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ABSTRACT
The effect of mistuning on the vibration of bladed disks has

been extensively studied in the past 30 years. Most of these
analysis typically cover the case of small variations of the elastic
characteristics (mass and stiffness) of the blades. In this work we
study the not so common case of the forced response of a stable
rotor with damping mistuning.The Asymptotic Mistuning Model
(AMM) is used to analyze this problem. The AMM methodol-
ogy provides a simplified model that describes the effect of blade
to blade damping variation, and gives precise information on the
underlying mechanisms involved in the action of damping mis-
tuning.

INTRODUCTION
Turbomachinery bladed disks are designed to be cyclic

structures, that is, to have all its sectors perfectly identical. In
practice, however, this is obviously not the case, and there are
small unavoidable differences between sectors due to the toler-
ances in the manufacturing and assembling processes, and to the
use wear. These small imperfections are referred to as “mistun-
ing”, and their effect on the dynamic response of the rotor consti-
tutes a very important subject since they can give rise to consid-
erably higher vibration levels and, therefore, higher risk of High
Cycle Fatigue failure.

The mistuning effect on bladed disks vibration have been
extensively studied since the 70’s, see, e.g., the reviews by Slater
et al. [1] and by Castanier and Pierre [2], and the more recent

∗Also Associate Professor at E.T.S.I. Aeronáuticos, Universidad Politécnica
de Madrid, 28040 Madrid, Spain.

presentation by Ewins [3]. The well known main conclusions
about the consequences of mistuning can be briefly summarized
as follows: (i) mistuning can give rise to a high increase of the
forced response vibration levels, and (ii) mistuning has a stabiliz-
ing effect on the aeroelastic instabilities, that is, it tends to reduce
flutter.

The above mistuning results correspond to small variations
of the elastic characteristics (mass and stiffness) of the blades,
which is the situation considered in the vast majority of mistun-
ing studies. In this paper the different case of damping mistun-
ing is analyzed, that is, the case of a bladed disk with a sector
to sector variation of the damping of the blades. This damping
variation is always present in realistic situations and is typically
due to the scatter present in material damping values, and also to
the variability of the conditions on friction and interface joints.

Lin and Mignolet [4] statistically analyzed the effect of
damping mistuning on the forced response of bladed disks using
a simplified 1 DOF per sector model, and they concluded that
damping mistuning can lead to variations in the blades’ vibration
amplitude similar to that found with mass/stiffness mistuning. In
the more recent work of Siewert and Stüer [5] a Reduced Order
Model (ROM) derived from a complete bladed disk with damp-
ing mistuning is analyzed. The results from the ROM are first
successfully compared with those from a detailed FEM simula-
tion of the forced response of the mistuned rotor, and then the
ROM is used to statistically analyze the effect of damping mis-
tuning. They confirm that the magnitude of the resulting amplifi-
cation factors is comparable to those from mass/stiffness mistun-
ing, but the required damping mistuning levels are much higher
∼ 50%. Also, from the figures in their paper, it can be clearly
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Figure 1. Sketch of tuned natural vibration frequencies vs. number of
nodal diameters for a bladed-disk. The FMM covers the case of the forcing
of a modal family with very similar frequencies. The AMM can describe
also the forcing of other modal configurations, like isolated modes (IM)
and clustered modes (CM).

appreciated the interesting fact that damping mistuning does not
produce any noticeable frequency splitting.

The objective of this paper is to use the Asymptotic Mistun-
ing Model (AMM) to analyze the effect of mistuning damping on
the forced response of bladed disks. The idea is not to perform
a statistical analysis of the effect of the different mistuning pat-
terns, but to use AMM to identify the relevant parameters and the
key mechanisms involved in the action of damping mistuning.

The AMM can be regarded as an extension of the Funda-
mental Mistuning Model (FMM) [6–8] for the very frequent case
in which all modes of the family do not share the same frequency
(see Fig. 1), and it is obtained by means of a fully consistent
asymptotic expansion procedure from the complete mistuned
bladed disk model. The AMM has been already used by the
authors for the study of the optimal intentional (mass/stiffness)
mistuning patterns for the stabilization of aerodynamically un-
stable rotors [9] and for the analysis of the forced response mis-
tuning amplification [10], and its accuracy has been successfully
checked against high fidelity FEM simulations [11, 12].

In this paper we present a complete derivation of the AMM
for the forced response of a general realistic bladed disk with
damping mistuning. And we then compare the AMM results
with those from a 1 DOF per sector lumped model (Fig. 2), for
two forcing cases not covered by the FMM: isolated mode and
clustered modes (labeled IM and CM, respectively, in Fig. 1).

NOMENCLATURE
M Mass matrix.
K Stiffness matrix.
C Damping matrix.
F External forces.
X DOF displacements vector.
TW Traveling wave.
N Number of sectors.
Z Traveling wave mode shape.
P Change of basis matrix from TW to displacements.
A j Traveling wave mode amplitude.
AF Amplification factor.
δ j Damping amplitude at each sector.
δm Average damping.
δ F

k Fourier coefficients of the damping distribution.
r,ω Engine order and angular frequency of the forcing.
ω0 Tuned natural angular frequency of the excited TW.
d Mistuning damping amplitude.
∆ Mistuning correction matrix.
ωa Active mode tuned natural angular frequency.
D,Di j Mistuning coefficients in the TW basis.
fr Forcing coefficient.
ωp,ωc Spring frequencies of the model in Fig. 2.
c Damping coefficient of the model in Fig. 2.
f Forcing amplitude of the model in Fig. 2.

DERIVATION OF THE SIMPLIFIED MODEL (AMM)
In this section, the derivation process of the simplified model

is briefly explained. A more detailed derivation can be found in
the references [9] and [10].

The starting point is the motion equation of the FEM dis-
cretization of a forced bladed disk model with N identical sec-
tors,

K · x+M · ẍ = f (t), (1)

where x and f are, respectively, the displacement and the force
vector.

If it is assumed that the forcing takes the form of a traveling
wave excitation with angular frequency ω and engine order r
and that, consequently, the response can be written as a complex
mode shape X with angular frequency ω , a time independent
system is obtained

[
K−ω

2·M
]
·X = F,

where the mass M and stiffness K matrices are cyclic symmetric
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matrices

K =


K Kc 0 · · · KT

c
KT

c K Kc 0

0
. . . . . . . . .

...
...

. . . . . .
...

Kc 0 · · · KT
c K

 , M =


M Mc 0 · · · MT

c
MT

c M Mc 0

0
. . . . . . . . .

...
...

. . . . . .
...

Mc 0 · · · MT
c M

 , (2)

once the vector X is arranged by sectors

X =


X1
...

X j
...

XN

 ,

with the vector X j containing the displacements of the DOF as-
sociated with sector j

In order to take into account the sector to sector mistuning
damping in our model, a damping matrix C is included

[
K+ iC−ω

2·M
]
·X = F, (3)

which is a block diagonal matrix with blocks proportional to K

C =



δ1 ·K 0 · · · · · · 0

0 δ2 ·K
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 δN ·K


. (4)

Note that, as a first approximation, only linear in-sector damping
is considered in our model, and that the mistuning damping dis-
tribution is given by the damping coefficients δ j, j = 1, . . . ,N.

It is important to highlight that the variation of the damping
δ j from sector to sector is of the order of the damping itself.
This is a completely different situation with respect to the case
of mass/stiffness mistuning where the mistuning is just a small
variation around the tuned value.

In order to have a more clear understanding of the effect
of the damping nonuniformity it is convenient to transform the
system eq. (3) into the basis of the traveling wave natural modes

of the undamped system:

(

Ω2
1−ω2I · · · 0

...
. . .

...
0 · · · Ω2

N−ω2I

+ i∆)


A1
...

A j
...

AN

=


0
...

PH
r ·F

...
0

 (5)

The resulting mistuning correction matrix in the traveling
wave basis is then given by:

∆ = PH ·C ·P, (6)

where P is the transformation matrix from the basis of traveling
waves to the basis of physical displacements,

P =
1√
N



P1ei(2π1/N)1 · · · PNei(2πN/N)1

...
...

P1ei(2π1/N) j · · · PNei(2πN/N) j

...
...

P1ei(2π1/N)N · · · PNei(2πN/N)N

 (7)

After inserting the above expression into eq. (6), the mistun-
ing correction matrix ∆ takes the form

∆ =


∆11 ∆12 · · · ∆1N
∆21 ∆22 · · · ∆2N

...
...

. . .
...

∆N1 ∆N2 · · · ∆NN

 (8)

where

∆k j =
N

∑
s=1

δs ·
(
PH

k ·K ·Pj
)
· ei
(

2π( j−k)
N

)
s (9)

The structure of the blocks ∆k j can be described more easily if
the discrete Fourier transform of sector damping distribution δ j
is used:

δ j =
N

∑
k=1

δ
F
k ei( 2πk

N ) j. (10)
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Note that, since δ j is a real distribution, its Fourier coefficients
must verify

δ
F
k = δ F

−k, (11)

and the sector averaged damping δm is given by

δm =
1
N

N

∑
j=1

δ j = δ
F
N (12)

If we take the Fourier expression for the damping distribu-
tion (10) into equation (9), the blocks of the mistuning matrix ∆

can be finally written as

∆k j = δ
F
k− j ·

(
PH

k ·K ·Pj
)
. (13)

From the above equation it can be concluded that the effect of
the mistuning is to couple the natural TW modes, and that it is
precisely the harmonic k− j of the damping distribution which is
responsible for the coupling of the TW with k and j nodal diam-
eters. This coupling effect means that other TW modes different
from the TW with number of nodal diameter equal to the engine
order r appear in the forced response of the bladed disk.

In order to see which TW modes are more relevant we now
make use of the fact that the damping δ j is small (it induces a
temporal decay in the unforced response of the system that takes
place in a time scale much slower than the oscillation period),
and we derive the AMM retaining only the dominant terms in
eq. (5). Note that, to have a maximum tuned response amplitude
normalized to 1, the forcing term in the right hand side of eq. (5)
has to be of size δm and, therefore, it is also a small term.

When the forcing angular frequency ω with engine order r
is close to resonant tuned frequency ω0 (corresponding to a TW
with r nodal diameter) two types of TW modes can be distin-
guished:

1. Passive modes that, in first approximation, do not have
any effect on the forced response amplitude. These modes
have frequencies ωk j that are not close to the resonance
angular frequency ω0, in other words, for the passive
modes

∣∣ωk j−ω0
∣∣ is large as compared with the damping

terms. Note that the subindices k and j represent respectively
the nodal diameter and the mode shape. The equations cor-
responding to these modes in the system (5) are of this form:

(ω2
k j−ω

2)Ak j =
N,m

∑
i,h=1

(small terms)Aih +(small forc.) (14)

Since we are forcing near resonance, ω is close to ω0, and
then

∣∣ωk j−ω
∣∣ ∼ ∣∣ωk j−ω0

∣∣ and the coefficient in left hand

side of the equation is large as compared to the damping
and forcing terms. Consequently, the right hand side of the
above equation can be neglected, and gives:

Ak j ' 0 (15)

2. Active modes that take part in the forced response. These
modes have angular frequencies ωa close to the resonance
angular frequency ω0. Their resulting equation takes the fol-
lowing form:

(ω2
a −ω

2) ·Aa + i ·∑δaa′Aa′ = Fa (16)

with

δaa′ = δ
F
a−a′ · (Z

H
a ·K ·Za′) (17)

where Za, Za′ , a and a′ are, respectively, the indexes of the
active modes Aa and Aa′ , ωa is the frequency of the active
mode, and the forcing Fa is equal zero for the modes with
nodal diameter different from the engine order r.

Finally, after removing the passive modes from eq.(5), the AMM
is obtained



dk · · ·
dk+1 i ·D
. . . . . . . . .

...
... i ·DH . . . d−(k+1)

...
· · · d−k




Ak

Ak+1
...

A−(k+1)
A−k

=


0
...

i ·δm · fr
...
0

 . (18)

The size of this linear system is equal to the number of active
TW, and the variables Ak,Ak+1, ...,A−k are their amplitudes. The
forcing coefficient fr is set to

fr = (ZH
r ·K ·Zr) (19)

in order to have tuned maximum response 1, the diagonal terms
are given by

dk = (ω2
k −ω

2)+ i ·δm · (ZH
k ·K ·Zk) (20)

and the off-diagonal elements D are of the form

Dkk′ = δ
F
k−k′ · (Z

H
k ·K ·Zk′). (21)
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Figure 2. Top: sketch of the simple 1-DOF per sector system. Bottom:
tuned frequencies vs. number of nodal diameters (IM: forcing engine or-
der 7, CM: forcing engine order 21).

The resulting AMM written in eq.(18) reduces drastically
the size of the problem and it retains only the minimal set of TW
that are relevant for the forced response (the active TW modes).
The derivation of the AMM requires to know only the tuned vi-
bration characteristics of the system and the damping distribu-
tion, and it gives precise information on which Fourier harmon-
ics of the damping distribution induce a coupling between the
active TW modes.

APPLICATIONS
In this section the validity of the AMM results is checked

using a simple 1-DOF spring-mass model (shown in Fig.2) given
by,

ẍ j +ω
2
a x j +ω

2
c (2x j− x j+1− x j−1)+ cδ j ẋ j =

f ei(ωt+2π(r/N) j) + c.c., j = 1 . . .N, (22)

where c.c. means complex conjugate, N = 50 sectors, ω2
a = ω2

c =
1, δ j is the mistuning distribution with average value one (δm =
1), c is the damping coefficient, and f is scaled in order to have
tuned response equal to 1.

Below the two forcing configurations shown in Fig. 1 are
considered, which correspond to EO = 7 (isolated modes) and
EO = 21 (clustered modes).

Isolated modes
The TW with r = 7 nodal diameters and vibration frequency

ω0 labeled IM in Fig. 1 is well apart from the rest, i.e., its distance
to the rest of the frequencies is large as compared with the small
damping. In this case, the only active modes are this TW and its
symmetric one with r = 7 frequency ω0.

The resulting AMM (see eq. (18)) for this case has only two
equations and takes the form:

[
(ω2

0 −ω2)+ iδmD0 iδ F
2r ·D

iδ F
2rD (ω2

0 −ω2)+ iδmD0

][
A+
A−

]
=
[
iδmD0

0

]
(23)

where:

D0 = ZH
+r ·K ·Z+r and D = ZH

+r ·K ·Z−r, (24)

and the response of the system consists of the superposition of
the two TW modes with index ±r

X j = (Z+rA+rei(2πr/N) j +Z−rA−re-i(2πr/N) j),
for j = 1, . . . ,N. (25)

Note that, from the above system, it can be concluded that only
the harmonic 2r = 14 of the damping mistuning distribution has
a noticeable effect on the vibratory response of the system.

If the rescaled frequency

∆ω =
ω2

0 −ω2

δm ·D0
, (26)

and damping mistuning

deiφ =
δ F

2r
δm

D
D0

, (27)

are used, the AMM simplifies to

[
∆ω + i ideiφ

ide−iφ ∆ω + i

][
A+
A−

]
=
[

i
0

]
. (28)

The vibration amplitude of blade j = N can be written as

Amplitude ∝ |A+r +A−r|, (29)
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and, after solving the AMM eq. (28), the amplification factor due
to damping mistuning can be finally expressed as

AF =

∣∣[1− i∆ω]−de−i·φ ∣∣∣∣∣[1− i∆ω]2−d2
∣∣∣ . (30)

Note that, for the tuned case d = 0, the maximum value of the
above AF is 1.

In order to find the maximum amplification due to damping
mistuning the values of the expression for the AF (eq. (30)) are
explored as a function of the three parameters: ∆ω , d, and φ .

The size of the scaled damping mistuning is limited to

d = |δ
F
2r

δm
|| D

D0
|< 0.5

since: (i) to avoid the unphysical possibility of having negative
in-sector damping δ j the Fourier coefficients must verify

|δ
F
2r

δm
|< 0.5

(see eq. (10)), and (ii)

∣∣∣∣ D
D0

∣∣∣∣≤ 1,

as it can be readily obtained from eq. (24) using the fact that
Z+r = Z−r and K is a real symmetric non-negative matrix.

The resulting maximum values of the amplification factor
AF (eq. (30)) over the angle φ for any given values of ∆ω and d
are plotted in Fig. 3. The value of d has to be less than 0.5, so the
resulting amplitude factor can be as high as AF = 2. Note that
this maximum AF = 2 is indeed not physically attainable since
it would require to have damping δ j = 0 at some sector (see eq.
(10)).

In order to check the above results several simulations of the
full mass-spring system given by eq. (22) have been performed
with engine order forcing EO = 7 and with frequency close to
the isolated mode frequency labeled IM in Fig. 2.

In Fig. 4 the mistuning distribution consists of a mean damp-
ing plus a pure harmonic with wavenumber k = 2r = 14 (see
Fig. 4 middle and bottom left plots), and the resulting rescaled
mistuning amplitude d is equal to 0.25. The resulting maximum
amplitude, 1.332..., is very close to that predicted by the AMM
(AF =1.333..., see eq. (30) and Fig. 3), and, as it can be appre-
ciated from the right plot in Fig. 4, the only TW modes involved
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Figure 3. Maximum AF (eq. (30)) as a function of the mistuning ampli-
tude d ≤ 0.5 and the frequency ∆ω .

in the mistuned response are those with wavenumber 7 and −7
(again in perfect agreement with the AMM conclusions).

It is interesting to mention that, even though in Fig. 4 it can
be seen that there are sectors with damping as low as 0.5 (1 is
the reference uniform tuned damping), the amplitude response
is not multiplied by a factor of 1/0.5=2 at this sector because
the relevant damping is not the local in-sector damping but the
damping of the global active TWs involved in the response of the
system.

If more harmonics with random amplitude (see Fig. 5) are
added to the above mistuning distribution the response of the
system remains almost unchanged (as predicted by the AMM)
although some sectors have now even smaller damping values.

Finally, if the harmonic component with wavenumber 14 is
removed from the damping mistuning distribution, the resulting
response amplitude is identical to the tuned one (see Fig. 6),
without any noticeable mistuning effect, which confirms again
the AMM results. This complete lack of effect of the damping
mistuning also happens in the case plotted in Fig. 7, where the
damping mistuning pattern consists of mean value and a pure
harmonic with k = 19, different from the only active harmonic
predicted by the AMM k = 14.

In summary, the damping mistuning effect in the forcing of
a TW with frequency well apart from its neighbours (i.e. with a
frequency gap large as compared with the damping) can produce
an amplification of the forced response amplitude only when
damping pattern contains the Fourier harmonic with wavenum-
ber equal to twice the engine order of the forcing.
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Figure 4. Response of the system in fig. 2 to a forcing with engine or-
der 7 (tuned TW frequency ω0 = 1.3135 . . . , and c = 0.01/ω0) and a
damping mistuning pattern composed of a mean value plus a pure har-
monic with wavenumber 14 (AMM prediction for maximum response). The
damping mistuning amplitude d is equal to 0.25. Top left: displacements
|x j| vs. forcing frequency (max |x j| = 1.332...). Middle left: damping
mistuning distribution δ j . Bottom left: amplitude of the Fourier modes of
the damping mistuning distribution. Right: amplitude of the TW compo-
nents of the response vs. forcing frequency (wavenumber in the vertical
axis).

Clustered modes

If now the system is forced with an engine order r such that
the corresponding tuned TW has a frequency ω0 on the horizon-
tal part of the frequency distribution of the modal family (see the
encircled modes labeled CM in Fig. 1), then there are more than
two active modes.

This is the case when the mass-spring system given by
eq. (22) is forced with a forcing engine order r = 21 and with a
frequency close to the frequency of the clustered modes labeled
CM in Fig. 2. The symmetric TWs with negative wavenum-
ber have to be also taken into account, and thus the cluster
in Fig. 2 actually contains 9 TW modes, with wavenumbers:
21,22,23,24,25,−24,−23,−22,−21.

The AMM description, according to eq. (18), can now be
written as 9×9 linear system

1.3 1.31 1.32

0.5

1

1.5
 ← AMM

ω

|x
j
|

10 20 30 40 50
0

0.5

1

1.5

2

k

δ
j

0 5 10 15 20 25
0

0.5

1

k

|δ
j
F|

1.305 1.31 1.315 1.32 1.325
−25

−20

−15

−10

−5

0

5

10

15

20

25

ω

k

Figure 5. Same as in Fig. 4 but with the rest of the harmonics added
to the damping mistuning pattern with random amplitude (max |x j| =
1.338...).
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Figure 6. Same as in Fig. 4 but with the rest of the harmonics added to
the damping mistuning pattern with random amplitude and zero harmonic
with wavenumber 14 (max |x j|= 0.992...).
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Figure 7. Same as in Fig. 4 but with a pure harmonic with wavenumber
19 (max |x j|= 1.001...).
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
A21
A22

...
A−22
A−21

=
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0
...

iδm fr
...
0

 , (31)

where, according to eq. (21), the only damping mistuning har-
monics that appear in the off-diagonal terms are δ F

1 ,δ F
2 , . . . ,δ F

8
(which are the only that effectively couple the 9 active TWs
A21, . . . ,A−21). And the vibration amplitude of blade j = N is
in this case given by

Amplitude ∝ |A21 +A22 + · · ·+A−22 +A−21|, (32)

The resulting AMM is again much simpler than the origi-
nal problem, but it is still too complicated to obtain an explicit
expression for the amplification factor as it was done in the pre-
vious section. So, in this case, the results of the simulations of
the lumped system (22) will be used only to check the validity of
some qualitative AMM conclusions.

The AMM indicates that only the damping mistuning har-
monics with wavenumber from 1 to 8 actually have effect on the

2.14 2.16 2.18 2.2 2.22

0.5

1

1.5

ω

|x
j
|

10 20 30 40 50
0

0.5

1

1.5

2

k

δ
j

0 5 10 15 20 25
0

0.5

1

k

|δ
j
F|

2.14 2.16 2.18 2.2 2.22
−25

−20

−15

−10

−5

0

5

10

15

20

25

ω

k

Figure 8. Response of the system in fig. 2 to a forcing with engine or-
der 21 (tuned TW frequency ω0 = 2.1830 . . . and c = 0.03/ω0) and
a damping mistuning pattern composed of a mean value plus harmonics
with wavenumber 1, 3 and 8. Top left: displacements |x j| vs. forcing
frequency (max |x j| = 1.382...). Middle left: damping mistuning distri-
bution δ j . Bottom left: amplitude of the Fourier modes of the damping
mistuning distribution. Right: amplitude of the TW components of the
response vs. forcing frequency (wavenumber in the vertical axis).

response of the system. In Fig. 8 the response of the lumped sys-
tem for a damping mistuning pattern with wavenumbers 1,3 and
8 is plotted (all of them active according to the AMM). The re-
sulting maximum response of the system is 1.382 . . ., much larger
than the tuned one. On the other hand, the results shown in Fig. 9
correspond to a damping mistuning pattern with harmonics with
wavenumber 13, 16 and 20 (all of them not active according to
AMM), and, in this case, there is no amplification of the response
of the system (even though there are in-sector dampings as small
as 0.25).

The mistuned natural vibration characteristics of the system
can also be obtained from the AMM system in eq. (18) by setting
the forcing to zero and solving the resulting eigenvalue problem
for the ω .

Moreover, if the AMM matrix is premultiplied by the vector
[Ak,Ak+1, . . . ,A−(k+1),A−k] and the real part is taken, the follow-
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Figure 9. Same as in fig. 8 but for a damping mistuning pattern com-
posed of a mean value plus harmonics with wavenumber 13, 16 and 20
(max |x j|= 1.004...).

ing expression is obtained:

k

∑
j=−k
|A j|2(∆ω j−Re(∆ω)) = 0, (33)

where

ω j = ω0(1+∆ω j),
ω = ω0(1+∆ω),

and, since the frequencies of the active modes ω j and the mis-
tuned natural frequencies ω are both very close to the frequency
of the directly forced mode ω0, the higher order corrections in
∆ω j and ∆ω have been neglected.

Using the expression above, eq. (33), it can be readily seen
that

min
j=−k...k

(∆ω j)≤ Re(∆ω)≤ max
j=−k...k

(∆ω j),

and it can be concluded that the mistuned frequencies are in be-
tween of those of the tuned active modes. Or, in other words,

it can be concluded that, in contrast to what happened with the
mass/stiffness mistuning, there is no frequency splitting associ-
ated with the damping mistuning. This can be clearly appreciated
in Fig. 8, and in the results presented by Siewert and Stüer [5].

CONCLUDING REMARKS
The AMM (Asymptotic Mistuning Model) has been used to

analyze the effect of damping mistuning on the forced response
of a bladed disk. We focused on the case of linear damping with
a pattern that is made of a tuned mean value plus a sector to sec-
tor variation that is of the order of the mean damping itself (i.e.,
not a small modulation over the tuned value). The AMM is sys-
tematically derived from the general equations for the forced re-
sponse of a mistuned bladed disk using an asymptotic expansion
procedure that is based solely on the smallness of the damping
(as compared with the forced frequency). The AMM has been
applied to describe the effect of damping mistuning in two fre-
quent situations: forced response of a pair of isolated modes, and
forced response of a group of modes with close frequencies, and
the results have been compared with those from the numerical
simulation of the mistuned mass-spring system given by eq. (22).

The application of the AMM allows us to draw the following
final remarks about the effect of damping mistuning:

1. The AMM reduces drastically the size of the problem to be
considered, and the AMM results are in very good agree-
ment with those from the mass-spring system given by
eq. (22).

2. Damping mistuning can increase the forced response of the
system. The harmonics of the damping mistuning distribu-
tion that couple active TW modes can increase the forced
response, but the rest of the harmonics do not produce any
effect on the system. In other words, the system has zero
sensibility (in first approximation) to the harmonics of the
damping mistuning pattern that do not couple active TW
modes

3. The presence of small in-sector values of the damping does
not necessarily implies an amplification of the forced re-
sponse (see Figs. 6 and 9). This is because the relevant
damping value is that of the global active TW modes in-
volved in the mistuned response, and not that of the local
in-sector damping.

4. From Fig. 3 it can be clearly appreciated that the amplifica-
tion factor appears to grow monotonously with the size of
the damping mistuning. This rules out the possibility of us-
ing intentional damping mistuning as a way to reduce the
amplification factor.

5. Lin and Mignolet concluded in ref. [4] that damping mis-
tuning can lead to a severe increase in the forced response
amplitude, which can be larger than that resulting from
mass/stiffness mistuning. This is in agreement with our re-
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sults: in the case of isolated modes, the maximum amplifi-
cation due to damping mistuning is AFmax = 2 (see Fig. 3),
while for mass/stiffness mistuning the maximum amplifica-
tion is lower AF = (1+

√
2)/2 = 1.207 . . . (see [10]).

6. And finally, it is interesting to highlight that, as opposed to
what happens with the mass/stiffness mistuning, the damp-
ing mistuning amplification of the forced response does not
produce any appreciable frequency splitting (see Fig. 8 and
[5]).
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