater -in and stored athh+ 1 equally spaced sub-time levels over
than 2Nh+ 1, then Nh+ 1 time steps will be chosen to express a period of one cycle of motion

the following non-linear equation: As in the case of the trigonometric collocation method, the
Fourier coefficients and time variables retained are linked by:

1.2 Trigonometric collocation method
Fourier coefficients are used again in this approach. Instead
of solving the system in the frequency domain, it is solved in the

MU (11) + CU(11) + KU (11) 4 Fo(T1) — Fex(T1)

. U=TU and U=T 10U (9)
f((j) _ MU(Tk)+CU(Tk)+KU(Tk)+FC(Tk) —Fex('[k)
M U(TzNh+1) + CU(TZNh+1) + KU (Tonne1)+ By inj[roducing exp_ressions of. Eq??) in Eq. (3) the following
non-linear system is obtained:
Fe(Tonni1) — Fex(Tonns1)
(5) o
wherer, are retained time stepk £ [1 : 2+ Nh+ 1] andU (1) = HU + F.= Fy (10)

Nh

Uy =U, Unccognty) + Un ssin(nty).
“ ot Zl e COYNT) + Unssin(ntig whereH, = TZ, T, this matrix is full rather than block diago-

n=
It is preferable to write these equations in another way by nal. The link between time events is ensuredfy The HDHB
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method does not require an AFT procedure to calculate the con- node is in stick S|tuat|on thus the node does not move and

tact forces. Any method used in a static contact problem can be AT = ALT andAfN = 0. The predicted contact forces are:
used to solve Eq_(10). In this paper we use a dynamic lagrangian
method|[8]. kT kT 3 k=1T kN kN
y . . Apie =AY — AL ™ Ape = AL 13
One of the problems with the HDBD method is that the num- pre x o0 e T (13)

ber of time steps can only bé&\h+ 1. Aliasing can occur if non-

linearity introduces a higher harmonic order. LaBryer described The corrected contact forces will be:

this phenomenom in[_[17] and proposed filters to decrease alias-

ing. The numerical examples given here show that aliasing in- AR =k Ak (14)
fluences the convergence of the method, especially for the low

harmonic orders retained. Koo ) o
A will be calculated to satisfy the contact and friction laws.

1. Separatlon/\pre > 0, contact is lost and the forces should

2 CALCULATION OF CONTACT FORCES be zero

Explanations of the DLFT method are given in following
paragraph.

For HBM and TCM, the Lagrange multipliér (correspond- A=Al (15)
ing to contact forces) is formulated as a penalization of the equa-
tions of motion in the tangential and normal directions in the

frequency domain: 2. Stick: Apie <0 andH/\pre <H ‘/\pre

In this case, the prediction verifies the contact conditions:

AT=Fl - 72,0, +& (U] - X)), (11a)

N f AN=0, ART=Af LT (16)

AN=FN-70,+en(ON-Ww-XN), (11b)

3. Slip: )\pre < OandH/\pre‘ >u ’)\pre
Again, there is no normal relative displacement. The cor-
rection is performed by assuming that the tangential con-
tact force has the same direction as the predicted tangen-
tial force. The definition of relative velocity and compliance
with Coulomb’s law lead to:

er andgy are penalty coefficientsX,. is a new vector of rel-
ative displacements, which is computed in the time domain and
it corresponds to the relative displacements satisfying the con-
tact and friction laws in the time domain¥ is the vector of

the wear depths if fretting-wear occurs at the contact interfaces.
For the HDHB method, the equivalent expressions at[Eq. (11) are
written as:

AT = F] —HU,+er (U] - X)), (12a)
AN = FN_H U, + ey (UN-W-XN),  (12b)

MN=0, AT =A% 1T+Apre< ||’\p“'"|> 17)
pre

The final step consists of back-transforming the time domain
updated lagrangian in the frequency domain by using a DFT al-
Eq. (11) and Eq.[(12) will be named Global step of DLFT  gorithm for the Harmonic Balance Method, by taking the contact
method. forces at the time steps chosen for the Trigonometric Balance

In time domain, contact forces are predicted by considering Method, and by taking the vector of contact forces through time
contact with a stick step. The period is split intih time steps. for the HDHB method.

In the time domain each vector of the global step has a coun-

terpart. A, A, andAy have respecnvel){/\k}k it {Ak H et nit

and {Af},_, . as local equivalents. For the HDHB method, 3 NON-LINEAR SOLVERS

the global and local variables are the same, since the system The solution of the HDHB, HBM and TCM system can be
is solved in the time domain with time variables as unknowns obtained numerically by using an iterative root finding scheme

Ay e =2 {/\k}k Lo =Avand{Ax}, _, . =Ax. For such as the Newton-Raphson method or Powell’s hybrid method
TCM and HBM nit can be arbitrarily chosen; however for the [18]. In [5] we proposed an analytical expression of a contact
HDHB methodnit = 2« Nh+ 1. force gradient calculated in the time domain that allows faster

A prediction/correction is used to compute the contact calculation of the Jacobian matrix than with the finite difference
forces. At each time increment it is assumed that the contact method.
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An original approach has been proposed for the CFD pro-
blem. Obtaining the steady state of the RANS problem defined
by a non-linear algebraic system can be transformed into a non-
linear first order differential equation. The method is used to
solve a URANS problem expressed with HBM [19] or TSM
method [[4]. The application of this strategy in EQ.](10) in the
case of the HDHB method gives the following system to be inte-
grated:

oU

U WO+ R T

(18)

wheret* is a pseudo-time that allows solving EQ.](10). At the

convergence ofZ = 0, which gives the solution of Eq_{IL0).

This strategy converges faster than the classical Newton-

Raphson method for the system with a large number of degrees

of freedom. Moreover, for large systems the Jacobian matrix
can be ill-conditioned which leads to difficulties for solving the
linear system during the direction search step with the Newton-
Raphson method.

With the application of CFD, a different pseudo-time step
can be chosen for each fluid cell. For time integration, the time
step is usually driven by the smallest cell. The transfer of in-
formation between all the cells is very slow, but implementing
different time steps along the mesh ensures optimal transfer of
the information. Regarding structural applications, this proce-

dure can be adapted to choose different time-steps. However,

this strategy was not implemented here but will be in a future
study.

The pseudo-time step can be fixed by using CFL (Courant-
FriedrichsLevy) condition:

Al

A" =C— 19
% (19)

whereC is a real coefficientAl smallest length of cell andy
wave speed in the cell.

Information is given in the numerical examples about differ-
ent schemes in MATLAB, corresponding to more common nu-
merical explicit and implicit schemes.

4 FRETTING-WEAR WITH PSEUDO-TIME

A study of fretting-wear in dovetail attachments during
blade-disk vibration was described in a previous pdpér [5, 6] and
it was shown that steady state can occur. Therefore it would be

a problem of evolution, and fretting-wear is also an evolution
problem defined by the differential equation:

W = KwPn|[Ur || (20)

In [6] it was shown that fretting-wear during vibration can be
considered as a problem with two time scales: fast time scales
for vibration and long time scales for wear-kinetics. Wear is as-
sumed to be constant during one period. In line with this logic,
the pseudo-time scale will be considered as a slow time scale.
The wear kinetics equation is written as follows:

ow -5 .
o =k [ a0l (1) dr (1)
0
The following augmented system must be integrated:
o MU+ R R (22a)
oW oo —
o =k > Pt W) i (1, W) AT (22D)
=}

whereAT = T, — T,,_1 IS time step between two instancts. In
steady state, the solution of the dynamical problem is obtained
and the wear rate is null. This is caracteristic of the steady state
of the fretting-wear problem under dynamical loading.

This method will be illustrated by the numerical example
studied in[[7].

5 NUMERICAL EXAMPLES

The method proposed will be tested and compared on a
bladed-disk system. Contact with friction occurs in the dove-
tail attachment. The disk is made of 47 sectors. In this paper
only one sector with a fixed boundary is modeled. In Eig. 2b the
upper grid shows the numbering for the contact area on the same
side as the intrados of the blade while the lower grid shows the
numbering for the extrados side of the blade. The left side of the
grid is the leading edge of the blade while the right side is its
trailing edge. The friction coefficient ig = 0.5, corresponding
to a contact between parts made of titanium without coating. The
first bending mode is excited through a harmonic force applied
perpendicularly at the tip of the blade. Its amplitude.iEN\

useful to have a method capable of calculating the steady state5.1 Comparison between HBM, TCM and HDHB

caused by fretting-wear under dynamical loading directly.
Previously, the non-linear algeabric system was transformed
into a differential equation introducing pseudo-time. This poses

5

Eight nodes (green nodes on Higl 2b) on each interface were
selected. Four different harmonic orders were calculated with the
HBM, TCM and HDHB methods. The number of time steps in

Copyright © 2011 by ASME
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the time domain was fixed &tit = 105 for trigonometric collo-
cation and harmonic balance. For the HDHB method this num-
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(b)

ber was fixed by the order of harmonidg =2+«Nh+1. TCM
and HBM were also tested witlit = 2+« Nh+ 1 under the same
conditions as the HDHB method.

The frequency responses are illustrated in[Eiy. 3a an@Hig. 3b
for Nh= 1,3 andNh = 7,17 respectively. Fig-3a shows that FIGURE 3: Frequency response around first mode with different
HDHB gave results different from those of the HBM method Methods{ (@) Nh= 1,3 and[(b) -Nh=7,17
for the low harmonic order. This was caused by the low num-
ber of time steps in the time domain, therefore contact forces
were poorly described, causing aliasing to occur. As shown in
Fig.[4, the same problem occured whtih= 2+ Nh-1in HBM.
WhenNh increased, the HDHB method gave better results and
converged with HBM (Nit = 105). This aspect of HDHB has
already been observed by Liu [15] for Duffing’s oscillator.

Table[1 gives the CPU time for calculating 50 frequencies of
FRF with the different methods and for two time step numbers
in the time domain. CPU time was normalized by CPU time
for Nh= 1 andnit = 105. Hybrid Powell nonlinear solver with .
trust-region dogleg method was used to solve non-linear algeraic 1 Nis study demonstrates that the three methods can be used
system. The number of iterations versus frequency is given in {0 calculate FRF. The HDHB method is better adapted to large
Fig.[d to illustrate the difficulties of getting HDHB to converge ~ Systems with a high harmonic order as it is faster.
for low harmonic order. TCM requires slighty more iterations In the second part, we consider an example of fretting-wear
than HBM. in order to validate the pseudo-time method.

Good description of behaviour in the contact zone can be
important for certain studies (fretting-wear for example). Eig. 6
shows the evolution of the tangential displacement of node 33
during one cycle at the resonance frequency for HBM-7, HDHB-

7 and HDHB-17. HBM and HDHB give fairly similar results and
the amplitude is the same, but there is a phase difference between
the two methods. HDHB moves closer to the HBM curve at a
higher harmonic order.
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HBM TCM HDHB
Nh nit=105 nit=2Nh+1 nit =105 nit =2Nh+1 nit =2Nh+1
1 0.17 1.43 0.18 0.17
3 0.51 2.70 0.45 0.71
14.59 6.41 7.10 3.24 3.71
17 88.44 44.62 46.60 46.70
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FIGURE 4: Frequency response for HBM-1 withit = 2Nh+ 1

and HDHB-1
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\/| —=—hdhb 3
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FIGURE 5: Iterations versus frequency for different HB methods

TABLE 1: CPU time necessary for calculating 50 frequencies

-5

x 10

——hbm 7
—e—hdhb 7
—&—hdhb 17 |

displacement

degree [rad]

FIGURE 6: Tangential displacement during one cycle

5.2 Fretting-wear using the pseudo-time method

The example is the same as that studied in a previous pa-
per [5]. 48 nodes on the contact surfaces and 3 harmonics were
selected. The amplitude of excitation wks = 0.5N. The
wear profile was calculated by using an implicit scheme with the
DLFT method for the non-linear dynamic problem, as proposed
in [5], and also with the pseudo-time method that integrates wear
kinetics in pseudo-time. The results are shown in[Big. 7. The pro-
files are the same, thus the pseudo-time method works very well.
It is also interesting to know whether the dynamic behaviour at
the tip of the blade is predicted well. Higj 6 shows the evolution
of displacement at the tip of the blade during one cycle obtained
by both methods. Moreover, the pseudo-time method takes less
time to obtain the steady state. The implicit method with DLFT
requires 100% CPU time while the pseudo time method requires
29%. Fig[® and Fid.10 illustrate the evolution of wear during
the iterations. In the implicit scheme, the iterations are directly
linked with time. This time in the pseudo-time method is non-
physical. The same time scale is used for comparison. These

Copyright (© 2011 by ASME
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figures highlight identical behaviour between methods regarding
the evolution of wear and displacements. The big advantage of
the pseudo-time method is that the final steady state is obtained
more rapidly than with the implicit scheme with DLFT. On the
other hand, the pseudo method cannot be applied to calculate
transient wear evolution, since time is not physical. We imple-
mented this method in a MATLAB environment and tested dif-
ferent ode (ordinary differential equation) solvers. The problem
of fretting-wear under dynamical loadings is a difficult problem
and thus explicit schemes converge badly. Two implicit schemes
work well: scheme based on Numerical Differentiation Formu-
lae (NDF) and modified Rosenbrok Triple scheme [20] . NDF
scheme converges faster than other scheme and so it is the rec-
ommended scheme for pseudo-time method.

CONCLUSIONS AND PROSPECTS

Three HB methods were introduced in this paper to perform
simultaneous calculations of non-linear vibrations of bladed
disks. Non-linearity is assumed at the contact with friction at the
interface between disk and blade. It was found that the HDHB
method is well suited for large systems. In the future, new con-
tact algorithms will be developed on the basis that unknowns are
variables in time, thereby making it possible to apply any static
contact algorithm.

A new method was then introduced to solve the non-linear
algebraic system by transforming it into ordinary differential
equations whose solution is the steady state of the system. Tak-
ing into account this approach we showed that the fretting-wear
problem can be reformulated as a pseudo-time problem. This ap-
proach is valid only if a steady state exists. Numerical examples
were used to show that both methods, i.e. the implicit scheme

Copyright (© 2011 by ASME



with a Newton solver and the pseudo-time method, give exactly
the same results. Future works will be performed to optimize an
ode solver based on the method proposed by Sicot [4].
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