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ABSTRACT 
Flutter is an aeroelastic instability phenomenon that can 

result either in serious damage or complete destruction of a gas 

turbine blade structure. To assure a reliable and safe operation, 

potential for blade flutter must be eliminated from the turbo-

machinery stages. In this paper, the robustness of an axial 

compressor blade design is studied with respect to parametric 

uncertainties through the Mu analysis. The analytical 

description of the nominal model used is based on matching a 

two dimensional incompressible flow field across the flexible 

rotor and the rigid stator. The aerodynamic load on the blade is 

derived via the control volume analysis. For use in the Mu 

analysis, first the model originally described by a set of partial 

differential equations is reduced to ordinary differential 

equations by the Fourier series based collocation method.  After 

that, the nominal model is obtained by linearizing the achieved 

non-linear ordinary differential equations. The uncertainties 

coming from the modeling assumptions, model reduction, and 

linearization approximations, as well as imperfectly known 

parameters and coefficients are all modeled as parametric 

uncertainties through the Monte Carlo simulation. As compared 

with other robustness analysis tools, such as Hinf, the Mu 

analysis is less conservative and can handle both structured and 

unstructured perturbations. Simulation results show that the 

procedure described in this paper can be effective in studying 

the flutter stability margin and can be used to guide the gas 

turbine blade design. 
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NOMENCLATURE 

t
A  : Throttle parameter 

B  : Greitzer B parameter 

c  : Rotor chord length  

s
c  : Stator chord length  

D  : Blade mass 

l
F  : Lift force on the blade due to fluid flow 

ea
I  : Moment of inertia of the blade about elastic axis 

î  : Unit vector in the axial direction 

ĵ  : Unit vector in the tangential direction  

c
L  : Compressor duct length  

I
L  : Inlet duct length  

r
L  : Rotor pressure loss 

,  r qsL
 

: Quasi-steady rotor total pressure loss  

,  s qsL
 

: Quasi-steady stator total pressure loss  

1r
L

 
: Coefficient of the empirical rotor loss function 

2r
L

 
: Coefficient of the empirical rotor loss function 

3r
L

 
: Coefficient of the empirical rotor loss function 

1s
L

 
: Coefficient of the empirical stator loss function 

2s
L

 
: Coefficient of the empirical stator loss function 

3s
L

 
: Coefficient of the empirical stator loss function 

s
L  : Stator pressure loss 

M  : Aerodynamic moment about the elastic axis 

B
N  : Number of blades  

atm
p

 
: Atmospheric pressure non-dimensionalized by 

2

TUρ  

b
Q  : Frequency of the pure bending mode  

t
Q  : Frequency of the pure torsion mode  

 q  : Bending displacement of the blade 

t  : Non-dimensional time 

T
U  : Tip Speed 

v  : Non-dimensional tangential velocity, 
T

C Uθ  

x  : Axial coordinate  
X  : States in the non-linear and linear models 
α  : Torsional displacement of the blade 

r
β

 
: Trailing edge metal angle of the rotor 

zr
β

 
: Zero-incidence angle of the rotor leading edge 

zs
β  : Zero-incidence angle of the stator leading edge 

r
γ  : Stagger angle of the rotor 

s
γ  : Stagger angle of the stator 

ε  : Rotational inertia divided by chord
 Ф  : Non-dimensional mass Flow, 

x T
C U  
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φ�  : Perturbation axial velocity  

Ψ : Non-dimensional pressure, 2
TP Uρ  

P
Ψ  : Non-dimensional plenum Pressure, 2

p TUP ρ  

ψ�  : Perturbation pressure 

rτ  : Time scale for the rotor loss  

sτ  : Time scale for the stator loss  

eaξ  : Position of the elastic axis of the blade from the      

leading edge divided by the blade-chord 

cgξ  : Position of the center of gravity of the blade from the   

leading edge divided by the blade-chord 

cpξ  : Position of the center of pressure of the blade from 

the leading edge divided by the blade-chord 

b
ς  : Structural damping of the bending mode 

t
ς  : Structural damping of the torsion mode 

1
δ  : Coefficient of the empirical rotor deviation function  

2
δ  : Coefficient of the empirical rotor deviation function  

Subscripts:  

1 : Inlet of the actuator disk 

2 : Exit of the rotor, inlet of the stator 

3 : Exit of the stator 

le : Leading edge 

rel : In the rotor (rotating) reference frame 

r : Rotor 

s : Stator 

te : Trailing edge 

 

INTRODUCTION 
Gas turbines and other turbomachines constitute rotating 

blades and guiding vanes. As compared to vanes, blades are 

more susceptible to fluttering, and the risk of blade flutter in 

turbomachinery applications has received much attention due to 

the increasing operational demands and aggressive design 

requirements recently; for example high lift and low mass 

designs in aero-engines [1]. To assure a reliable jet propulsion, 

the potential for blade flutter must be eliminated from the 

turbomachinery stages [2]. 

Significant advances in the understanding of blade flutter 

have been achieved through numerous experimental and 

theoretical investigations. Much attention has been focused on 

compressors due to their well documented predisposition to 

blade flutter under certain operation regimes [1].  

Although the advances in understanding the blade flutter 

have been quite significant, the current models for 

turbomachinery flutter are normally computationally intensive, 

and it is difficult to ensure high fidelity. Also, the number of 

states is prohibitively high such that a systematic analysis of the 

flutter phenomenon is not easy to achieve [2]. Reduced order 

models have been constructed to obtain a computationally more 

tractable system [3]. But these models suffer from either one or 

several of the following limitations: (1) not including the 

vibration mode shape, (2) modeling flows over a range of 

geometries and Mach numbers may not been accomplished, (3) 

only valid for small amplitude oscillations about a large 

magnitude steady state.  

Considering various shortcomings of the models resulting 

in lack of proper tools to predict flutter accurately, to ensure a 

safe operation it is therefore important to study the robustness 

of a turbomachinery blade design in the presence of 

uncertainties. In this paper the robustness of a compressor blade 

is studied with respect to parametric uncertainties. 

 
FLUTTER MODEL 

The compression system as shown in Fig. 1, composed of 

an inlet duct, an axial compressor stage of flexible rotors and 

rigid stators, a plenum chamber, and a throttle, is considered. 

The compressor pumps the flow into the plenum, which 

exhausts through a throttle. A high hub-to-tip ratio is assumed 

such that the flow can be treated as two-dimensional, with the 

variations considered in the axial and circumferential directions 

only. The compressor ducts are assumed to be long enough so 

that there is no non-axisymmetric pressure field interaction 

with the end terminations. The flow external to the blade rows 

is considered to be inviscid. Compressibility effects are 

neglected assuming low Mach numbers in the compressor and 

ducts. In the plenum, where the compressibility effects are 

important, density changes are related to the pressure changes 

through an isentropic relation [4]. Losses are introduced into 

the rotor and stator stages through the empirical total pressure 

loss relations. The flexible rotor blades are represented by a 

simple two dimensional, two degrees of freedom model, which 

is done using a typical section with an inertial and aerodynamic 

coupling between twist and plunge. A control volume analysis 

is used to couple the aerodynamics and structural dynamics, 

which provides the effect of the aeroelastic phenomenon. The 

deformed blade passages are defined and analyzed as a 

deformable control volume across flexible rotors coupled with 

a structural model [4-5]. 

Fig. 1: Compression System Schematic 

 

The equations of the flutter model used here are adopted 

from [4-5]. The equations have been reorganized in a form that 

can be easily used in the Mu analysis later. Detailed discussions 

on the model can be found in [4-10]. 

Exit 

Duct 

Inlet 

Duct 
Plenum  

Throttle 

Rigid

Stator

Flexible

Rotor 

31

21 3



 3                                         Copyright © 2011 by ASME 

A- Inlet and Exit Duct 

The annular inlet and exit ducts are assumed to have a 

constant height, and the flow is assumed to be incompressible. 

In the inlet duct, only the potential flow perturbations can 

be created by the compressor and these decay upstream. Hence, 

for an axisymmetric meanflow, the linearized relation between 

the non-axisymmetric static pressure and the axial velocity 

perturbations at the inlet (station 1), as given in [7], is  

1

11 1
1

ˆ
1 ˆ

Re ( )
N

inn

n
n

t e
n t

θ
φ

φ φψ
=

 ∂
 = − +∑
 ∂
 

�
��     (1) 

where 
2

1 1
0

(1 / 2 ) ( , )Ф t d
π

φ π θ θ= ∫ , and 1 1 1Ф φ φ= + �  . 
1

ˆ
n

φ�  is the 

n
th

 harmonic component of non-axisymmetric axial velocity 

perturbation at station 1, while “Re” denotes the real part of the 

complex term in Eq. (1) and N  is the highest number of 

harmonics used to describe the inlet axial velocity 1Ф . 

In the exit duct, the only disturbances considered are the 

decaying potential field downstream and the vorticity 

associated with the variation in the compressor loading around 

the annulus.  The analysis is simplified by the assumption that 

the stators fix the exit flow angle to be axial (i.e. no deviation 

effects). This produces the following relation between the non-

axisymmetric pressure distribution at the exit of the compressor 

(Station 3) and the flow perturbations [7]. 

3

3
1

ˆ
1

Re
N

inn

n
e

n t

θ
φ

ψ
=

 ∂
 = ∑
 ∂
 

�
�   (2) 

3

ˆ
n

φ�  is the n
th

 harmonic component of non-axisymmetric axial 

velocity perturbation at station 3. Equations (1) and (2) are used 

together with Equations (32) and (36), which are shown later in 

this paper, to calculate the pressures at stations 1 and 3. 

 

B- Plenum and Throttle 

As shown in [4], the conservation of the axial momentum 

in the inlet and exit ducts, and the conservation of the mass in 

an isentropic plenum results in the following equations: 
2

1
3 1 P

0

1
( )

2
c

Ф
L d

t

π

θ
π

∂ 
Ψ − Ψ − Ψ = ∂ 

∫    (3)
 

and
 

2

2 P
1 P

0

1
2 4B

2
t cФ L dA

t

π

θ
π

∂Ψ 
− Ψ = ∂ 

∫    (4) 

Equations (3) and (4) are related to two states: 1Ф  
and PΨ . 

 
 

C- Blade Dynamics 

As described by Dowel [11] and Gysling and Myers [6], 

the structural dynamics of the blade is modeled considering a 

typical section with the inertial and aerodynamic coupling 

between the twist and plunge motions. The lift force is assumed 

to act at the center of pressure, which is assumed constant. The 

two modes considered here are the twist and plunge as 

illustrated in Fig. 2. 

 
Fig. 2: Blade deflection indicating the positive sense of 

twist α and plunge q  (modified based on [5]) 

The plunge equation is described by 

( )
2 2

2
2

ea cp

l

b b b

q c
t t

F
q qQ Q

t D

αξ ξ
θ θ

ς
θ

∂ ∂ ∂ ∂   
− + − −   

∂ ∂ ∂ ∂   

∂ ∂ 
+ − + = 

∂ ∂ 
   (5)

 

while the twist equation is            

( )2 2

2
2

ea cg

ea

t t t

ea

cD
q

t tI

M
Q Q

t I

ξ ξ
α

θ θ

ς α α
θ

−∂ ∂ ∂ ∂   
− + −   

∂ ∂ ∂ ∂   

∂ ∂ 
+ − + = 

∂ ∂ 

  (6) 

where the moment of inertia 
ea

I
 
can be calculated by  

( )
2

2 2 2

ea ea cg
I D c Dc εξ ξ= − +     (7) 

The lift force on the blade lF   in Eq. (5) is calculated by 

( ) ( )cos sin

2

r x r

l

F F
F

θ γ α γ α− − −
=    (8) 

where 
x

F  and Fθ  are axial and circumferential components of 

the force on the blade ˆ ˆi j
x

F F Fθ= +
�

. 
x

F  and Fθ  can be 

calculated through the control volume analysis across two 

adjacent blades to be describe in the next section.  The moment 

about the elastic axis in Eq. (6) is given by  

( )l ea cp
M F cξ ξ= −    (9)  

There are four state variables in Equations (5) and (6): α ,

α� , q  and q� . 

 

D- Control Volume Analysis 

The two components of the force on the blade, 
x

F  and Fθ , 

can be calculated based on the conservation of the momentum 

equation across the rotor described by   

( )

( )

,

,

le
le rel le le le le

te
te rel te te te te

sV
v v v n p n

t

s F
v v n p n

θ θ θ

θ θ

∂∂ ∂ ∂    − + ⋅ +    ∂ ∂ ∂ ∂  

∂ ∂
 + ⋅ + = −  ∂ ∂

� � � � �

�
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          (10) 

γr 

γr - α 

α 

q 
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where 

1
cos( )

 2   

le te

r

s sV
c γ α

θ θ θ

∂ ∂∂  
= − + ∂ ∂ ∂ 

       (11)

 
Force exerted on the blade by the fluid is found by 

/

/
/

B B

B B

N

N
F F d

θ π

θ π
θ θ

+

−
 = ∂ ∂ ∫

� �
           (12) 

where 
B

θ  is the blade angular position , which is constant for a 

blade with respect to a fixed reference. 

The two path lengths along the leading and trailing edges 

can be calculated by 
2 2

   

le le le
s x θ

θ θθ

∂ ∂ ∂   
= +   

∂ ∂∂    
  (13)

 
and 

2 2

   

te te te
s x θ

θ θθ

∂ ∂ ∂   
= +   

∂ ∂∂    
  (14) 

respectively. The axial and circumferential coordinates of the 

leading and trailing edges are given by 

sin( ) cos( )
le r ea r

x q cγ ξ γ α= − − −         (15) 

cos( ) s ( )
le r ea r

q c inθ θ γ ξ γ α= + − −            (16) 

sin( ) (1 ) cos( )
te r ea r

x q cγ ξ γ α= − + − −              (17) 

cos( ) (1 ) s ( )
te r ea r

q c inθ θ γ ξ γ α= + + − −             (18) 

The two normal vectors at the blade leading and trailing 

edges used in Eq. (10) are found as 

ˆ ˆcos( )i sin( ) j
le le le

n β β= − +
�

  
 (19) 

ˆ ˆcos( )i sin( ) j
te te te

n β β= −
�

  
 (20) 

The relative velocities between the flow and the two edges 

of the blade used in Eq. (10), ,rel lev
�

 
and ,rel tev
�

, are given by  

( ) ( )1 1,
ˆ ˆ ˆ ˆi + j i jle lerel le

v Ф v x
t

θ
θ

∂ ∂ 
= − − + 
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�
  (21) 

and 

( ) ( ), 2 2
ˆ ˆ ˆ ˆi + j i j

rel te te te
v Ф v x

t
θ

θ

∂ ∂ 
= − − + 
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�
   (22)

 
The axial component of the velocity at the rotor leading 

edge (station 1) 1Ф  
is found from Eq. (3) while the 

circumferential component 
1

v  is calculated by the following 

assumption as suggested by Moore and Greitzer [8] 

1
1

v
φ

θ

∂
= −

∂
�           (23) 

The axial and circumferential velocities at the trailing edge 

of the rotor (station 2), 
2

Ф  and 
2

v , can be found from the 

conservation of mass equation together with an assumption on 

flow kinematics. The conservation of mass equation is 

expressed as 

( ) ( ), , 0le te
rel le le rel te te

s sV
v n v n

t θ θ θ θ

∂ ∂∂ ∂ ∂ 
− + ⋅ + ⋅ = 

∂ ∂ ∂ ∂ ∂ 

� � � �
       (24) 

The kinematic constraint on the flow is based on the 

assumption that the fluid exits the blade with a certain deviation 

angle described by an empirical relation. Following is the 

equation of kinematic constraint on the flow. 

( )22 tante rtev Ф x
t t

θ β α δ
θ θ

∂ ∂  ∂ ∂    
− − = − − − +    ∂ ∂ ∂ ∂    

     (25) 

where the flow deviation angle at the exit of the rotor, δ , is 

assumed to be a function of the incidence angle given by 

1 , 2inc rδ δ α δ= +     (26)
 

The rotor incidence angle ,inc rα is given by 

,1
,

,

ĵ
tan

î

rel le

inc r zr

rel le

v

v
α β α

⋅
−

⋅

 
 = − +
 
 

�

�               (27) 

The velocity within the control volume, v
�

 in Eq. (10), is 

approximated by the average of the leading and trailing edge 

flow velocities as 

( )
1

2
le tev v v= +

� � �
    (28) 

where 

11
ˆ ˆi + (1+ )jle Ф vv =

�
   (29) 

22
ˆ ˆi + (1+ )jte Ф vv =

�
    (30) 

The axisymmetric pressure at the leading edge 
1Ψ

 
can be 

calculated by the unsteady Bernoulli’s equation [12] 

( )2 2 1
1 11

1

2
atm I

Ф
p Ф v L

t

∂
− Ψ = + +

∂
           (31) 

Thus the expression for 
le

p in Eq. (10), which is essentially 

the pressure at station 1 1Ψ , is given by 

( )2 2

1 1 1 1 1 1

1

2
atmle

p Ф vp ψ ψ= Ψ = Ψ + = − + +� �      (32) 

The trailing edge pressure 
te

p  used in Eq. (10) can be 

calculated from the conservation of energy, when the force term 

in the equation is substituted by the LHS of the conservation of 

momentum equation. The conservation of energy across the 

deforming blade passage is given by 

( )

( )

2 2
,

2
,

1 1

2 2

1

2

le
rel lele le r le

te
rel tete te te cv

sV
v p v L nv

t

s F
p v n vv

θ θ θ

θ θ

∂∂ ∂ ∂   
− + + − ⋅   

∂ ∂ ∂ ∂   

∂ ∂ 
+ + ⋅ = − ⋅ 

∂ ∂ 

��

�
� ��

      

(33)

 

where 
r

L  represents a loss in the leading edge total pressure to 

account for non-conservative processes, which is governed by 

Eq. (37) shown in the next section. The velocity of the control 

volume is approximated by the average of the velocities of the 

leading and trailing edge boundaries.  

ˆ ˆ ˆi j j
2 2

le te le le

cv

x x
v

t

θ θ

θ

+ +∂ ∂   
= − + +  

∂ ∂  

�
     (34) 

  

E- Analysis for the Stator  

The stator is modeled as a rigid blade row, and the 

conservation of mass across the stator can be expressed as  

2 3
Ф Ф=          (35) 
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Using the unsteady Bernoulli’s equation [4], the following 

relation is found to govern the pressure rise across the stator 

2
,3 ,2( )

cos( )

s
t t s

s

c Ф
L

γ τ

∂
Ψ − Ψ = −

∂
       (36)

 
where sL  represents a loss in the total pressure across the 

stator, which is governed by Eq. (38) to be shown in the next 

section. 
2,tΨ

 
is the total pressure at the trailing edge of the 

rotor, while 
3,tΨ is the total pressure at the trailing edge of the 

stator.  

 

F- Rotor and Stator Losses  

The total pressure losses across the rotor and stator disks 

are assumed to lag their quasi-static values. A simple one 

dimensional lag equation is used in each case [5].   

( ),r r qsr r
L L L

t
τ

θ

∂ ∂ 
− = − − 

∂ ∂ 
     (37) 

( ),s s qss s
L L L

t
τ

θ

∂ ∂ 
− = − − 

∂ ∂ 
    (38) 

The quasi-static losses ,r qsL  and ,s qsL  are assumed to be 

functions of incidence angle,  
2

, ,, 1 2 3inc r inc rr qs r r r
L L L Lα α= + +       (39) 

2
, ,, 1 2 3inc s inc ss qs s s s

L L L Lα α= + +        (40) 

The incidence angle on the rotor is defined in Eq. (27). The 

incidence angle on the stator is given by 

1 2

,

2

tan
inc s zs

v
α β

φ
−  

= − − 
 

            (41) 

Equations (37) and (38) result in two states in the model: 

r
L  and  

s
L . 

REDUCED ORDER MODEL via THE FOURIER SERIES 

BASED COLLOCATION METHOD 

To be used in the stability and robustness analysis, the PDE 

model described in the above section is reduced to an ODE 

form through the Fourier series based collocation approach 

following the steps described in [13]. 

 

The state variables 
1
Ф , α , q , 

r
L

 
and 

s
L

 
in the model are 

approximated in terms of the Fourier series as shown below. 

 [ ]1

0

ˆ( ) cos( ) ( )sin( )
N

n n

n

Ф t n t nϕ θ ϕ θ
=

= +∑          (42) 

[ ]
0

ˆ( ) cos( ) ( )sin( )
N

n n

n

a t n a t nα θ θ
=

= +∑          (43) 

0

ˆ( ) cos( ) ( )sin( )
N

n n

n

q b t n b t nθ θ
=

 = + ∑         (44) 

0

ˆ( ) cos( ) ( )sin( )
N

r n n

n

L lr t n lr t nθ θ
=

 = + ∑            (45) 

0

ˆ( ) cos( ) ( )sin( )
N

s n n

n

L ls t n ls t nθ θ
=

 = + ∑            (46) 

in which N  is the highest number of harmonics used in the 

series.  

Plenum pressure 
pΨ  is assumed to be spatially uniform 

and hence approximated by a time dependent term only.   

p 0Ψ = ( )tψ              (47)

 
The unknown variables in the original PDEs are then 

substituted by the approximation and the residual functions are 

obtained at the collocation points.  In this paper, the two 

boundary points of integration and their midpoint are used as 

the collocation points. A set of ODEs is then obtained by 

forcing the residual functions to be zero at the collocation 

points.  For brevity, Eq. (37), the rotor loss equation, is used as 

an example to demonstrate the basic procedure.   

( ),r r qsr r
L L L

t
τ

θ

∂ ∂ 
− = − − 

∂ ∂ 
            (48)

 
If 1N = , the unknown variable rotor loss 

r
L

 
is 

approximated by

 ( ) ( )0 1 1
ˆ ( )  ( ) cos   ( ) sin

r
L lr t lr t lr tθ θ= + +      (49) 

Now substituting 
r

L  in Eq. (48) by the approximation in 

Eq. (49), following residual equation can be obtained at 
i

θ θ= , 

where 1, 2,3i = .

   

( )

0 1 1
1 1

0 1 1 ,

ˆ( ) ( ) ( ) ˆcos sin ( )sin ( ) cos

ˆ( ) ( ) cos ( )sin

r

r qs

dlr t dlr t dlr t
lr t lr t

dt dt dt

lr t lr t lr t L

θ θ θ θτ

θ θ

 
+ + + −  

 

= − + + −

   (50) 

The residual equation can be reorganized to obtain a state 

space representation.  

Comparing the simulations with different number of 

harmonics in the Fourier series approximation, it is found that a 

series approximation with only zeroth and first order harmonic 

is sufficient to capture the system dynamics. Following are the 

22 states in the reduced order non-linear model: 

 

Variables States 

1
Ф  

0
φ ,

1
φ  , 1

φ̂  

pΨ  
0ψ  

α  
0

a ,
1

a  , 1
â , 

0
a� , 

1
a� ,  1â�  

q  
0b , 1b , 1b̂ , 0b� , 1b� , 1b̂

�
 

r
L  

0
lr  ,

 1
lr  , 1l̂r  

s
L  

0ls ,
 1
ls , 1l̂s  
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The nonlinear model of the whole compression system in 

terms of the 22 state variables are then organized in the form of  

[ ] [ ] [ ] [ ]
22 22 22 1 22 22 22 122 1 22 1

( , )X A X B X f X p
× × × ×× ×

   = + +   
�   (51)  

where ( , )f X p is a function of the states, X , and parameter 

vector p . Matrices [ ]A and [ ]B are found to be constant for 

each operating point; [ ][ ]A X  denotes the linear part of the 

model.  For the model achieved here, matrix [ ]B  has only one 

non-zero entry, as the governing equation of the plenum 

pressure is the only equation in the model with a square root 

term. Non-linearity of the system comes mainly from the part 

( , )f X p .     

 

LINEARIZED MODEL and STABILITY ANALYSIS 
First the equilibrium point of the system (Eq. 51) is found 

for a throttle parameter (
t

A ) setting. Then the non-linear model 

is linearized about the equilibrium point eqX  by means of the 

small perturbation theory. First the partial derivatives of  

( , )f X p  with respect to all the state variables X  are found 

numerically, by using a five point stencil formula. All the 

partial derivatives of [ ]B X 
  can be found analytically. 

Finally, the Taylor series expansion is utilized to obtain the 

linearized function for the original non-linear function. All the 

three matrices combined together, the linearized perturbation 

model is obtained in the form of [ ] [ ]
22 22 22 122 1

X Z X
× ××

 ∆ = ∆ 
� , 

where eqX X X= + ∆ . 

The eigenvalues of the linear model are calculated to study 

the stability of the system. All the eigenvalues of the system are 

shown in Fig. 3. A representative eigenvalue of the system as 

found in each iteration of the Monte Carlo simulation 

(explained in next section) is presented in Fig. 4. 

From Fig. 3 and Fig. 4, it can be seen that all the 

eigenvalues of the system are in left half of the complex plane, 

which indicates a stable system for the uncertainty bounds 

used. 

 
Fig. 3: Eigenvalues of the system (all eigenvalues shown 

together) 

 
Fig. 4: A representative eigenvalue of the system (for all 

iterations of Monte Carlo simulations) 

 

QUANTIFICATION of UNCERTAINTY BOUNDS via 
MONTE CARLO SIMULATION 

Because of a number of assumptions and simplifications, 

which have been made at different levels, the nominal model 

may not be an exact representation of the system. Secondly, the 

model reduction approximations also cause uncertainties in the 

model. Thirdly, the linearization causes uncertainties to the 

model due both to truncation of the Taylor series and the 

calculation of partial derivatives numerically. Furthermore, the 

parameters and coefficients used in the obtained nominal model 

are not perfectly known. 

To find the uncertainty bounds on the nominal model, the 

Monte Carlo simulation is done for the system with some 

bounded random variation of some of the parameters. The mean 

model obtained from Monte Carlo simulations is used as the 

nominal model for the Mu Analysis.  

The parametric uncertainties considered here are mainly on 

some of the structural properties which might vary slightly 

from the design value because of the manufacturing and 

installation processes. For example all the blades are not 

exactly the same. Different blades might have slightly different 

frequencies for bending and twist modes, and different damping 

ratios. Also a small uncertainty is considered in some of the 

geometry parameters, which may be caused by wear and tear 

etc.  

Following are the structural properties in which 

uncertainties are considered with their nominal values: 

Structural damping of bending mode,
 bς  = 0.035 

Frequency of pure bending mode,
 b
Q  = 1.5 

Structural damping of torsion mode,
 tς  = 0.035 

Frequency of pure torsion mode,
 t
Q  = 3.3 

The geometry parameters considered to have uncertainties 

and their nominal values are:  

Position of the elastic axis of the blade from leading    edge 

divided by blade-chord, 
eaξ = 0.55 

Position of the center of gravity of the blade from leading 

edge divided by blade-chord,
 cgξ = 0.35  
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Position of the center of pressure of the blade from leading 

edge divided by blade-chord, 
cpξ = 0.35 

The following empirical coefficients are also considered to 

have uncertainties:  

Time scale for rotor loss, 
r

τ = 0.61  

Time scale for stator loss, 
s

τ = 0.32 

Coefficient of empirical rotor deviation function, 
1

δ = 0.18 

Coefficient of empirical rotor deviation function, 
2

δ = 12
o
 

Coefficient of empirical rotor loss function,
 1r
L = 1.8842 

Coefficient of empirical rotor loss function, 2r
L = - 0.5053 

Coefficient of empirical rotor loss function, 3r
L = 0.1219 

Coefficient of empirical stator loss function, 1s
L = 0.7429 

Coefficient of empirical stator loss function, 2s
L = - 0.1450 

Coefficient of empirical stator loss function, 3s
L = 0.0951 

For obtaining a number of linear models and uncertainty 

bounds on the model, three different percentages of 

uncertainties are assumed on structural parameters-- 1%, 2.5% 

and 5% respectively. For all the cases considered in this paper, 

the empirical coefficients are assumed to have 5% uncertainty 

about their nominal values while considering the state of the art 

manufacturing processes that most often can obtain any 

geometry very accurately, the geometry parameters in the 

model are considered to have only 1% uncertainty.  

In the Monte Carlo simulations, each of the parameter is 

defined with a random variation about the nominal value within 

the uncertainty ranges described above. The linear model is 

obtained in each iteration of the Monte Carlo simulation. A total 

of 1,000 iterations are used in the simulations to quantify the 

uncertainty bounds on the nominal model.  

 

MU SYNTHESIS 
In this section, the basic steps, in using the Mu analysis 

tool [19-25] to analyze the robust performance of the system in 

presence of parametric uncertainties in the system, are shown.  

The linearized system obtained in the previous section can 

be written as: 

22 22 22 22

22 22

[ ] [ ]

[ ]

X A X B u

y I X

× ×

×

= +

=

�

 

         (52) 

where B  is a zero matrix because the system under analysis is 

open loop. The system output is the state. All the uncertainties 

in matrix A  are modeled as additive parametric uncertainties 

as ˆ( )A A W= + ∆ , where Â  is the mean value obtained in the 

Monte Carlo simulation, and 22 22[ ]W W ×=  contains the 

uncertainty boundary magnitude for each of the entries in 

matrix A . ∆  is any kind of uncertainties with a magnitude 

upper bounded by 1. 

The following are the basic steps involved in obtaining the 

synthesis model for the Mu analysis with the uncertainties 

accounted. The magnitudes of the uncertainty, their position in 

the main equation and their numbers are unique which vary 

with each equation. Let us use the first state equation as an 

example to show the basic approach.  
22

1 1, 1,

1

( )j j j

j

X A W X
=

= + ∆∑�               (53) 

Rewriting Eq. (53), the following equation is obtained. 
22

1 1, 1,

1

( )j j j j

j

X A X W X
=

= + ∆∑�             (54)

        

 

Let’s define 
1, j j j

W X z� ; Eq. (54) can then be written as: 

22

1 1,

1

( )j j j

j

X A X z
=

+ ∆∑� �       (55) 

Eq. (55) can be further written as  
22

1 1,

1

j j j

j

X A X w
=

+∑� �       (56) 

with the definition 
j j

z w∆ � . 

Similarly, equations for the remaining 21 states are 

derived.  For a particular throttle parameter value, the input and 

output relations derived for the open loop model is shown in 

Fig. 5.  In this model, there are be 207 uncertainty signals input 

to the open loop P  from the uncertainty block ∆  as shown in 

Fig. 6.  In the meantime, there are 207 signals , 1,..., 207
i

z i =  

coming into the uncertainty block ∆  from the open loop model 

P . 

 
 

Fig. 5: Open-loop model with the input/output relations 

 

 
Fig. 6: Synthesis model 

 

The synthesized model is written in state space form as 

shown in Eq. (57) including states [X] ∈ ℝ
22x1

 , exogenous 

signals [w, u] ∈ ℝ
229x1

, uncertainty input signals z ∈ ℝ
207x1

 and 

output signals y ∈ ℝ
22x1
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22 22922 22

229 22 229 229

x
BA

P
C D

×

× ×


= 
 

   (57) 

 
ROBUST STABILITY ANALYSIS 

The structured singular value Mu from the Robust Control 

Toolbox in MATLAB
®
 is used to analyze the robustness of the 

uncertain flutter model based on the synthesis model in Fig. 6. 

As discussed in the previous section, for the particular throttle 

setting, the outputs of the synthesis system are composed of the 

output of the system and input to the uncertainty block. For 

calculating the robust performance, the frequency response of 

the system is calculated with the real uncertainty block 

specified. In this section the results of this analysis are 

discussed. 

Three different cases with throttle parameter 
t

A  = 0.7 are 

presented first here. Case I is a system with small uncertainty of 

1% on all the parameters. As can be seen in the Mu plot in Fig. 

7, the system is robustly stable to modeled uncertainty because 

the Mu value is less than one for all frequencies.  Case II is a 

system with an uncertainty of 2.5% in the parameter values. 

From Fig. 8 it can be seen that this uncertain system is not 

robustly stable to the modeled uncertainty for certain 

frequencies. It can tolerate up to 30.9% of the modeled 

uncertainty and a destabilizing combination of 114% of the 

modeled uncertainty exists causing instability at 2.15 rad/s. 

Case III involves a system with a relatively higher uncertainty 

of 5% on the structural parameters. It is shown in Fig. 9 that the 

design is not robust with respect to the defined uncertainty. A 

destabilizing combination of 89.5% of the modeled uncertainty 

exists causing an instability at 2.73 rad/s. In addition to the 

stability conclusions obtained from the three cases we can get 

useful information about the frequency range the systems are 

stable within and the frequency that corresponds to the peak 

value of Mu.  

 

 
 

Fig. 7: Robust Analysis of Case I Flutter Model 

 
 

Fig. 8: Robust Analysis of Case II Flutter Model 

 

 
 

Fig. 9: Robust Analysis of Case III Flutter Model 

 

Mu analysis is then done on the system with 5% 

uncertainties on the structural parameters at two new operating 

points. The Mu plots for Case IV represented by throttle 

parameter 
t

A  = 0.6, and Case V represented by
t

A  = 0.9 are 

shown in Fig. 10 and Fig. 11 respectively.  

 
 

Fig. 10: Robust Analysis of Case IV Flutter Model 
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Fig. 11: Robust Analysis of Case V Flutter Model 

 

Looking at the Mu plot for Cases III, IV and Case V, 

which all have 5% uncertainty on structural parameters but 

different operating points, it is found that the frequency 

corresponding to the maximum value of Mu does not shift 

much depending on operating point. Hence a new set of values 

are assigned to the structural parameters to see if the frequency 

corresponding to the peak value of Mu would shift based on 

nominal values of the parameters. New values assigned for the 

structural properties are shown below: 

 

Structural damping of bending mode,
 bς  = 0.025 

Frequency of pure bending mode,
 b
Q  = 2.75 

Structural damping of torsion mode,
 tς  = 0.025 

Frequency of pure torsion mode,
 t
Q  = 5.5 

 

The Mu plot for the new values of parameters with 5% 

uncertainty on structural parameters is shown in Fig. 12.  

 

 
 

Fig. 12: Robust Analysis of Case VI Flutter Model 

 

As seen in Fig. 12, like the previously stated cases with 5% 

uncertainties on the structural parameters, the system is not 

robustly stable for the modeled uncertainty. The peak frequency 

occurs at 2.42 rad/sec, which does not indicate a shift in 

frequency corresponding to instability based on changes in 

nominal value of structural parameters. Hence the authors 

investigated the linear models obtained for both cases and 

found that out of the 22 natural frequencies of the linear 

system, mainly the highest frequency is affected by the change 

in nominal values of structural parameters while the lower 

frequencies are not affected significantly. As a result the 

frequency corresponding to the peak value of Mu does not shift 

depending on nominal value of parameters, since it is the lower 

frequencies that are easily excited. Table- 1 shows some higher 

and lower natural frequencies of the linear model obtained in 

Cases III and VI using different nominal values of structural 

parameters.  

 

Natural Frequency Case III Model Case VI Model 

 

High Frequencies 

(rad/sec) 

16.8 22.5 

5.93 5.94 

4.94 4.96 

 

Low Frequencies 

(rad/sec) 

2.42 2.42 

2.21 2.21 

1.16 1.16 

 

Table – 1: Natural frequencies of linear models III and VI 

 

CONCLUSION 
In this paper, the Mu tool is applied to analyze the 

robustness of a gas turbine compressor blade in terms of flutter. 

In this analysis, uncertainties, such as the ones arising from 

unmodeled dynamics, model order reduction, linearization, and 

imperfectly known parameters, are all considered. The nominal 

model and uncertainty bounds used in the Mu analysis are 

obtained via the Monte Carlo simulation based on a linearized 

model reduced from a publically available two dimensional, 

incompressible flow model coupled with structural dynamics. 

To do an accurate robust performance analysis using Mu 

tool, a model that can capture the physical phenomenon 

approximately is necessary. Mu tool can give very accurate 

result, when the robustness analysis with respect to parametric 

uncertainties is done based on an accurate model. In case of 

absence of an accurate model, the uncertainty bound on the 

nominal model would be high and a design using Mu tool could 

be too conservative. With a high accuracy model and the steps 

shown in this paper, the robust performance of the compressor 

blades can be determined accurately and used by designers to 

predict safe operation conditions such that unstable operation 

regions can be avoided.  
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