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ABSTRACT
An aerodynamic Reduced-Order Model (ROM) is introduced

to describe the aeroelastic behavior of a blade cascade of a tur-
bomachine. This is obtained coupling an aerodynamic model
with a semi-rigid 2D model for the description of the structure
dynamics. The advantages of using an aerodynamic reduced-
order model concern the high computational efficiency compared
to the direct use of a CFD code, and the applicability of control
laws to reduce, for instance, blades vibrations. ROMs are identi-
fied from both an analytical aerodynamic model and a numerical
CFD solver. The aeroelastic stability of a blade cascade is ex-
amined with the presence or not of mistuning.

NOMENCLATURE
b Semi-chord.
c Blade chord.
Clh,Clα Non-dimensional lift coefficients due to bending and

torsional motions, respectively.
Cmh,Cmα Non-dimensional moment coefficients due to bend-

ing and torsional motions, respectively.
har Amplitude of bending deflection of a blade in rth mode of

tuned rotor.
hn Amplitude of bending deflection of the nth blade.
i =

√
−1

JE Mass moment of inertia about the elastic axis per unit span.
kh,kα Bending and torsional stiffness, respectively.

m Mass per unit span of the blades.
n Blade Index.
N Number of blades in the cascade.
r Aerodynamic mode index.
r2

α Radius of giration of the blade section (= JE
m b2 ).

s Laplace variable.
t Time.
U∞ Freestream velocity.
Û Reduced velocity (= U∞

bωα
).

X,Y Vectors of physical and aerodynamic variables, respec-
tively.

z Vector of the system variables in the state-space form.
αn Torsional amplitude of the nth blade.
αar Torsional amplitude of a blade in rth mode of tuned rotor.
βr Interblade phase angle in rth mode.
λ Reduced frequency (= ωc

U∞
)

µ Mass ratio of the blade (= m
πρb2 ).

ξ Stagger angle.
ξE Location of the elastic axis (= xE

b ).
ξG Location of the center of mass (= xG

b ).
ρ Freestream density.
ω Motion frequency of the system.
ω̂ Non-dimensional frequency (= ω

ωα
).

ωα Torsional natural frequency of the blades.
ωh Bending natural frequency of the blades.
Ω Bending-torsion frequency ratio (= ωh

ωα
).
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INTRODUCTION
The continuing demand for increased performance in gas

turbine engines makes dynamics behavior problems in the var-
ious components worse (this is particularly true for the blading).
These problems are generally classified into the categories of ei-
ther flutter or forced response. Historically, the complexity of the
flowfield in turbomachines required the application of empirical
flutter and forced-response analyses in the design process. How-
ever, such empirical correlations have proven to be inadequate
when extrapolated beyond past experiences, [1, 2]. According
to the development of computing resources in the past 30 years,
the use of CFD codes has been introduced to study these prob-
lems. However, although a CFD simulation may yield a detailed
time history of all problem variables, it is not suitable for spec-
tral aeroelastic analysis and aeroservoelastic applications. An
accurate prediction of the flowfield and the corresponding aero-
dynamic loads still requires a significant computational effort.
These limitations suggest the introduction of aerodynamic lower-
order models to be coupled with structural dynamics.

A Reduced-Order-Model (ROM) can be defined as a model
which, starting from the data provided by an accurate solution
tool dealing with a high number of degrees of freedom, is able to
simulate satisfactorily the evolution a physical process through
a (significantly) lower number of degrees of freedom. Thus, it
allows the numerical analysis of complex physical phenomena at
low computational costs. In the past years, a lot of research ef-
fort has been spent in developing Reduced-Order Models of un-
steady aerodynamics of blade cascades for turbomachinery ap-
plications. Among them, Ref. [3] proposes a Proper Orthogo-
nal Decomposition (POD) to obtain the ROM of an unsteady,
frequency-domain, inviscid-viscous interaction flow solver, Ref.
[4] applies an Arnoldi approach to determine the aerodynamic
ROM from the linearized, state-space form of a solver based on
the Euler equations for unsteady, two-dimensional flows of an in-
viscid compressible fluid, while Ref. [5] proposes an eigenmode-
based reduction model, known as System Equivalent Reduction
Expansion Process (SEREP), applied to the analytical incom-
pressible aerodynamic solution model presented in Ref. [6].

Here, an aerodynamic ROM aimed at state-space aeroelas-
tic modeling of blade cascades is proposed. It is not based on
the reduction of the degrees of freedom involved in the aerody-
namic solver, but rather consists of the rational matrix approxi-
mation of the aerodynamic transfer functions relating blade loads
to blade degrees of freedom. Hence, it allows the expression of
the aeroelastic equations in state-space form, which is particu-
larly convenient for the eigenvalue stability analysis, as well as
for aeroservoelastic applications. The aerodynamic ROM pro-
posed may be applied to 2D and 3D configurations, depending
on the aerodynamic tool available for the identification of the
transfer functions between the degrees of freedom of the problem
examined and the corresponding generalized forces. In the past,
this approach has been successfully applied to describe the un-

steady aerodynamics of wing-tail configurations and helicopter
rotors (see, for instance, Ref. [7]).

In the numerical investigation, the rational matrix approx-
imation of aerodynamic transfer functions will be applied to
obtain ROMs of the incompressible, unsteady aerodynamics of
blade cascades based both on analytical solutions [6] and on
the predictions from the well validated commercial CFD code,
ANSYS CFX R©, and the correlations between the two resulting
models will be discussed (validation of the results from ANSYS
CFX R© is well beyond the scope of this paper). The suitability
of the proposed ROM for aeroelastic analysis will be proven by
examining the stability of tuned and mistuned blade cascades.

1 THE BLADE CASCADE MODEL
In order to perform the aeroelastic analysis of a realistic 3D

blade assembly as shown in Figure 1, a model is derived as a
2D cascade of infinite airfoils (Figure 2) representing the blade
sections at a radial position, R.

FIGURE 1. The 3D blade assembly

The stagger angle, ξ indicates the inclination of the blade
sections with respect to the axial direction. The upstream veloc-
ity, U∞ is parallel to the chord of the blades and its magnitude
coincides with the magnitude of the vectorial summation of the
axial velocity and the tangential velocity due to the rotating mo-
tion. The bending and torsion deformations of the blades are
represented by the displacement normal to the blade chord, hn
and the rotation, αn about its elastic axis. The disk is assumed
to be rigid, thus implying that the blades are structurally uncou-
pled. Concerning to the blades structural properties, it is possible
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FIGURE 2. The 2D blade cascade model

to distinguish between two cases: tuned and mistuned blade cas-
cades.

1.1 TUNED CASCADE
A tuned bladed disk is considered as a periodic structure in

which all the blades are structurally identical. For aeroelastic
modeling purposes, the motion of each blade is assumed to be
harmonic with constant amplitude and an interblade phase angle,
βr, between adjacent blades. The values of the interblade phase
angles are limited using Lane’s assumption [8] to N discrete val-
ues, βr = 2πr/N, where r = 0,1, ...,N−1 (N denotes the number
of blades in the cascade). This means that the interblade phase
angle becomes the aerodynamic mode index. It can be demon-
strated that for a tuned cascade, cascade (or aerodynamic) modes
with different interblade phase angles are uncoupled [8]. Hence,
as stated in Ref. [9], the bending-torsion motion of the n-th blade
due to the r-th aerodynamic mode can be represented in the fol-
lowing traveling waves representation:{

h̃n
α̃n

}
eiωt =

{
h̃ar
α̃ar

}
ei(ωt+βrn) (1)

where n = 0,1, ...,N−1. The variables h̃n, α̃n represent the am-
plitudes of the motion of the n-th blade, while h̃ar, α̃ar represent
the amplitudes of the r-th aerodynamic mode. Therefore, in a
tuned cascade if the motion of the reference blade (n = 0) is
known the motion of the other blades can be also obtained us-
ing the interblade phase angle information(eiβrn). Then, for a
given aerodynamic mode, the flutter stability and the response
problem concerning the reference blade is representative of the
whole blade cascade.

1.2 MISTUNED CASCADE
Bladed wheels are generally designed to be a cyclically sym-

metric structure. In reality, however, due to casting process and
machining tolerances, there are always random variations in ge-
ometry and material property among blades. This unavoidable

phenomenon is called mistuning [10]. As a result, each blade has
mass and natural frequencies of vibration different from those of
the other blades. Since the cascade has a finite number of modes,
and since each blade is different from the others, the motion of
each blade can be viewed as a superposition of all possible trav-
eling wave modes [9]:

{
h̃n
α̃n

}
eiωt =

N−1

∑
r=0

{
h̃ar
α̃ar

}
ei(ωt+βrn) (2)

Considering the whole blade cascade, Eq.(2) can be expressed in
the matrix compact form:

X̃eiωt = EỸeiωt (3)

where the vector X̃ collects the amplitudes of the mechanical de-
grees of freedom of the blades in the cascade, the vector Ỹ, col-
lects the amplitudes of the aerodynamic modes (each represent-
ing a cascade motion with different interblade phase angles, i.e.,
the amplitudes of the aerodynamic modes) and the matrix E gives
the motion of each blade as the superposition of all aerodynamic
modes.

2 AEROELASTIC EQUATIONS
As mentioned above, semi-rigid 2D blade models undergo-

ing translations, hn(t) and rotations, αn(t) are considered here.
Bending and torsional stiffnesses are simulated by two springs
with constants kh and kα , respectively (see Figure 3). Inertial
centrifugal effects are assumed and included in the spring con-
stants.

FIGURE 3. 2D representation of a cascade blade

Thus, following Ref. [9], the non-dimensional aeroelastic
equations of motion of the n-th blade in the frequency domain
are expressed as:

−ω̂
2
[

1 (ξG−ξE)
(ξG−ξE) r2

α

]{
h̃n
b

α̃n

}
+
[

Ω 2 0
0 r2

α

]{
h̃n
b

α̃n

}
=
{

L̃n
M̃n

}

3 Copyright c© 2011 by ASME



or, in compact form,

−ω̂
2MnX̃n +KnX̃n = F̃a,n (4)

where the vector F̃a denotes the contribution of the aerodynamic
loads, which can be calculated using either an analytical model
or a numerical (CFD) solver. In this section, the aeroelastic sys-
tem is derived by using an analytical aerodynamic model, while
the use of a numerical solver is presented in Section 4. Here,
the analytical model applied is that presented in Ref. [6] for in-
compressible, unsteady flows around an airfoil cascade. Akin to
the blade cascade motion, the aerodynamic loads are described
as a superposition of the aerodynamic modes [9] (see Appendix
A and Ref. [6], for details)

F̃a =
Û2

µ


N−1

∑
r=0

[
Clh(λ ,βr)

h̃ar

b
+Clα(λ ,βr)α̃ar

]
eiβrn

N−1

∑
r=0

[
Cmh(λ ,βr)

h̃ar

b
+Cmα(λ ,βr)α̃ar

]
eiβrn


Therefore, the non-dimensional aerodynamic load vector for the
entire cascade is given by:

F̃a =
Û2

µ
EL(λ )Ỹ (5)

where the matrix E is identical to that in Eq. (3), while L is a
block diagonal matrix in which each r-th block, Lr is defined as
(see also Appendix A):

Lr =
[

Clh(βr,λ ) Clα(βr,λ )
Cmh(βr,λ ) Cmα(βr,λ )

]

Then, according to Eq.(4), the equations of motion for the
whole blade cascade can be derived. Specifically, recalling
Eq.(3), these equations can be written either in terms of aero-
dynamic mode variables, Y,

−ω̂
2E−1MEỸ+E−1KEỸ=

Û2

µ
LỸ (6)

or in terms of physical displacements, X,

−ω̂
2MX̃+KX̃=

Û2

µ
ELE−1X̃ (7)

where M and K are the mass and stiffness matrices of the whole
blade cascade, respectively. Since the disk is assumed to be rigid,

the cascade mass and stiffness matrices are block diagonal. In
the tuned case, the blocks are equal and it is possible to prove
that E−1ME = M and E−1KE = K. Hence, as stated by Lane [8],
the use of the aerodynamic modes uncouples the equations (see
Eq. (6)) and the system stability may be examined considering a
sequence of N problems, each one concerning one aerodynamic
mode. In a mistuned situation, the matrices M and K are still
block diagonal, but the blocks are not equal. This means that in
Eq. (6) the structural matrices, E−1ME and E−1KE are no longer
block diagonal. Thus, only the aerodynamic contributions are
still uncoupled. Therefore, for a mistuned bladed disk, the anal-
ysis of aeroelastic stability in terms of aerodynamic modes has to
be carried out considering larger 2N×2N matrices representing
the blade cascade as a whole.

In Eq.(7) the aeroelastic equations are expressed in terms of
physical variables, X̃. In this representation, while the structural
matrices remain uncoupled both for tuned and mistuned cas-
cades, the aerodynamics always couples the dynamics of differ-
ent blades. This is due to the aerodynamic matrix ELE−1, which
is not block diagonal. A non-zero aerodynamic contribution of
all physical degrees of freedom on any generalized aerodynamic
force appearing in the aeroelastic equations is present. There-
fore, in this case, the stability analysis requires all the blades to
be examined as a whole.

The stability margins of the aeroelastic system described by
Eqs. (6) and (7), both in the tuned and in the mistuned case may
be estimated through the V-g method.

3 AERODYNAMIC REDUCED ORDER MODEL
Analytical unsteady aerodynamic models yield transcendent

frequency response functions relating loads to kinematic vari-
ables. As shown (for instance) in Refs. [6, 11, 12], this oc-
curs because of the influence of the convected wake vortic-
ity, from which time-delayed terms appear. These aerodynamic
models, when coupled with structural dynamics, yield aeroelas-
tic systems not suitable for aeroservoelastic applications, from
which only an estimation of the stability margins through the V-
g method may be obtained. In order to determine the complete
aeroelastic response spectra and to express the aeroelastic equa-
tions in a state-space form suitable for aeroservoelastic applica-
tions (i.e., in a form that is suitable to design stability augmen-
tation control laws) a finite-state (or reduced-order) model of the
aerodynamic contribution has to be introduced.

In this work, considering the following relationship between
aerodynamic loads, F̃a, and physical degrees of freedom, X̃,

F̃a =
Û2

µ
AB(λ ) X̃ (8)

where AB = ELE−1 (see Eq. (7)), the aerodynamic ROM is ob-
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tained through the rational matrix approximation of the aerody-
namic matrix AB, as a function of λ [7]. As the frequency tends to
infinity the behavior of the imaginary parts of the transfer func-
tions in AB is asymptotically linear, whereas the behavior of their
real part is asymptotically quadratic. Hence, the rational matrix
approximation introduced has the following form

AB(s)≈ s2A2 + sA1 +A0 +C(sI−A)−1B

where s = g + iλ . The matrices A2, A1, A0, B, C and A are real
and fully populated, and are identified by a least-square approx-
imation technique (see Appendix B and Ref. [7] for details). It
is worth noting that the proposed approach deals with the trans-
fer functions of the blade physical variables, in that yielding a
ROM conveniently expressed in terms of real-coefficient matri-
ces. This would not be possible if the transfer functions of the
aerodynamic mode variables were considered because in general,
they are complex even at zero frequency [6].

Next, coupling the equation above with Eq. (7), and trans-
forming back into the time domain, the following aeroelastic sys-
tem is obtained

{
Û2

4 MẌ+KX= Û2

µ
(A2Ẍ+A1Ẋ+A0X+Cr)

ṙ= Ar+BX

where r is the vector of the additional aerodynamic states (re-
lated to the convection of the wake vorticity), and (̇) denotes
derivative with respect to nondimensional time, τ = tU∞/c. The
equations above may be recast in state-space form, which may be
conveniently applied for the evaluation of complete aeroelastic
spectrum, for control design purposes and for the determination
of responses to external inputs.

4 AERODYNAMICS IDENTIFICATION VIA CFD CODE
In the analytical aerodynamic model some assumptions have

been introduced in order to simplify the problem. For instance,
in Section 3 the flow has been considered to be inviscid and in-
compressible. A more accurate aerodynamic solution including
viscosity and compressibility effects, along with realistic blades
(airfoil) geometry, may be obtained via a CFD solver. Here, the
commercial CFD code ANSYS CFX v12.1 R© has been applied
to identify the aerodynamic transfer functions matrix, AB, from
which, in turn, an aerodynamic ROM that is more accurate than
the one based on the analytical aerodynamic model has been de-
termined.

The identification of matrix AB has been carried out follow-
ing two approaches: one based on aerodynamic modes and one
based on physical modes. In the aerodynamic modes approach
(AMA), the transfer functions matrix, EL appearing in Eq. (5) is

first identified imposing as input the motion of all blades accord-
ing to each aerodynamic mode (i.e., following each interblade
phase angle), and then the post-multiplication with E−1 is ap-
plied. In the physical modes approach (PMA), the transfer func-
tions matrix, AB is directly identified from a sequence of solu-
tions, each concerning the loads produced on all blades by the
forced motion of one single blade in the cascade.

In both approaches, in order to evaluate the rational matrix
approximation of AB, it is necessary to obtain the sampling of the
aerodynamic transfer functions in the frequency range of interest.
The evaluation of the transfer functions of the linearized aerody-
namics is determined from the computation of the responses due
to a small-amplitude, harmonic blade motion expressed as fol-
lows

hn = Ah

N f

∑
j=1

sin(ω jt) αn = Aα

N f

∑
j=1

sin(ω jt)

where N f is the number of harmonics included in the motion, and
Ah, Aα are the small plunging and pitching amplitudes, respec-
tively. Specifically, the linearized aerodynamic transfer functions
are determined from the evaluation of amplitude and phase of
the corresponding harmonics of the computed loads. Note that
the inclusion of multiple harmonics in the input blade motion re-
duces the number of aerodynamic solutions to be computed (it
becomes significantly lower than the number of sampling fre-
quencies). However, the number of frequencies that may be ex-
amined in the same solution is in practice limited by the mesh
deformation model refinement.

5 NUMERICAL RESULTS
The aerodynamic ROM presented above has been applied

for the aeroelastic analysis of a blade cascade. Both a ROM
based on an analytical aerodynamic model and a ROM based on
the results from a numerical solver have been used. In order to
limit the computational cost (but without affecting the generality
of the results obtained), a cascade with a small number of blades
has been considered. The geometric and structural parameters of
the blade cascade examined are given in Table 1.

N = 8 s/c = 2 ξ = 60o ξE = 1

µ = 100 ξG = 1 rα = 0.5774 Ω = 0.1→ 1

TABLE 1. Parameters of airfoil cascade.
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5.1 IDENTIFICATION FROM ANALYTICAL MODEL
First, results from the ROM based on the analytical aero-

dynamic model are presented. For the cascade considered, the
rational approximation has been obtained introducing 640 aero-
dynamic states. As an example, Figure (4) shows the real part
of the transfer function AB31 evaluated analytically and approx-
imated through the rational expression. The agreement between
the two curves is excellent and a similar quality of the approx-
imation might be shown for all transfer functions in the matrix
AB. Next, the aerodynamic ROM has been applied for the flut-

FIGURE 4. Real part of the transfer function AB31.

ter analysis of the cascade, in the range 0 ≤ Ω ≤ 1, considering
both tuned and mistuned cases. Note that although mistuning is
of random nature, for the purposes of this work a deterministic
mistuning is considered. Specifically, a 3% variation of the nat-
ural bending and torsion frequencies has been assumed between
two adjacent blades (with positive and negative signs, alterna-
tively). Figure (5) compares the flutter velocities determined us-
ing the present aerodynamic ROM with those predicted by the
application of the V-g method to the aeroelastic system directly
obtained from Ref. [6]. From the observation of the quality of
the rational approximation in Figure (4) for both the tuned and
mistuned configuration, the flutter predictions from the aerody-
namic ROM are in excellent agreement with those from the exact
aerodynamic theory. This result validates the ROM introduced.

5.2 IDENTIFICATION FROM NUMERICAL MODEL
The geometry of the airfoil cascade in Table 1 and corre-

sponding meshes have been created using the software ANSYS
Gambit R©. As stated in Ref. [13], computations are in general
made using a number of blade passages equal to the number of
the blades in the cascade. Periodic boundary conditions are ap-
plied at the upper and lower boundaries of the cascade. How-
ever, there are some situations in which it is possible to reduce
the number of blade passages used in the calculations. For the

FIGURE 5. Cascade flutter velocity vs Ω .

FIGURE 6. Mesh structure for one blade passage.

steady flow through a stationary cascade, blade-to-blade period-
icity of flow variables occurs. Hence, only a single blade pas-
sage is used in computations; periodic conditions are imposed at
the upper and lower boundaries of the blade passage. The flow-
field is simply reproduced for the remaining blade passages. For
unsteady flows in which all the blades have the same periodic
motion (zero interblade phase angle), the same situation occurs.
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Then, only a single blade passage can be used. For periodic
motion with non-zero interblade phase angle, it is occasionally
possible to reduce the number of the blade passages used in the
calculations. This depends on the value of the interblade phase
angle. For instance, computations with the phase angle β = 180◦,
can be made through two passages, computations with β = 120◦

or 240◦, can be made in three passages, etc. Therefore, in this
contest four meshes have been created (see Table 2).

NPass β Elements

1 0o 35K

2 180o 70K

4 90o,270o 140K

8 45o,135o,225o,315o 280K

TABLE 2. Mesh parameters

The meshes have been imported in ANSYS CFX R© where the
boundary conditions, the blades motion, and the simulation pa-
rameters have been imposed. Next, solutions in the time domain,
following both aerodynamic and physical modes approaches,
have been determined. Then, inputs and outputs from the code
have been transformed in the frequency domain and the aerody-
namic transfer functions matrix was identified.

By comparing the results obtained following the two ap-
proaches, it can be noted that some transfer functions obtained
via the physical modes approach (PMA) were not regular (see
Figure (7)). This occurs because using this approach as only one

FIGURE 7. Real part of a transfer function from aerodynamic and
physical modes approaches.

blade is moved the CFD code is not able to capture accurately all

small interaction effects on adjacent blades. In particular, for the
meshes applied, only the influence of one blade onto the two ad-
jacent blades can be captured with a good level of accuracy. This
result suggests that the aerodynamic modes approach (AMA) al-
lows meshes with less elements and less blade passages, opti-
mizing the computational time. However, the drawback of this
approach lies on the high number of computations to be carried
out. Indeed, the AMA requires a number of simulations equal
to the number of blades multiplied by the number of degrees of
freedom, while the PMA would require only one simulation per
degree of freedom (but with a much finer computational grid).

5.3 COMPARISON BETWEEN ANALYTICAL AND NU-
MERICAL MODEL

Next, a comparison between transfer functions obtained
from CFX using the two methods of identification mentioned
above (AMA and PMA) and those obtained by the analytic for-
mulation is presented. Figure 8 shows the real and imaginary

FIGURE 8. Real and imaginary parts of the transfer function relating
lift and bending of the same blade.

parts of the transfer function relating lift and bending of the same
blade as given by CFX using AMA and PMA, along with that
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obtained from Ref. [6]. It presents a good correlation between
numerical and theoretical results and a perfect agreement be-
tween the AMA and PMA results. However, as a transfer func-
tion block-matrix gets farther from the main diagonal, because
it represents the result of interaction aerodynamic effects, the
differences between numerical predictions and analytical results
increase, as well as the difference between the identifications
through AMA and PMA. This is demonstrated, for instance, in
Figure (9), which depicts the real and imaginary parts of the
transfer function relating lift and bending of two adjacent blades.
Correlations worsen for farther blades.

FIGURE 9. Real and imaginary parts of the transfer function relating
lift and bending of two adjacent blades.

The rational matrix approximation of the transfer func-
tions matrices obtained from the two numerical identification ap-
proaches has been carried out. This approximation reduces the
states of the system from 2.1 · 106 to 992, following AMA, and
to 616 following PMA. In both cases the accuracy of the ap-
proximated transfer functions is good and comparable to the re-
sults from the analytical solver, as seen in Figure (4). Thus for
any blade motion the ROM simulation predicts loads identical
to those that would be given directly by the CFD tool. It has
to be recalled that following the physical modes approach, only

the transfer functions relating adjacent blades can be accurately
captured and approximated. However, since the influence of the
blades far from the reference is very small, it is interesting to
investigate their influence on flutter analysis.

Figure (10) presents the airfoil cascade flutter velocity as a
function of the frequency ratio, Ω , as given by application of
the analytical aerodynamic model, and aerodynamic ROMs de-
termined from CFX through AMA and PMA. It shows that al-

FIGURE 10. Cascade flutter velocity vs Ω .

though neglecting the effects from the transfer functions far from
the diagonal in the PMA, the numerical results determined from
the latter approach and the AMA are in very good agreement.
However, a relevant discrepancy between the flutter velocities
obtained with the analytical model and those obtained using CFX
can be noted. This difference is due to several reasons. Among
them:

1. the analytical model is based on potential flow, while in CFX
viscosity effects are taken into account;

2. the analytical model considers thin flat plates, while in CFX
real airfoils are analyzed;

3. the analytic model introduces an infinite wake downstream
the blades, while in CFX it is finite (in order to take into
account the presence of a stator downstream, the wake has
been assumed to be one-chord length).

On the other hand, CFD solvers may yield aerodynamic ROMs
that take into account compressibility (transonic) effects, and the
presence of stators upstream and downstream. Therefore, the use
of an aerodynamic analytic model is suitable only for a qualita-
tive aeroelastic analysis.

6 CONCLUSIONS
This work investigated the use of an aerodynamic ROM ap-

proach, obtained via rational matrix approximation of transfer
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functions, to study aeroelastic problems in axial-flow turboma-
chines. First, the aerodynamics of a rotor blade assembly has
been modeled as an airfoil cascade, and an analytic formulation
based on potential-flow assumption has been examined. Then,
a CFD solver has been applied to evaluate more realistic aero-
dynamic transfer functions. For both models ROMs have been
identified and coupled with a structural dynamic model to exam-
ine the aeroelastic behavior of the airfoil cascade in tuned and
mistuned blade assemblies. The aerodynamic ROM presented
has demonstrated to be a reliable tool for the aeroelastic anal-
ysis of airfoil cascades, as it predicts stability margins in per-
fect agreement with those given by the V-g method. In addition,
advantages and disadvantages of the use of aerodynamic modes
and physical modes in the identification of the transfer functions
from the numerical solver have been discussed. Even for the sim-
ple airfoil cascade configuration assumed, the aerodynamic an-
alytical model has shown some discrepancy in the flutter speed
prediction with respect to the simulation obtained from the CFD
solver, thus demonstrating to be a tool that is suitable only for
a qualitative analysis of the aeroelastic behavior of a rotor blade
assembly.

APPENDIX A: THE ANALYTICAL AERODYNAMIC
MODEL

The analytical aerodynamic model applied here is that pre-
sented in Ref. [6]. It has been developed to calculate the unsteady
aerodynamic loads on a staggered airfoil cascade in incompress-
ible potential flows. It is a linear model, valid for small perturba-
tions around an equilibrium position (the freestream velocity is
aligned with the airfoils). Each blade is considered as a straight
thin plate without thickness and curvature, and is free to plunge
and pitch. The flow is assumed to be attached to the airfoils. The
harmonic response is given in terms of aerodynamic mode vari-
ables and the corresponding aerodynamic loads are expressed as

 L̃ = πρU2
∞b
(

Clh(λ ,βr) h̃ar
b +Clα(λ ,βr)α̃ar

)
M̃ = πρU2

∞b2
(

Cmh(λ ,βr) h̃ar
b +Cmα(λ ,βr)α̃ar

) (9)

The coefficients Clh,Clα ,Cmh and Cmα depend on the reduced
frequency, λ , the interblade phase angle, βr, the cascade geome-
try, and the location along the chord of the center of rotation of
the blades. Note that, other aerodynamic models taking also into
account flow compressibility effects have been developed in the
past (see, for instance, Refs. [14]- [20]).

APPENDIX B: MATRIX-FRACTION APPROXIMATION
In this appendix, the technique applied for the rational ma-

trix approximation of the aerodynamic matrix, AB, is outlined.

The first step in the approximation procedure starts from the ob-
servation that in the frequency domain, whatever the model used
for the prediction of the aerodynamic loads, their asymptotic be-
haviors is quadratic, as the frequency tends to infinity. Therefore,
following the formulation outlined in Ref. [21], the following
form for the matrix-fraction approximation is considered

AB(s)≈ ÂB(s) = s2 Â2 + s Â1 + Â0

+

[
M

∑
m=0

Dmsm

]−1[M−1

∑
m=0

Rmsm

]
(10)

The matrices Âm,Dm and Rm are real and fully populated (except
for DM that is chosen to be an identity matrix). They are deter-
mined by a least-square approximation technique along the imag-
inary axis. Specifically, the satisfaction of the following condi-
tion is required

ε
2 =∑

j
w j Tr

[
Z∗(s j) Z(s j)

]∣∣∣∣
s j=ik j

=min

where i =
√
−1, w j denotes a suitable set of weights, and

Z(s) :=

[
M

∑
m=0

Dmsm

][
s2 Â2 + s Â1 + Â0−AB(s)

]
+

M−1

∑
m=0

Rmsm

is a measure of the error (AB− ÂB).
Next, in order to use the matrix-fraction approximation

to determine the time-domain relationship between the aerody-
namic loads, Fa, and the physical dofs, X, Eq. (10) is recast in
the following form

ÂB(s)=s2 Â2 + s Â1+Â0 + Ĉ [sI−Â]−1B̂ (11)

where Ĉ depends upon the Rm’s, Â depends upon the Dm’s,
whereas B̂T = [I,0, ...,0] (see Ref. [21] for details). Note that
the accuracy of the approximation depends upon the number, M,
of matrices used in the matrix-fraction term in Eq. (10). The ap-
propriate value of M depends upon the shape of the functions to
be approximated. When a large number of poles (eigenvalues of
the matrix Â) are introduced in Eq. (11), some of them might be
unstable: these are spurious (not physical) poles introduced by
the interpolation procedure. In order to overcome this problem
the iterative procedure of Ref. [21] is adopted. This consists of:
(i) diagonalization (or block-diagonalization) of Â, (ii) trunca-
tion of the unstable states (the matrix Â is modified into a smaller
matrix A), and (iii) application of an optimal fit iterative proce-
dure to determine new matrices A2,A1,A0,B, and C that replace,

9 Copyright c© 2011 by ASME



respectively, Â2, Â1, Â0, B̂, and Ĉ (whereas A remains unchanged
throughout the iteration). Hence, the matrix-fraction finite-state
approximation assuring a good and stable fit of AB(s) has the
final form

ÂB(s)=s2A2+sA1+A0 +C [sI−A]−1B
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