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ABSTRACT 
A method is proposed for the determination of the 
aeroelastic behavior of a system responding to mode-shapes 
different to the tuned in-vacuo ones, due to mistuning, mode 
family interaction or any other source of mode-shape 
perturbation. The method is based on the generation of a 
data base of unsteady aerodynamic forces arising from the 
motion of arbitrary modes and uses Least Square 
approximations for the prediction of any responding mode. 
The use of a reduced order technique allows for mistuning 
analyses and is also applied for the selection of a limited 
number of arbitrary modes. The application on a transonic 
compressor blade shows that the method captures well the 
aeroelastic properties in a wide frequency range. A 
discussion of the influence of the mode-shapes and 
frequency on the final stability response is also provided. 
 

1 INTRODUCTION 

In turbomachinery the vibration of the blades leads to fluid 
pressure unsteadiness which can 1) attenuate the vibration of 
the blades in which case it is referred as a positive 
aerodynamic damping and is an important contributor on the 
forced response or 2) lead to a rapidly increasing vibration 
amplitude in an unstable self-excited condition which is 
known as flutter, and needs to be avoided in the operating 
range of the machine. In the context of this paper aeroelastic 
behavior refers to both of these phenomena.  
It is a common practice to predict the aeroelastic behavior 
(or stability) of a system by performing unsteady 
Computational Fluid Dynamics (CFD) calculations. As first 
approach, the stability of the first three pure modes of the 
blade are usually considered at different relevant operating 
points, giving an indication if the blade design is acceptable 
with respect to the flutter margins. This is usually assessed 

by using an analogue mass spring system including the 
unsteady aerodynamics as contributors on the stiffness and 
the damping [1]. The same concept has been considered by 
the Fundamental Mistuning Model (FMM) [2-3] and the 
Asymptotic Mistuning Model (AMM) [4-5] for studying the 
effect of both structural and aerodynamic mistuning on the 
aeroelastic behavior of turbomachinery, both in forced 
response and aerodynamic damping analyses. These 
methods have the great advantage of being very efficient 
with respect to computational time since generalized 
coordinates (instead of the full structural meshes) are 
considered for analyzing individual mode families. 
However, these approaches are most suitable when no 
interaction between the mode families is present, or when 
the mode-shapes of the blades are fairly similar to the 
original tuned in-vacuo case. Previous studies [6-7] have 
shown that when two blade mode families interact (e.g. 
bending and torsion interaction), the aerodynamic damping 
predicted can be of considerable difference as for the one 
predicted for a single mode family.  Turbomachinery design 
is today more and more pushing towards lighter and twisted 
blades and exposed to larger aerodynamic loads (e.g. open 
rotors) which imply a reduction of the mass ratio in favor of 
the possibility of mode family interaction. Clark et al. [8] 
proposed a methodology for determining when a possibility 
of mode interaction flutter is present. This method 
determines a critical mass ratio below which flutter can 
occur as a function of the frequency and solidity of the 
blade.  
 
A method for considering mistuning as well as mode family 
interaction was presented by Mayorca et al. [9] and is 
referred to as the Multimode Least Square (MLS) model. 
The method includes in the dynamic equation of motion the 
different unsteady aerodynamic damping forces rising from 
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the oscillation of mode-shapes of interest. This is done by 
fitting the unsteady aerodynamic influences from the 
different modes-shapes in a single aerodynamic stiffness and 
a single damping matrix by Least Square (L2) 
approximations. This approximation is based on the linear 
behavior of the unsteady forces with respect to the mode-
shape in the region of small amplitudes as demonstrated 
both numerically and experimentally by Glodic et al. [10]. 
 
The MLS was applied in a transonic compressor blade, and 
it was observed how mistuning could cause veerings 
between two mode families and consequently changing the 
aerodynamic damping behavior of the system. For that 
application, the mode interaction behavior was obtained 
from the unsteady forces of the known in-vacuo modes.  
In the present study, the MLS method is applied in a more 
general manner, by determining aerodynamic matrices from 
a set of unsteady forces produced from the oscillation of 
arbitrary modes. In this sense, the aeroelastic properties of 
the system dynamic equation of motion is not restricted to 
only the in-vacuo modes but also to a system responding to 
perturbed modes. The main reason for developing this 
model is to be able to account for sources that lead to 
changes of the in-vacuo modes-shapes, such as: mistuning, 
coating damping, mode family coupling, a large impact from 
aerodynamic forces (largely damped blades), cracks, 
dampers, inter-shroud connectivity or other sources of 
mode-shape perturbations, as long as the steady 
aerodynamics are preserved constant.  
 
The present paper aims at establishing a procedure for 
selecting an optimum set of arbitrary mode-shapes (referred 
as Guyan-based Arbitrary Modes, GAMs) that can be used 
for the prediction of aeroelastic behavior of a perturbed 
system in a wide general sense. It also gives an estimation of 
how accurate the method could be with respect to the 
computational effort.  
 
There are two main challenges in this process: 1) the 
selection of relevant arbitrary modes that keep accuracy and 
computational efficiency inside reasonable margins; 2) 
including the frequency content in the system from forces 
obtained having oscillated GAMs which do not have an 
associated eigen-frequency.  
Challenge 1 is here assessed by the use of a standardized 
reduction technique proposed by Guyan [12] which allows 
reducing the size of the dynamic system to selected master 
nodes. The Guyan reduction concept is also used for 
producing different sets of arbitrary modes, as it is explained 
in this paper. Accuracy is evaluated in terms of how well the 
arbitrary mode-shapes fit to the first in-vacuo mode-shapes 
and to their resulting aeroelastic behavior. Challenge 2 is 
overcome by the calculation of different sets of unsteady 
forces from the arbitrary modes oscillated at the extreme 
values of the frequency range of interest, and evaluating 
what would be the limits at which the forces can be fitted 
accurately. A similar approach was presented by Mårtensson 
[11] in a wing profile. It was shown that the frequency effect 
could be included in the dynamic system by fitting the real 
part of the forces from a mode oscillated at two frequencies 
to the aerodynamic mass and stiffness. However, the 
imaginary part of the forces can only be fitted linearly to 
only one frequency.  

The paper is divided in the following sections: first a 
description of the Multimode Least Square method (MLS) 
and its general application is given followed by the 
description of the method considering arbitrary modes. Then 
the reduction technique implemented for reducing the model 
size is assessed. The application of the method is performed 
on a highly loaded transonic compressor blade where a 
general procedure for selecting the arbitrary modes (GAMs) 
and its final accuracy with respect to the reference case is 
evaluated. Finally, the influence of the frequency and the 
mode-shapes in the final aeroelastic behavior is discussed. 

2 NOMENCLATURE 

maxA  Mode maximum amplitude, [mm] 

a  Generalized Coordinate [-] 

C  Damping matrix [Ns/m] 

pĈ  Unsteady pressure coefficient: 

  max

ˆˆ
App

p
pC

o 
 , [ mm

1
]
 

dof Degree of freedoms: X, Y, Z 
F  Force vector [N] 
f frequency, [Hz] 
G  Matrix of modal forces [N] 
H  Matrix of modal forces divided by the 

frequency of oscillation [Ns/rad] 
K  Stiffness matrix [N/m] 
M  Mass matrix [Kg] 
m  Number of modes [-] 
p  Pressure, [Pa] 

P  Modal displacement vector [m] 
Modal displacement matrix [m] 

q Back-expanded mode vector, [m] 
t Time [s] 
X Cartesian coordinate. In this context 

represent the axial direction, [-] 
x  Displacement vector [m] 
Y Cartesian coordinate. In this context 

represents the radial direction, [-] 
y  Approximation to the displacement 

vector x  [m] 
Z Cartesian coordinate. In this context 

represents the tangential direction, [-] 
Symbols 
  Frequency [rad/s] 

  Modal vector, [-] 

L2 Least Square 
Re Real part of the complex number, [-] 
Im Imaginary part of the complex 

number, [-] 
Superscript 
k Node number, referred to the stiffness 

matrix 
c Referred to the damping matrix 
T Transpose 

-1 Inverse 

^ Complex 
. ..  First and second derivative 

Subscript 
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AERO Refers to the system aerodynamic 
block circulant matrix  

aero Refers to the influence coefficient 
Aerodynamic matrix 

G Guyan reduced 
g Generalized 
INFC Influence Coefficient 

i Vibration mode index 
n Maximum number of GAMs 
m Master nodes 
max Maximum 
min Minimum 
mean Mean value 
o Referent to total quantities 
perturbed Refers to the responding perturbed 

mode 
s Slave nodes 
STRU Refers to the system structural matrix 
Abbreviations  
AROMA Aeroelastic Reduced Order Modeling 

Analysis  
CFD Computational Fluid Dynamics 
GAM Guyan-based Arbitrary Mode 
IBPA Inter Blade Phase Angle 
INFC Influence Coefficient 
FE Finite Element 
MAC Modal Assurance Criteria 
MLS Multimode Least Square 
PS Pressure Side 
SCA Stability Curve Amplitude 
SDOF Single Degree of Freedom 
SS Suction Side 
TWM Travelling Wave Mode 

3 APPROACH 

3.1. MLS General Method 

A detailed description of the MLS method is given in [10] 
and the main concept is summarized here for the sake of 
completeness. Its application in stability analyses is 
discussed in this paper, and thus consideration of forces only 
produced due to blade motion are included.  
The method considers the homogenous solution of the 
dynamic equation of motion, considering unsteady forces 
rising from blade vibration of different modes as 
aerodynamic matrices, as presented in the set of equations 1.  
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 (1) 

0)()()(2  AEROSTRUAEROSTRUAEROSTRU KKCCiMM    

 
KSTRU and MSTRU are block diagonal matrices containing the 
structural stiffness and mass of the blade and CSTRU consider 
mechanical damping, mainly rising from material or friction 
damping. The complex aerodynamic damping forces can be 
decomposed in the Influence Coefficient domain (INFC) 
which represents the individual influences of the motion of 
one blade into another. The complex forces in the INFC 
domain can then be included in the dynamic system as 

contributors proportional to aerodynamic mass, stiffness and 
damping matrices. The determination of the influence 
coefficient aerodynamic matrices is assessed by an analogue 
representation of the dynamic system, but only considering 
the aerodynamic contributions as shown in equation 2. 
 

    aeroaeroaeroaero FXKCiM ˆˆ2    (2) 

    )ˆIm()ˆIm( aeroaero FXC   (3) 

    )ˆRe()ˆRe(2
aeroaeroaero FXKM   (4) 

 
The imaginary part of the forces contributes to the 
aerodynamic damping (Caero, equation 3) and the real part of 
the forces to the aerodynamic stiffness (Kaero) and mass 
(Maero) as presented in equation 4.  It can be assumed that 
the influence of the aerodynamic mass is small as compared 
to the aerodynamic stiffness, and thus concentrate all the 
real force influences in the aerodynamic stiffness term 
(equations 5 and 6), similar to as applied in single degree of 
freedom (SDOF) approaches [2-3]. 
 

    )ˆRe()ˆRe( aeroaero FXK   (5) 

  











)ˆIm(
)ˆIm( aero

aero

F
XC  (6) 

 
In the MLS method, the blades are not considered in 
generalized coordinates, but rather the complete blade FE 
mesh. Consequently, the solution is not restricted to a single 
family of modes. Determination of the aerodynamic 
matrices from the unsteady forces rising from different 
modes is performed by using Least Square (L2) 
approximations. 
 
The mode-shapes of interest, in general a set of in-vacuo 
modes calculated by Finite Element methods, are used to 
perform different blade motion CFD unsteady calculations. 

Since modal displacement vectors ( iP ) are used, then 

complex modal forces ( iĜ ) are obtained for each mode i . 

The displacement x  of each node k  can be approximated 
to a solution y  as a combination of the different m  modes 

proportional to generalized coordinates a  as presented in 

equation 7 and in matrix form in equation 8. Matrix P  
contains the modal displacement vectors considered in the 
form      mPPP ...21 . 

 
km

i

k
ii

k yPax  1
 (7) 

    aPX   (8) 

 
The superscripts refer to the node numbers and the 
subscripts to the mode number. The exact solution will then 
be obtained if infinite modes were included. The set of y  

that approximates best to x  can be found by the minimum 
error for the L2 , as shown in equation 9 and 10. 
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After the derivation, the best fit of generalized coordinates is 
given by equation (11).  
 

       xPPPa T
j

T
i

1


 (11) 
 
Equations 5 and 6 can be written in terms of the modal 
forces and modal displacement vectors, allowing the 
aerodynamic matrices to be deduced (equation 12 and 13). 
 

         
      Tj

t
iaero

T
j

t
iaero

PPPGK

XPPPGXK
1

1

)ˆRe(

)ˆRe()ˆRe()ˆRe(







 (12) 

 

         
      Tj

t
iaero

T
j

t
iaero

PPPHC

XPPPHXC
1

1

)ˆIm(

)ˆIm()ˆIm()ˆIm(







           (13) 

 

Matrix )ˆRe(G  contains the real modal force vectors in the 

form      mGGG ...21  and )ˆIm(H  the imaginary modal 

forces divided by the frequency at which each mode was 

oscillated: 
































m

mGGG


...

2

2

1

1 . 

The solution of the complete dynamic system (equation 1) 
will be a perfect match when responding to the frequencies 

of the mode-shapes included in the P , Ĝ  and Ĥ  matrices. 
The solution will be fitted by Least Squares for responding 
modes in a frequency different to that of the modes included 
in the determination of the aerodynamic matrices. This 
would be the case when there is a combined mode situation 
or mode-family interaction.  

3.2. MLS Considering Arbitrary Modes 

In the MLS general method description, the in-vacuo modes 
are oscillated in the CFD calculations, and thus both mode-
shapes and frequency content is included when determining 
the aerodynamic damping matrices ( )ˆIm(H in equation 13). 

In the new application of the method, arbitrary mode-shapes 
(GAMs) are used instead. As a first condition, they should 
be linearly independent; and second they should result in an 
accurate match to any responding perturbed mode-shape (or 
mode-shapes) when linearly combined, as shown in equation 
14. The coefficients a  are then determined from L2

 

approximations in order to obtain the best possible fit. The 
responding mode-shape(s) could be in principle any in-
vacuo mode or perturbed mode (e.g. a mistuned mode).  
 
       nGAMnGAMGAMperturbed aaa ,2,21,1 ...  

  (14) 
 
Once the set of arbitrary mode-shapes follow these 
conditions, it is necessary to select at which frequency (or 
frequencies) the corresponding modal forces should be 
determined in the CFD calculations. The selection of the 
frequency depends on 1) which is the frequency range of 
interest for the stability analysis and 2) if in that range it is 
possible to fit in the system both real and imaginary force 
contributions.  

 
If the frequency range of interest is [ω1 – ω2], then a first set 

of aerodynamic forces 
1,

ˆ
AEROF rising from the oscillation 

of the arbitrary modes at ω1 is obtained and a second set 

2,
ˆ

AERO
F  at ω2. The two frequency influences could be 

fitted to the real contributions by determination of the 
aerodynamic mass and stiffness and solving the system of 
equations (15). However, the aerodynamic damping matrix 
can only be approximated by one frequency. If the 
aerodynamic damping forces major influences behave 
linearly inside the frequency range, then the aerodynamic 
damping matrix determined from the set of forces at ω1 
would give a similar result as if it is determined from the set 
of forces at ω2 (equation 16). 
 

    
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2
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 (15) 
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F
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F
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After derivation of the L2 procedure analogue to section 3.1, 
the aerodynamic mass and stiffness considering the 
frequency fit and the GAMs can be calculated using 
equations 17. The aerodynamic damping matrices could be 
fitted to either extreme frequency (ω1 or ω2), or to a mean 
value of the two, as presented in equation 18. 
 

   

    aeroj
T

iaeroaero

T
j

T
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PPPGG
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2
22,

2
2
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
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
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





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      
      

     
2

)ˆIm(

)ˆIm(

2,1,

1

22,

1

11,







aeroaero
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T
j

t
iaero

T
j

t
iaero

CC
C

PPPHC

PPPHC











(18)

 
 
Note that the aerodynamic mass, stiffness and damping 
matrices obtained in 17 and 18 are representing one 
influence. This means there are many aerodynamic matrices 
as influence coefficients. The INFC aerodynamic matrices 
are then assembled in the overall aerodynamic matrix in the 
dynamic equation. Specific information on how the system 
is assembled is given in [10]. 

3.3. Guyan Reduction 

The dynamic system model arising from the MLS method 
can become very large, since it considers the complete 
structural FE mesh. The size of the model will depend on the 
number of blades considered and the number of nodes in the 
mesh. Note also that the aerodynamic matrices are of 
circulant nature, being fully populated, and increasing the 
computational effort. If additionally the disk is incorporated 
for aerodynamically and structurally coupled analyses, then 
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the size would be even larger. Even though the formulation 
of the method allows for aerodynamic and structural 
mistuning by perturbing the structural properties and 
aerodynamic influences, its practical application can only be 
possible by reducing the model size. 
For this reason the static condensation technique proposed 
by Guyan [11] is implemented, which allows reducing to 
model size to specific selected master nodes by means of 
static constrained equations. This means that the solution is 
exact for static problems and is an approximation for 
dynamic systems. The reduced structural matrices are 
obtained from the full matrices considering master (or 
retained) and slaves (or removed) nodes according to 
equations 19-21. The reduction technique is accurate for the 
low frequency modes for a reasonable number retained DOF 
(<2kHz) but still gives an acceptable accuracy as frequency 
increases.  
The Guyan projection can be applied in a rather simple 
manner depending only on the structural matrices. It also 
allows for high level structural mistuning and thus is 
suitable for the current application.  

  

smssmsmmG KKKKK 1
 (19)  

 (20) 

smssmssmssmssmssssssmsmmG KKMMKKKKMKKMM 1111    

sssmsmG FKKFF 1
 (21) 

 
The aerodynamic modal forces are reduced by considering 
the transformation matrices obtained from the structural 
stiffness matrices (equation 19). This assumption is valid 
considering that the structural stiffness is of much larger 
magnitude than the aerodynamic stiffness. The reduced 
aerodynamic stiffness and damping are then calculated from 
the reduced modal displacement and reduced modal force 
vectors. The final size of the matrices in the model will be 
(m x nb) x (m x nb), where m is the number of master nodes 
and nb is the number of blades in the full annulus. 

4 APPLICATION 

The application of the MLS considering arbitrary modes 
(GAMs) will be performed on the rotor blade part of a 1 ½ 
highly loaded transonic compressor stage [13]. The blade is 
part of blisk and thus only aerodynamic damping will be 
considered.  

4.1. Finite Element Model 

The structural blade mesh is obtained using a Finite Element 
commercial tool (ANSYS 11.0) and contains a total of 2205 
nodes using brick elements of the type Solid 45. The disk is 
not included in this analysis, having constrained the blade in 
the hub region (Figure 4-1). Consequently the only coupling 
between the blades is aerodynamic. The modal analysis of a 
full single blade mesh is performed considering the pre-
stress conditions, such as to include the influence of the 
mean flow pressure and centrifugal forces effects.  
 

flow

x

y

Rotor blade 
Figure 4-1: Structural rotor blade mesh 

 

 
Mode 1 2 3 4 5 6 7 
 [Hz] 804 1934 2144 3295 3754 4308 4960 
Range f1  f7 
Table 4-1: First 7 real modes and frequencies. Frequency 

range considered [f1- f7] 
 
The frequencies of the first 7 in-vacuo mode-shapes are 
obtained, and shown in Table 4-1. The frequency range of 
interest for further analyses is spanned by the f1 and f7. 

4.2. CFD Model 

The CFD unsteady calculations have been carried out by 
using the in-house 3D Navier Stokes Linearized code Volsol 
[14]. The steady state solution was obtained including both 
rotor and stator domains, and only the solution of the rotor 
part was considered as bases for the linearized unsteady 
calculations (Figure 4-2). The operating point considered is 
at design conditions: 21000 rpm and 2.1 pressure ratio 
(Figure 4-3). 

 
Figure 4-2: Steady state mesh domain. Linearized mesh 

domain highlighted 
 

The Travelling Wave Mode (TWM) approach is applied for 
the unsteady calculations, and thus only a single blade 
passage is computed. For every mode-shape 8 IBPAs are 
evaluated. A converged solution was considered when the 
stability curves remained unchanged after two consecutive 
solutions. The CFD harmonic forces are mapped onto the 
structural mesh and Fourier transformed in order to obtain 
the different blade influences according to the influence 
coefficient approach. The MLS code is built in the 
numerical tool for aeromechanical analyses AROMA 
(Aeroelastic Reduced Order Modeling Analysis) [15].  
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Figure 4-3: 100% speed-line. Design point highlighted 

 

4.3. Analyses Layout 

Stability analyses of only aerodynamically coupled blades 
are considered. The frequency range of interest considers the 
frequencies from the 1st until the 7th in-vacuo modes. This 
range is consistent with the Guyan reduction limits of 
accuracy, but yet is a large enough range of frequency 
variation keeping in mind the general application of the 
method. The set of master nodes is selected such as to 
achieve a good accuracy in mode-shape as well as in 
frequency with respect to the full blade mesh model. A 
procedure for the selection of the arbitrary modes based on 
the Guyan reduction is given, and discussed in a specific 
section. The reference case is the resulting stability of the 
first 7 in-vacuo mode-shapes from the MLS general method 
which will be compared with the following analyses:   
 

1) The resulting stability considering the harmonic 
forces from the arbitrary modes oscillated at f1. 
Only aerodynamic stiffness and damping matrices 
considered 

2) The resulting stability from the arbitrary modes 
oscillated at the frequency f7. Only aerodynamic 
stiffness and damping matrices considered. 

3) The resulting stability from the arbitrary modes 
oscillated at frequency f4. Only aerodynamic 
stiffness and damping matrices considered. 

4) The resulting stability from the arbitrary modes 
oscillated at 1) frequencies f1 and f4 and 2) 
frequencies f4 and f7. Here both the aerodynamic 
mass and stiffness matrices are included. The 
aerodynamic damping matrix is calculated from the 
average of the resulting aerodynamic matrices 
determined from the extreme frequencies in each of 
the ranges. 

 
In order to understand the frequency effect further, the 
computation of the 1st in-vacuo mode is performed at the 7 
different frequencies inside the studied range. Finally a 
discussion considering the distributed unsteady pressures in 
relation to the mode-shapes as well as to the steady state 
pressure field is presented.  

5 ARBITRARY MODES SELECTION 

The main condition for selecting the arbitrary modes is that 
they should be linearly independent and when linearly 

combined, they should result in a good approximation of any 
given mode. The ideal case would be to produce a mode in 
each Cartesian direction for each node of the blade mesh. 
This means oscillating each node independently at the 
different IBPAs which in turn will produce a large data base 
of aerodynamic damping forces that could superpose 
linearly and give rise to any possible vibration shape. Doing 
this would require an enormous amount of CFD calculations 
(e.g. 2205nodes x 3dof x 8 ibpa at f1 and/or f7). With the aim 
of considering a limited number of arbitrary representative 
modes it is proposed using the Guyan projection concept as 
the bases of the arbitrary modes generation. In this manner, 
the amount of arbitrary modes is consistent with the master 
nodes selected for the structural reduced model and the CFD 
required calculations can be reduced to a considerably 
minimum. In the following sections the description of the 
master node selections and its further use for the arbitrary 
modes generation is presented. 

5.1. Master Nodes Selection 

The selection of master nodes has been performed in order 
to fit accurately the first 7 real mode shapes in the frequency 
range of interest. The initial set of master nodes was selected 
considering the following: 1) they should cover locations of 
expected high energy, 2) master nodes should not be placed 
too close to each other such as to avoid redundancy. 
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Figure 5-1: Different number of master nodes (above). 
MAC of reduced real modes when compared to the full 

real modes (below).  
 
A first set of master nodes was selected and its accuracy 
with respect to the in-vacuo full mesh modes (Table 4-1) 
judged by the Modal Assurance Criteria (MAC). A MAC of 
100 (equation 22) means a perfect match of the full mesh 
mode-shape with the resulting mode-shapes from the Guyan 
reduced mass and stiffness matrices. In the present study, an 
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appropriate set of master nodes should result in in-vacuo 
reduced mode-shapes with a MAC higher than 90 when 
compared to the full model. Figure 5-1 shows the different 
MAC numbers for the first 7 modes considering different 
sets of master nodes. Note increasing the master nodes 
implies a higher accuracy. 
 

 
  2211

2

21100



TT

T

MAC   (22) 

A first set of 19 master nodes was selected. 

5.2. Guyan-based Arbitrary Modes (GAMs) 

Once the master nodes are selected, the arbitrary modes are 
produced in the following manner: 

1) The structural system is Guyan reduced to one 
master node at a time 

2) A displacement of 1e-3m is assigned to that master 
node in one Cartesian direction at a time, as in 
equation 23 

 














 




0

0

101 3

xq

 (23) 
3) A back-projection to the full model is done giving 

rise to the here called Guyan-based Arbitrary Mode 
(GAM) for that specific node and direction, as 
shown in equation 24. 

    xsmssxGAM qKK 1
,

  (24) 

In this case the number of master nodes is one and the slave 
nodes are the number of nodes in the full FE mesh minus the 
one master node. Following this procedure, a number of 

dofnodesmaster 3_   Guyan-based Arbitrary Modes are 

obtained.  
 
The resulting GAMs from displacing each master node in 
the axial direction are depicted in Figure 5-2. Arbitrary 
modes are also obtained from displacing the nodes in the 
radial (Y) and tangential (Z) direction. 
 

   

 

 

 

   

 

 
Figure 5-2: 19 GAMs from axial (X) displacement of 

master nodes. Absolute amplitudes. Eliminated modes 
highlighted 

5.3. Filtering Redundant Modes 

It is possible to visualize some redundant GAMs which 
could be eliminated from the set and thus reduce the number 
of CFD calculations. By performing a crossed MAC 
operation between the GAMs and eliminating those which 
give a MAC number above 80, it is possible to reduce the 
number of modes to 11 (a reduction of almost half). The 
eliminated modes are highlighted in Figure 5-2. 
Also, considering that the radial displacement is not of great 
influence in the studied mode-shapes and furthermore 
considering that the vibration on this direction will not have 
a relevant influence on the unsteady aerodynamics, all the 
arbitrary modes rising from displacing the master node in 
the Y direction are eliminated. 
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Figure 5-3: 19 Least Square error when fitting the 11 X 

and Z arbitrary modes to the real modes (above). 
Matched modes (below) 

 
Finally, when combining all the GAMs linearly by a L2 fit to 
the real first modes, the error obtained is increasing with 
increasing mode-shape, and reaches a maximum deviation 
of around 13% (Figure 5-3). This would in turn limit the 
precision of the final stability response considering only the 
mode-shape influences. 
 
The final set of master nodes is reduced to 11 for 
consistency with the selected GAMs. The accuracy of the 
reduced real modes is still above a MAC of 90 for the first 7 
modes (Figure 5-1). The final number of CFD calculations 
required is presented in the following table: 
 
Frequency Modes 

X 
Modes 

Z 
Total 

Modes 
IBPA Total 

f1 11 11 22 8 176 
f4 11 11 22 8 176 
f7 11 11 22 8 176 

Total Number of CFD simulations 528 
Table 5-1: Number of CFD unsteady calculations 

considering the GAMs 
 
It must be noted that it is possible to utilize any other set of 
arbitrary modes under the consideration of being linearly 
independent and that when combined with L2 approximation 
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could be accurately matched to any perturbed mode. The 
GAMs is one alternative here proposed, being consistent 
with a reduction technique applicable for mistuning analyses 
and that also allows parametric arbitrary modes generation. 
The selection of an arbitrary modes basis could then be 
optimized for a specific application.  

6 RESULTS 

In this section the stability analyses results from the GAMs 
using the MLS are presented. The results will be compared 
to the stability from the in-vacuo modes using the MLS 
general method. The influence of the frequency of 
oscillation of the GAMs is also discussed. 

6.1. MLS Stability from In-vacuo Modes 

The resulting stability considering the in-vacuo modes for 
the CFD calculations is presented in Figure 6-1. The 
different points at each mode represent the aerodynamic 
damping in terms of critical damping ratio at different nodal 
diameters (or inter blade phase angles). The negative 
aerodynamic damping means an unstable condition. Note 
that the mean value of the stability curves is set by the 
influence of the vibrating blade on itself and the amplitude 
of the curve by the influence of neighbor blades.  Most of 
the mode-shapes considered experience a stable condition, 
with the exception of mode 1 which is marginable unstable. 
Even when the stability curve of mode 1 has the largest 
mean value, it also has the largest curve amplitude, and thus 
reaching an unstable condition. This is due to a large 
destabilizing effect of the neighbor blades. The aerodynamic 
coupling due to the aerodynamic forces can be observed in 
the change of frequency for the different inter blade phase 
angles, shown for mode 1 (zoom in Figure 6-1). 
In order to compare the results obtained from the GAMs 
both the Stability Curve Amplitude (SCA), as well as the 
mean value of the curves will be considered. 
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Figure 6-1: Aerodynamic damping from the first 7 real 
modes using the MLS general method. Zoom of mode 1 

6.2. MLS GAMs at f1 

The stability obtained from the 22 harmonic forces from the 
GAMs considering the oscillation of all modes at f1 is 
presented in Figure 6-2. Only the aerodynamic stiffness and 
damping matrices are calculated (equation 5 and 6).  
 
In Figure 6-3 it is shown that there is a better approximation 
of both the SCA and the mean value for the 1st and 2nd 

modes as compared to the higher modes. It is expected that 
the lower modes are matched in a better manner than the 
higher for two reasons: 1) the mode-shape fit for the lower 
modes is better than the larger modes (Figure 5-1) and 2) the 
frequency of oscillation is the lowest of the range. However, 
the deviation of the resulting stability of modes from 3 to 7 
is much larger than what expected if only the difference in 
mode-shapes are accounted. This gives an indication of a 
great influence of the frequency on the unsteady forces. 
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Figure 6-2: Stability from arbitrary modes oscillated at 

f1 
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Figure 6-3: SCA (top) and Mean (bottom) and its 
differences with the real modes. Arbitrary modes 

oscillated at f1 

6.3. MLS GAMs at f7 

The stability considering the set of harmonic forces rising 
from the GAMs oscillation at f7 has been calculated.  
 
In this case both mean and SCA show a good approximation 
not only for mode 7 (the mode responding at f7) but for 
modes 4 to 7 (Figure 6-4). From these results it seems clear 
that even when GAMs are matching well to the mode-
shapes for the complete range, the major influence is then 
given by the frequency change. From modes 4 to 7 it could 
be seen that it behaves linearly.  

8 Copyright © 2011 by ASME



Copyright © ASME 2011 9

 
 

1 2 3 4 5 6 7
0

2

4

6

8

10

12

mode nr, -

S
C

A
 |d

r m
in

-d
r m

ax
|, 

%

 

 

approximation
real
|SCA1-SCA2|

3 4 5 6 7
0

1

2

3

 

 

approximation
real
|SCA1-SCA2|

 

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

mode nr, -

m
e

a
n

 d
r,

 %

 

 

approximation
real
|mean dr1 - mean dr2|

 
Figure 6-4: SCA (top) and Mean (bottom) and its 
differences with the real modes. Arbitrary modes 

oscillated at f7 

6.4. MLS GAMs at f4 

In order to explore if a better fit could be obtained by 
calculating a frequency in the middle of the range of 
interest, the GAMs have been calculated at the 4th mode 
frequency (3295Hz) and the stability of the 7 modes 
presented in Figure 6-5. 
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Figure 6-5: Stability from arbitrary modes oscillated at 

f4 
Both the stability curve amplitude and mean value present 
an acceptable accuracy from modes 2 to 7 (Figure 6-5). 
Mode 1 however is much better predicted by the GAMs 
oscillation at the mode 1 frequency.  
 
For the higher modes, mode 3 shows the largest the 
deviation both in SCA and mean value. Considering the 1st, 
the 4th and 7th frequency of oscillation (Figure 6-3, Figure 
6-4 and Figure 6-5), this mode has been the one with the 
major deviations. 
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Figure 6-6: SCA (top) and Mean (bottom) and its 
differences with the real modes. Arbitrary modes 

oscillated at f4 
 

6.5. MLS GAMs Considering Two Ranges of 
Frequency 

As seen from results in section 5.2 and 5.3, the oscillation of 
the GAMs at one frequency is not accurate for the complete 
range, but for rather limited ranges close to the oscillated 
frequency. Two smaller frequency ranges are studied, 
considering the middle frequency inside the range, in this 
case that of the 4th in-vacuo mode. One range oscillating the 
GAMs at f1 and f4; another considering the oscillation at f4 
and f7. 
 
The aerodynamic mass matrix is included for these analyses. 
This allows fitting the real part of the harmonic forces from 
two frequencies. However the imaginary part, which is of 
major relevance in the stability outcome, can be only fitted 
to one frequency. In this case an average of the two possible 
aerodynamic damping matrices (one per frequency set of 
forces) of each influence coefficient is calculated (equation 
18). 
 
The differences obtained using the first range extreme 
frequencies f1 and f4 are presented in Figure 6-7, whereas the 
second range from f4 and f7 in Figure 6-8. It can be seen that 
using the second range of frequencies, the modes from 2 to 7 
can be predicted with an acceptable accuracy, in both SCA 
and mean value. However, mode 1 still shows large 
deviations. When using the average of the damping from the 
1st and 4th frequencies, the lower modes are not as accurately 
predicted as in the case when only the 1st frequency was 
used (Figure 6-3). This shows that a linear behavior of the 
imaginary forces in the lower range could only be 
considered for the frequencies between mode 1 and 2, and a 
different range would exist near the mode 3 and 4 
frequencies. This can also explain that the 3rd mode had the 
largest deviations when using the 1st, 4th or 7th frequency. 
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Figure 6-7: SCA (top) and Mean (bottom) and its 
differences with the real modes. Arbitrary modes 

oscillated at f1 and f4 

 
On the other hand, the higher modes predicted in a similar 
manner by using the GAMs oscillated at f4, oscillated at f7,  
or using both results by including the aerodynamic mass 
contribution and the average in the damping matrices. This 
means that the stability in the frequency range of modes 4 to 
7 could be predicted with half of the computations by only 
using the GAMs at the extreme oscillated frequency f7.  
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Figure 6-8: SCA (top) and Mean (bottom) and its 
differences with the real modes. Arbitrary modes 

oscillated at f4 and f7 

 
Looking to the results, it seems clear that the most efficient 
procedure is to calculate the set of forces from the 
oscillation at a frequency in the middle of the range of 
interest rather than calculating two extreme frequency sets 
and calculating the average. However, having two 
frequencies allows for a better fit of the real contributions 

(aerodynamic mass and stiffness) in a wider range and the 
major limitation is due to the linear fit of the aerodynamic 
damping. Determination of the boundaries of the linear 
frequency behavior range is discussed in the following 
section. 

7 DISCUSSIONS 

In this section a discussion regarding the frequency 
influence is given as well as the relation of the different 
GAMs and their resulting unsteady forces. With this it is 
aimed at understanding the physical behavior of the flow 
and how this understanding could be used for a general 
application of the method highlighting what are important 
considerations. 

7.1. Frequency Influence 

With the purpose of understanding the influence of a large 
frequency variation on the aerodynamic damping, further 
CFD calculations are performed for a selected mode at 
different inter blade phase angles. The mode selected is the 
1st real mode since it has shown to have the largest unsteady 
amplitudes (high SCA and mean value) and its change with 
frequency could be better observed. Mode 1 was then 
oscillated at the 7 different frequencies of the in-vacuo 
modes (Table 4-1). The influence coefficient generalized 
forces (i.e. the projection of the harmonic forces onto the 1st 
mode) are shown in Figure 7-1. The different curves 
represent the influences of the different blades on the overall 
stability, being blade 0 the influence of the oscillating blade 
on itself. 
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Figure 7-1: Generalized real (left) and imaginary (right) 
forces of the 1st mode at different frequencies. Influence 
Coefficient domain; MLS GAMs frequency fit in dashed 

lines 
 
In this case the negative value of the generalized force 
means a stabilizing condition. When looking at the 
imaginary contribution, which is the most relevant 
considering the stability, it is observed that as expected the 
blade influence on itself (blade 0) has a stabilizing character. 
It becomes even more stable with increasing frequency and 
follows an approximated linear pattern consistent with the 
method here applied. This will in turn have the major 
influence on the mean stability curve value which can then 
be well predicted. The second largest influence is that of 
blade +1, in which case the influences are becoming more 
destabilizing in the first range of frequencies and then 
become more stabilizing after 4th frequency. This trend of 
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blade +1 conditions the accuracy of the predictions, since it 
is clearly non-linear. The imaginary influences of the other 
blades are much lower for the complete range of frequencies 
studied. A similar relation was observed by all the GAMs 
when observing the same trends of the 3 frequency points 
calculated.  
 
The real part of the forces is of interest when looking at the 
aerodynamic coupling strength, which can be observed in a 
change in frequency of a responding mode, different to that 
of the in-vacuo frequency. In this case blade 0 and the 
adjacent neighbor blades are the most influential. Here, 
blades -1 and +1 show a linear behavior in the complete 
range and blade 0 only shows this after the 4th frequency. 
This would mean that for both real and imaginary part a 
linear trend could be fitted from the 1st to the 2nd frequency 
and a second from the 4th to 7th, consistent with the behavior 
of the MLS arbitrary modes approach calculated at the 
extreme frequencies (Figure 6-3 and Figure 6-4). A third 
frequency range would then be needed around the 2nd to the 
4th mode frequency.  
The above indicates that a first frequency study could be 
performed, considering only one mode at different 
frequencies of interest. This allows determining what the 
possible linear ranges boundaries are and the frequency for 
the oscillation of the GAMs modes could be selected in the 
middle of those boundaries 
 
On the other hand, having two different frequencies can be 
used to fit the real contributions quite accurately the 
complete range by including the aerodynamic mass term 
into the equation. In Figure 7-1 (left) the dashed lines 
indicate the fitted aerodynamic forces from the GAMs 
aerodynamic mass and stiffness matrices when the system 
responds to mode 1.  The prediction of the imaginary forces 
is however limited by the conditions that 1) at zero 
frequency the forces should be zero and 2) its increment 
depends on a single damping constant. Figure 7-1 (right) 
shows then the fit by considering the average of the extreme 
frequencies aerodynamic damping matrices.  
Even when the MLS application using the GAMs requires a 
larger number of CFD computations as compared to using 
the mode-shape of interest directly, the method allows for 
larger generality: this is it can be applied to a system that 
could respond to perturbed mode-shapes, as well as allowing 
differences in frequency to the in-vacuo one due to different 
sources of perturbations (e.g. mistuning or aerodynamic 
coupling). On the other hand, it opens up for its application 
on forced response analyses, where the aerodynamic 
damping is then adjusted in the model to any responding 
frequency in a common numerical frequency sweep. 

7.2. GAMs Influence on the Unsteady 
Response 

In order to study what is the influence of mode-shapes in the 
unsteady response, the imaginary generalized forces of all 
the GAMs have been calculated by projecting the mode-
shapes onto the influence coefficient harmonic forces.  
 
In Figure 7-2 it is shown that for all the considered modes, 
the influence of blade 0 and the blade +1 are the largest, as 
seen for the mode shape 1. This means that all possible 

modes produced from the linear superposition of the GAMs 
will also have this behavior. 
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Figure 7-2: Influence Coefficient generalized forces of all 

the GAMs at f1 
 
It can also be observed that the GAMs obtained from 
displacing the nodes in the tangential direction have a 
slightly larger unsteadiness effect than the ones from 
displacing the master nodes in the axial direction. It is 
important to highlight that both X and Z modes have a 
motion in all the 3 directions, but the major contributions are 
on the corresponding direction at which it was projected 
from. Figure 7-2 also tells which GAMs are the least 
influential, such as modes 2-5 of the X modes.  
 
The blade 0 imaginary pressure coefficients of these modes 
are depicted in Figure 7-3. The low resulting generalized 
forces occur when the regions of large unsteadiness are not 
located where substantial motion exists. This results in a 
very low aerodynamic damping for those modes. The 
opposite happens in modes with a high generalized force, as 
for example mode 6 from the set of Z GAMs. This mode has 
a large area of displacement from mid-span towards the tip 
and thus matching with the unsteadiness of the flow in both 
pressure and suction side.  
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Figure 7-3: Imaginary pressure coefficient for the X 

modes 2-5. Influence of blade 0 on itself 
 
Also, the originated unsteadiness from this mode is of larger 
amplitude and covers most of the span of the blade. The in-
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vacuo mode 1 is also having this kind of shape and thus it 
also experiences a large SCA and mean value. 
 
An important observation is that major unsteadiness occurs 
in the tip where shocks have the major influence. This 
behavior holds for most of the GAMs and for both 
influences of blade 0 and +1 (Figure 7-5 and Figure 7-6).  
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Figure 7-4: Imaginary pressure coefficient for the mode 

6 Z. Influence of blade 0 
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Figure 7-5: Static pressure vs. imaginary Cp loading at 
90% span. GAM 6Z Influence of blade 0. Shock regions 

highlighted 
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Figure 7-6: Steady vs. unsteady loading at 90% span. 

GAM 6Z Influence of blade 1. Shock regions highlighted 
 
This means that knowing the expected locations of high 
unsteadiness from the steady state loading, then the GAMs 

to include could further be filtered out considering which 
will be most influential for the stability analysis and thus 
reducing the number of modes for calculation using CFD. 
 
However, there are cases in which determining the 
aerodynamic damping of low damping modes is of interest, 
such as when predicting how much mechanical damping is 
then required maintaining low amplitude levels in forced 
response analyses. In such cases, is then important to keep 
the low aerodynamically damped modes in the model. 

8 SUMMARY AND CONCLUSION 

A new method for determination of the aeroelastic behavior 
of perturbed modes based on Least Square approximations 
has been presented. The method includes the aeroelastic 
properties of the system in a wide general manner such as to 
allow responding mode-shapes different to the tuned-in-
vacuo ones. This approach requires the unsteady CFD 
calculation of a larger number of modes as in typical single 
mode families approaches, but allows the possibility of 
fitting to mode-shapes that can be perturbed due to 
mistuning, highly aerodynamically loaded blades, coating 
damping and other source of mode perturbation. The method 
is consistent with a reduction technique that can be used for 
high strength mistuning analyses having a model size that 
permits probabilistic analyses. It has been shown here that 
decreasing the number of master nodes to 11 (0.5% of the 
full model) the first 7 real mode-shapes could be matched 
with an accuracy of 93% for the 7th mode up to 99.9% for 
the 1st mode. The unsteady forces are thus obtained from a 
limited number of arbitrary modes (GAMs) that are also 
consistent with the reduction applied. The application of the 
method on a highly loaded transonic rotor blade shows that 
including the aerodynamic forces calculated at a single 
frequency would approximate best to the mode-shapes 
responding to that frequency but also to a range of neighbor 
modes if the main influences of the imaginary forces behave 
linearly with the frequency in that range. However, the real 
forces can be fitted accurately by including the aerodynamic 
mass contribution from the two extreme frequencies in the 
range. It has been observed that the unsteady forces relation 
with the frequency tends to be similar for different mode-
shapes and thus a first frequency study with a specific mode 
can be carried out for determining the frequency linear 
behavior where the method can be applied. In transonic 
compressors, the location of shocks is a good indicator 
where major unsteadiness due to blade motion is expected 
and thus this can also be a good indicator of which arbitrary 
modes would be influential and worth to perform the CFD 
calculations. The accuracy of the prediction will be limited 
on how well the GAMs match the responding mode. In the 
present case, the 1st real mode could predicted with an 
accuracy of 97% for mean of the stability curve and 90% for 
the SCA which corresponded to a L2

 mode-shape GAMs 
match of 98%.  Structural coupling effects can be accounted 
using the proposed method, by including the couplings of 
the disk in the structural matrices. The reduced model 
implementation thus allows for complete aerodynamically 
and structurally coupled mistuning analyses, being this one 
of the strengths of the method which foundation is assessed 
in this paper.  
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